Wireless Security I --Cellular Networks

0

Outline

- Wireless networks
- Wireless security challenges
- GSM security
 - current status, attacks and remedies
- 3GPP security

Classification of Wireless Networks

- WLAN: 802.11
- Cellular networks: GSM, 3GPP
- WWAN: WiMAX, 802.16
- Ad hoc networks
- Sensor networks
- WPAN: Bluetooth, Zigbee, 802.15
- Wireless mesh networks

Modern Wireless Networks

Wireless Protocols

- Bluetooth
- 802.11a
- 802.IIb
- 802.11g
- Others

Transportation (SSL/TLS)

Network (IPSec, VPN)

MAC (WEP, WPA, WPA2, 802.11i)

Wireless Security Challenges

- A number of unsolved threats in wired networks
- Shared wireless medium
- Vulnerable protocol design
- Difficulty in identifying anomalies
- Physical loss or theft of mobile devices
- Resource constraints of mobile devices
- Lack of a centralized authority or administration
- More...

Cellular Networks

GSM

- Global System for Mobile Communications
 - GSM is most popular standard for mobile phones
 - The GSM Association estimates 82% of the global mobile market uses this standard
 - Two billion people across more than 200 countries use GSM
- Services
 - Voice Communication, Short Messaging Service, ... etc.

GSM Architecture |

GSM Architecture 2

Mobile Station

- Mobile Equipment
 - International Mobile Equipment Identity (IMEI)
- Subscriber Identity Module (SIM) card
 - Smart Card containing identifiers, keys and algorithms

The SIM Card

- SIM (Subscriber Identity Module)
 - A small smartcard inserted into a GSM phone
 - Contains (at least)
 - IMSI International Mobile Subscriber Identity
 - Ki a 128-bit key obtained from AuC during registration, the long-term key used for authentication and cipher key generation
 - A3/A8 implementations
 - Protected by an optional PIN and a PUK (PIN Unlock)
 - Locked after a few invalid inputs of PIN (normally 3) and becoming permanently useless after a number of invalid inputs of PUK (normally 10)

Base Station Subsystem

- Base Transceiver Station (BTS)
 - A cell is formed by the radio coverage of a BTS
 - Provide the radio channels and handle the radio-link protocol
- Base Station Controller (BSC)
 - Manage the radio resources for one or more BTS
 - Handle channel setup and handovers
 - Connect to the mobile service switching center

Network Subsystem

- Component in Network Subsystem
 - MSC: Mobile services Switching Center
 - HLR: Home Location Register
 - VLR:Visitor Location Register
 - AuC:Authentication Center
 - EIR: Equipment Identity Register
- Network Subsystem features
 - Telephone switching function
 - Subscriber profile
 - Mobility management

GSM Basic Security Goals

- Subscriber authentication to protect the operator against the billing fraud
- Confidentiality on the radio path
- User anonymity/location privacy

GSM Security Design Requirements

- The security mechanism
 - MUST NOT
 - Add significant overhead on call set up
 - Increase bandwidth of the channel
 - Increase error rate
 - Add expensive complexity to the system
 - MUST
 - Use cost effective scheme
- How to Design?

GSM Security Features

- Subscriber authentication
 - The operator knows for billing purposes who is using the system
- Signaling and user data confidentiality
- Subscriber identity protection/user privacy
 - The transmission of the IMSI in plaintext over the air should be avoided wherever possible
 - Somebody intercepting communications should not be able to learn if a particular mobile user in the area
- Key management is independent of equipment
- Detection of compromised equipment

Crypto Algorithms in GSM

Crypto Algorithms in GSM

- A3/A8 left at the discretion of the operator
- COMPI28 ill-advised by GSM standards
 - Outputs a 128-bit result
 - First 32 bits producing the A3 output
 - Last 54 bits concatenated by 10 zeros producing the A8 output
 - Cracked in 1998 and still in use

Authentication

- Authentication Goals
 - Subscriber (SIM holder) authentication, protection of the network against unauthorized use
 - Create a session key for the next communication
- Authentication Scheme
 - Subscriber identification: IMSI
 - Challenge-Response authentication of the subscriber
 - Long-term secret key shared between the subscriber and the home network
 - Supports roaming without revealing long-term key to the visited networks

