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Abstract—Today one of the greatest abundance of applications
(apps) are those found on mobile devices. The procedure to
download an app has never been easier. The user will first find
the desired app within an app market such as the Google Play.
Once the user finds the desired app normally a description is
given. This description will give the user information on what
they are trying to purchase. The user will then download this
new piece of software based off of the trust that the description
given is correct. This brings to light the new threats that there
are chances the descriptions could be misleading. This paper
will present the idea of APPIC to solve such issue. APPIC is
a framework that can automatically extract main theme (tags)
from both the description pages and permission file. By further
checking the similarity of these tags, we can verify the validity
of the description. In the APPIC the core component is topic
modeling. Using different topic models, the APPIC can verify
different contents within an app market such as comments and
screenshots. For this paper, we will discuss the two main methods
used in the APPIC which are latent dirichlet allocation (LDA) and
partially labeled dirichlet allocation (PLDA). During the testing
phase the APPIC will use different parameters, topics, models
and categories. We have achieved on average 88.1% precision
of the app description classification, and on average a 76.5%
accuracy of the app permission classification. Therefore, the
APPIC can largely reduce the number of misleading descriptions
within the app markets.

I. INTRODUCTION

More and more researches tend to focus on analyzing the
description file [1] because the permission label can only
provide very limited information to the user. Unfortunately, the
method of verifying the validity of the description is unseen.

In both Android and iOS, a developer is responsible for
selecting the category1for his application and writing a de-
scription for it. The user then searches for the desirable
application based on the category and name. In both Google
Play and the Apple Store, there are only policies about how to
write a morally correct description, which means a malicious
developer can still publish an app with a misleading descrip-
tion. Thus after the app is published there is not a program
to check the validity of the description. Also, there is not a
verification mechanism to check the category either. Only the
user will be able to verify whether the application downloaded
is correct. In this paper, we will assume two properties for a
valid description: First, a well written description must be in
the correct category. Secondly, a well written description has

to be the same as the hidden features of the permission labels.
Currently the mobile operating systems which include the

Android and iOS have user involved malware detection mech-
anisms besides the traditional inspection done by either em-
ployee or system [2]. In this way, a permission label provides
some information for the user to judge the quality of an
unknown application. Most of the time the permission labels
can only provide a limited of information [3]–[5] for the user.
Thus, the user may not understand the permission message [6].
In such a case, the user may need to further consider more
informative materials such as an application description [1].
An example would be reading other user’s comments to decide
whether an application is malware or generally not needed.
Moreover, compared to the very limited information provided
by permission labels, the description is more understandable
and may be more reliable.

Most (application) descriptions can provide better informa-
tion than a permission based mechanism with limited size
labels [7]–[9]. The problem is now the descriptions can also
mislead or hide some of the critical pieces of information
from the user. A good description provides accurate infor-
mation about the application. A poor description, however,
may mislead the user or describe something not related to
the application. If we can provide a reliable and well written
description, this will improve the searching efficiency.

The users have played an important role in an application
market in both the feedback and security especially in the
Google Play Market. In the Android operating system, a
permission-based security model only has to be responsible
to the user for the evaluation of the application. They will
need to check to see if there exists any unusual permissions
for that app [10]. Later the user may refer to the descriptions
of such app for more detailed information. After used such
app, the user can post feedback or report to suggest Google
Play keeping or banning this app. In the App Store, the user
will only need to read the accompanying descriptions of the
app to decide which one he needs. The most tedious work of

1The term ”Category” is the same as the original class in Google Play, such
as ”Book”, ”Game”, etc. The term ”Auto generated tags” is the same as the
first two most related ”topics” in PLDA. It is also the human calibrated tags
in LDA. In short, we will call the ”Auto generated tags” as ”Auto Tags” or
ATs.



verification already has been done by an Apple employee.
From the developer’s point of view, once they have com-

pleted their app they may need to first upload this app to
either Google Play or the App Store in order to provide
downloadable content for other users. During the upload
period, they have been asked to provide a description for
their app and select a category for it. These description and
category tags will be read by other users in the future. The
description may or may not reflect the real value of the app.
The developer can also mislead the user by selecting the wrong
category or writing a misleading review. In this way, both the
Google permission based system and Apple iOS provides no
automatic protection. The developer can then write anything
they want in the description and even something completely
different from the actually purpose of the app. In this paper, the
potential dangers are noted for the previously stated scenario.
For example: Malicious developer ”Alice” may generate some
malware and write a description for an app claiming that it is
affiliated with certain banks. It then prompts the user to enter
in personal information and steals it for malicious purposes.
User ”Bob”, trusting the security within Google Play or the
Apple Store, will then read the description which does not
state the truth and further download the app.

If the description can be checked to see whether or not it
describes the real purpose of the app as it is uploaded, we
can reduce the chance of a mal-write description. This paper
will demonstrate the tested solution for this issue. Similarly,
it is also possible for the developer to select a wrong category
either intentionally or by mistake when they are uploading the
app. We can check this as well using our system.

This paper makes the following main contributions:
• To demonstrate and analyze the potential security issue

within the description which can be misleading for the user
when they are selecting apps and to demonstrate the issues
with verifying the descriptions on the app markets.
• Will provide a solution for solving this issue using topic

models. We are using both LDA and PLDA for detecting
hidden topics in each application for both the description and
permissions file while generating an auto-tag for them as well.
Through testing we have discovered that PLDA is much more
suitable for this problem.
• Evaluated the APPIC system on 207865 apps from Google

Play. Also have achieved 88.1% precision within the app de-
scription classification, and 76.5% accuracy in app permission
classifications.
• Filling in the gaps between category and security in the

app market. Pointing out that a well defined category system
can provide the user with a correct understanding of the app,
and at the same time improve the reliability of the app market.

Using topic models we can extract the main topics for each
description and permissions which are hidden from us. The
name APPIC is from using both the words ”application” and
”topic”. The APPIC is a framework and system that can grab
the description for a listed app name