Authentication Parameters

- Network Contains
 - AuC : Authentication Center
 - HLR : Home Location Register
- Algorithms
 - A3: Mobile Station Authentication Algorithm
 - A8: Session (cipher) key generation Algorithm
 - PRNG: Pseudo-Random Number Generator
- Random number, keys and signed response

GSM Authentication Protocol

IMSI: International Mobile Subscriber Identity RAND: Random Number SRES: Signed Response Ki: Stored in the HLR as well as in the SIM Kc: Cipher Key

Authentication Procedure

- MS send IMSI to the network subsystem (AuC and HLR)
- The network subsystem received the IMSI and find the correspondent Ki of the IMSI
- The AuC generate a 128-bit RAND and send (RAND, SRES, Kc) to MS
- The AuC calculate the SRES with A3 algorithm
- MS calculates a SRES with A3 using Ki and the given RAND
- MS sends the SRES' to the network
- The visited network compare the SRES and SRES' for verification

A3 – Authentication Algorithm

- Goal
 - Generation of SRES response to random number RAND

A8 – Cipher Key Generation Algorithm

- Goal Voice Privacy
 - Generation of Cipher key Kc

Implementation of A3 and A8

- Both A3 and A8 algorithms are implemented on the SIM. It is independent of hardware manufacturers and network operators.
- COMPI28 is keyed hash function, used for both A3 and A8 in most GSM networks.

Confidentiality

- After the authentication protocol, cipher key Kc is shared between the subscriber and the visited network.
- A5 is used as an over-the-air voice privacy algorithm
 - A5 is a stream cipher
 - Implemented very efficiently on hardware
 - A5/I the strong version
 - A5/2 the weak version

Encryption Scheme

A5/I Shift Registers

LFSR	Length in bits	Characteristic polynomial	Clocking bit	Tapped bits
1	19	$x^{18} + x^{17} + x^{16} + x^{13} + 1$	8	13, 16, 17, 18
2	22	$x^{21} + x^{20} + 1$	10	20, 21
3	23	$x^{22} + x^{21} + x^{20} + x^7 + 1$	10	7, 20, 21, 22

Clock Controlling of A5/1

- Three clocking bits in the middle of register are extracted and their majority is calculated
- Two or three registers whose bit agrees with the majority are clocked

A5/I Architecture

Description of A5/I

- 1. Set all LFSRs to 0 $(R_1 = R_2 = R_3 = 0)$.
- 2. For i := 0 to 63 do
 - (a) $R_1[0] = R_1[0] \oplus Key[i]$
 - (b) $R_2[0] = R_2[0] \oplus Key[i]$
 - (c) $R_3[0] = R_3[0] \oplus Key[i]$
 - (d) Clock all three registers (i.e., for j > 0 $R_i[j] \leftarrow R_i[j-1]$, and $R_i[0]$ is set to the result of the primitive polynomial on the previous value of R_i).
- 3. For i := 0 to 21 do

(a)
$$R_1[0] = R_1[0] \oplus Frame[i]$$

(b)
$$R_2[0] = R_2[0] \oplus Frame[i]$$

(c)
$$R_3[0] = R_3[0] \oplus Frame[i]$$

- (d) Clock all three registers.
- 4. For i := 0 to 99, clock the cipher by its regular majority clocking mechanism, and discard the output.

Anonymity

- Protection of the subscriber's identity from eavesdroppers on the wireless interface
- Usage of short-term temporary identifiers

Subscriber Identity Protection

- TMSI Temporary Mobile Subscriber Identity
 - TMSI is used instead of IMSI as an a temporary subscriber identifier.
 - TMSI prevents an eavesdropper from identifying of subscriber.
 - A 32-bit pseudo-random number only valid in a particular Location Area

Subscriber Identity Protection

- Usage
 - TMSI is assigned when IMSI is transmitted to AuC on the first phone switch on.
 - TMSI is used by the MS to report to the network, and network uses TMSI to communicate with MS.
 - The VLR is in charge of TMSI issuance and update
 - Updated at least every location update procedure; or changed by the VLR at any time
 - The new TMSI is sent in encrypted form whenever possible so that an attacker cannot map it to an old one and "follow" a user
 - On MS switch off TMSI is stored on SIM card to be reused next time.

Subscriber Identity Protection

Key Management Scheme

- Ki Subscriber Authentication Key
 - Shared 128 bit key used for authentication of subscriber by the operator
 - Key Storage
 - Subscriber's SIM (owned by operator, i.e. trusted)
 - Operator's Home Locator Register (HLR) of the subscriber's home network
- SIM can be used with different equipment
 - Subscribers can change handsets without compromising security

Detection of Compromised Equipment

- International Mobile Equipment Identity (IMEI)
 - Identity allows to identify mobile phones
 - IMEI is independent of SIM
 - Used to identify stolen or compromised equipment
- Equipment Identity Register (EIR)
 - Black list stolen or non-type mobiles
 - White list valid mobiles
 - Gray list local tracking mobiles

Overview of GSM Security Flaws

- Cryptanalysis attacks against A3/A5/A8/COMP-I28 algorithm
- Over-the-air interception using fake BTS
- Only air interface transmission is encrypted
- Ciphering key (Kc) used for encryption is only 54 bits long
- Key recovery allowing SIM cloning

- Network does not authenticate itself to a phone
 - The most serious fault with the GSM authentication system
 - Leading to the man-in-the-middle attack

- Common implementation of A3/A8 is flawed
 - COMP128 is used for both A3 and A8
 - Goldberg and Wagner (UC Berkeley) took 8 hours to break COMP128 in 1998
 - Require physical access to the target SIM, an off-theshelf card reader and a computer to direct the operation
 - Send 2¹⁹ challenges to the SIM and analyze the responses to obtain the Ki stored in the SIM
 - IBM researchers cracked COMPI28 in less than one minute in 2002
 - Aftermath
 - The victim SIM can be cloned!!!

- Another deliberate flaw in COMP128
 - The lease significant 10 bits of the 64-bit Kc is always set to 0
 - Security is reduced by a factor of 1024
- Flaws in A5
 - A5/I : originally used in Europe
 - A5/2 : a deliberately weakened version of A5/1 created for export and used in the United States
 - A5/3 : strong encryption algorithm created by 3GPP

- Flaws in A5
 - Biryukov, Shamir and Wagner cracked A5/1 under one second on a typical PC in 2000
 - Goldberg ,Wagner and Green broke A5/2 in 1999 in about 10 ms
 - Barkhan, Eli Biham and Keller showed an attack on A5/2 within a few dozen milliseconds in 2003, and also described attacks on A5/1 and A5/3
 - A5/3 has not been broken yet but may be soon

- Vulnerabilities in the subscriber identity confidentiality mechanism
 - If the network somehow loses track of a particular TMSI, it must ask the subscriber its IMSI sent in plaintext over the radio link
 - An attacker can utilize this to map a TMSI to its IMSI

- Ciphering occurs after FEC
 - FEC (forward error correction) is used over the radio link to assist in correcting errors from noise or fading
 - FEC works by adding redundancy to the data stream, thus increasing the amount of bits to transfer
 - In GSM ciphering occurs after FEC
 - The known redundancy patterns of FEC could be used to assist in a cryptanalytic attack
 - Attackers know part of the plaintext and the full ciphertext

Attacks on GSM Security

- Attacks on A3/A8,A5/I
 - Through air interface
 - With possession of mobile equipment
- False base station
 - GSM does unilateral authentication
- Attacks on SIM card (SIM Editor, SIM Scanner)
- DoS (Denial of Service)
 - Jamming the signal
 - Preventing the MS from communicating

Attacks on GSM Security

The network is not authenticated!

No privacy for network signals!

IMSI Catcher (Fake Base Station)

• IMSI-catchers are used by law enforcement and intelligence agencies.

Exit T-List1 T-List2 Save Scan EastScan Search ScanInfo	o Channels SMS Break Re	ceivers Attenuator					
Х 汪 📓 點 點 ☜ ₣ ? 🔹 📼 🚍				Att 0	A5.1	h IMEI vCod	HOP Shift S/8 S/4
45 Current Channel : 56	Network Code : 510 10 Quality/ Cell ID : 48083	Level: 90 / 760 S LAC:00111 A5.2	atus hift : 65 2 0 : 30	Write Protocol 1 Write Protocol 2	No No		
H: 21049D09 13:28:37 45/ 45	Release	Norm.call clear	R: 06267EED	13:44:13	56 .	SDCCH Fad	ed
Dial Number: 08157656949			R: 78848F18	13:44:20	56 :	SDCCH Fad	eď
H: 21049D09 13:28:43 45/ HOP	Release	Norm.call clear	R: 2085AFB7	13:44:22	45 :	SDCCH Fad	eď
IMEI=447769081578290			R: 2085AFB7	13:44:22	45 :	SDCCH Fad	ed
M: 21049D09 13:28:49 45/ HOP	Release	Norm.call clear	R: 78865518	13:44:30	56 :	SDCCH Fad	ed
Short Message Service			R: 0645C3C4	13:44:32	56 :	SDCCH Fad	ed
6281100000 628126077869 25.02.04 12:14:07			R: 2098AA54	13:44:33	45 :	SDCCH Fad	ed
Ok di tt⊝\$«Ç@jAH&0è			R: 2098AA54	13:44:33	45	SDCCH Fad	eď
H: 2104230B 13:29:50 45/ HOP	Release		R: 20A3B8FC	13:44:42	45 :	SDCCH Fad	eď
Dial Number: 08157656949			R: 20A3B8FC	13:44:42	45 .	SDCCH Fade	eď
M: 2104230B 13:30:09 45/ HOP	Release	Norm.call clear	R: 20959802	13:44:49	45 :	SDCCH Fad	eđ
IMEI=447769081578290			R: 2097A0DF	13:44:49	45 .	SDCCH Fad	eď
Short Message Service			R: 20A3B8FC	13:44:49	45 :	SDCCH Fade	eď
6281100000 628118911082 62.19.60 81:10:00			R: 7BE4EEE7	13:44:50	56 :	SDCCH Fad	ed
			R: 20959802	13:44:51	45 :	SDCCH Fad	eď
Call From Number: +628157656949			R: 2097A0DF	13:44:51	45	SDCCH Fad	ed
B: 2104BC0C 13:30:37 00:18 45/ HOP 0.320/2.000	550/ 1100 Release	Norm.call clear	R: 20A3B8FC	13:44:51	45	SDCCH Fad	ed
Dial Number: 08157656949			R: 7BCCOC07	13:44:53	56 .	SDCCH Fad	eď
M: 2104BCOC 13:34:28 45/ HOP	Release	Norm.call clear	R:	13:44:55	56 ;	SDCCH Fad	ed
21049412 IMEI=447769081578290						IMSI=51	0108221100201
H: 2104BCOC 13:34:27 45/ HOP	Release	Norm.call clear	R: 788675D2	13:44:56	56 .	SDCCH Fade	ed
21049412	1120-000		R: 2027FD3C	13:44:57	45 .	SDCCH Fad	eď
M: 21049412 13:36:03 45/ 45	Release	Norm.call clear	R: 2027FD3C	13:44:57	45	SDCCH Fad	eď
M: 21049412 13:36:03 45/ 45	Release	Norm.call clear	R: 78858313	13:45:06	56 :	SDCCH Fad	ed
M: 21049412 13:36:09 45/ HOP	Release	Norm.call clear	R: 78252962	13:45:06	56 :	SDCCH Fad	ed
H: 21049412 13:36:09 45/ HOP	Release	Norm.call clear	R: 2095FF10	13:45:07	45 :	SDCCH Fad	ed
M: 21049412 13:36:15 45/ HOP	Release	Norm.call clear	R: 2095FF10	13:45:07	45 :	SDCCH Fade	ed
M: 21049412 13:36:15 45/ HOP	Release		R: 20A5470B	13:45:15	45	SDCCH Fad	ed
M: 21049412 13:36:21 45/ HOP	Release	Norm.call clear	R: 20A54708	13:45:15	45	SDCCH Fad	ad
M: 21049412 13:36:21 45/ HOP	Release	Norm.call clear	R: 20A36C13	13:45:22	45	SDCCH Fade	ad
IMEI=447769081578290	1000000000		R: 20A36C13	13:45:22	45	SDCCH Fad	ed
M: 21041717 13:38:08 45/ 45	Release	Norm.call clear	R: 0645D6DB	13:45:23	56 :	SDCCH Fad	ed
M: 21041717 13:38:07 45/ 45	Release	Norm.call clear	R: 0621098E	13:45:25	56 .	SDCCH Fad	ed
n: 21041/1/ 13:38:24 45/ HOP	Release	Norm.call clear	R: 064613CA	13:45:25	56 .	SUCCH Fad	ea
2104DB17			K: 20835903	13:45:27	45 :	SUCCH Fad	ed.
M: 21041717 13:38:24 45/ HOP	Release	Norm.call clear	R: 20835903	13:45:27	45	SDCCH Fad	ed
21040517			K: 78867834	13:45:29	56 .	DUCCH Fade	De
n: 21040817 13:38:49 45/ 45	Release	Norm.call clear	K: 2098D68D	13:45:30	45	DUCCH Fad	ea.
n: 2104DB17 13:38:49 45/ 45	Release	Norm.call clear	R: 2098D68D	13:45:30	45	SDCCH Fad	901
25.02.04 13:45:34							

Cracking Long Term Key

- Over-the-air cracking of Ki and cloning of the SIM
 - By imitating a legitimate GSM network, the attacker can learn the IMSI and Ki of a user and clone its SIM card over the air

SIM Card Cloning

👔 SIM Scanner			_								
SIM Backup Language Exit	Help										
GSM	Use New Sca Item Conter	n Engine (useful only nts Value / Time E	on COM1 - COM8 Elasped)							
			un a Dia a la contra di anco	a se da se		Ontine	Liebe	5.46 L			
		Connect! Pho	DINEBOOK Messa	ge Ealt F	PIN Manager	Option	нер	EXIT !			
			5 777					٩		EOITOR	
		🏟 Edit	Normal PhoneBook				STK PhoneBook				
			NO. Name		Telephone		NO.	Name Te	leph Group Nam	ie 🔺	
		🔓 Insert	1				1		Invisible		
			2				2		Invisible		
		O Clear	3				3		Invisible		
		-	4				4		Invisible		
		X Delete	6				6		Invisible		
			7				7		Invisible		
		🔏 Cut	8				8		Invisible		
			9				9		Invisible		
		Copy 🗈	10			-	10		Invisible		
		P 2 -	4				11 ▲	1	h san		
	🖷 Paste	Total	: 200 Used	: 0 Free: 200			Total: 50	Used: 0 Free:	50		
									12:52	05 PM	
									12.32.	OJ FIN	

Conclusion

- GSM fails to deliver most of the security criteria described in GSM 02.09
- GSM's faults result from designing algorithms in secret and deliberately weakening the system
 - This lesson tells us that security algorithms should be exposed to public scrutiny before deployment
- None of the attacks are easily carried out, so
 - For most average users, the security concerns may not be that great
 - Those using GSM for highly sensitive information should think twice however

Countermeasures

- New A3/A8 implementation
 - COMPI28-2 and COMPI28-3
 - Still developed in secret (security through obscurity)
 - A rather slow migration from COMP128-1 to COMP128-2/3
 - 3GPP have defined brand-new authentication algorithms for use with the UMTS system
- A5/3
 - Added by GSM in 2002
 - Only few networks and handsets support A5/3 currently
- GPRS/UMTS
 - Ciphering before FEC

Countermeasures

- UMTS Security (3GPP)
 - Improved, stronger and open crypto algorithms
 - Support network authentication to phone
 - The network sends to the mobile the RAND and an Authentication Token to prove its knowledge of Ki
 - The AUTH includes a sequence number (SN) encrypted using Ki and a message authentication code (MAC) generated also with Ki
 - The mobile decrypts the SN and recalculates the MAC
 - If the result matches with what the network sent, it considers the network legitimate and then returns an XRES
 - The network authenticates the mobile if the XRES is correct

3GPP Security

- The 3rd Generation Partnership Project, built on GSM
- Mutual authentication
- Data Integrity
- Better algorithms
 - KASUMI (A5/3)

3GPP Introduction

- 3G features exceeding over 2G provide
 - Higher data rate, massive network capacity
 - Interactive multimedia service, QoS
 - Global roaming
- 3G communications standards
 - CDMA2000(USA), W-CDMA (Europe/Japan), TD-SCDMA (China)
- Applications
 - Multimedia Message Service (MMS), Email, Video phone
 - Video streaming, Services from the Internet

3GPP Architecture

3GPP Security Principles

- Reuse of 2G (GSM) security principles:
 - Removable hardware security module, SIM based Authentication
 - In GSM: SIM card
 - In 3GPP: USIM (User Services Identity Module)
 - Radio interface encryption
 - Protection of the identity of the end user (especially on the radio interface)

3GPP Security Principles

- Correction of the weaknesses of 2G:
 - Possible attacks from a faked base station → Mutual Authentication
 - Data integrity not provided →Integrity protection of signalling message
 - Use of stronger encryption
 - Assurance that authentication information and keys are not being re-used (key freshness)

3GPP Authentication and Key Agreement (AKA)

Mutual Authentication

Generation of Authentication Vector

Verification on Mobile Station

AUTN: Authentication Token RAND: Random Number K: Shared Key

SQN: Sequence Number AK: Anonymity Key AMF: Authentication and Key Management Field MAC: Message Authentication Code

XMAC: Expected MAC RES: Response CK: Cipher Key IK: Integrity Key

Mutual Authentication in 3G

- Subscriber can authenticate the network by the secret K using fI (K, SQN, AMF, RAND)
- SQN is introduced to prevent replay attacks
- AK is used to conceal SQN
- Cipher Key and Integrity Key are generated after the authentication (Key Agreement)

Data Integrity in 3GPP

FRESH: Connection Nonce COUNT-I: Integrity Sequence Number

Data Integrity in 3GPP

- Data Integrity
 - COUNT-I and FRESH are used to prevent replay attack
 - DIRECTION specifies the direction of the transmission (User to Network or Network to User)
- Secure network elements interconnection
- F9 uses Kasumi to form CBC-MAC

Ciphering Method in 3GPP

Problems of 3GPP Security

- IMSI is sent in cleartext when allocating TMSI to the user
- Signal jamming: physical layer attacks are hard to solve

Further Reading

- Handbook of Applied Cryptography, Chap I, Menezes, Oorschot & Vanstone, CRC Press, 1997
- GSM Security Papers, http://www.gsm-security.net/gsmsecurity-papers.shtml

References to 3GPP Security

- Principles, objectives and requirements
 - TS 33.120 Security principles and objectives
 - TS 21.133 Security threats and requirement
- Architecture, mechanisms and algorithms
 - TS 33.102 Security architecture
 - TS 33.103 Integrity guidelines
 - TS 33.105 Cryptographic algorithm requirements
 - TS 22.022 Personalization of mobile equipment
- Lawful interception
 - TS 33.106 Lawful interception requirement
 - TS 33.107 Lawful interception architecture and functions

Technical reports

- TR 33.900 A guide to 3G security
- TR 33.901 Criteria for cryptographic algorithm design process
- TR 33.902 Formal analysis of the 3G authentication protocol
- TR 33.908 General report on the design, specification and evaluation of 3GPP standard confidentiality and integrity algorithms

Algorithm specifications

- Specification of the 3GPP confidentiality and integrity algorithms
 - Document I: f8 & f9
 - Document 2: KASUMI
 - Document 3: implementer's test data
 - Document 4: design conformance test data

References

- Eli Biham and Orr Dunkelman "Cryptanalysis of the A5/I GSM Stream Cipher", INDOCRYPT 2000
- Elad Barkan, Eli Biham, and Nathan Keller "Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication", CRYPTO 2003
- 3GPP (Third Generation Partnership Project), http://www.3gpp.org/
- UMTS forum, http://www.umts-forum.org/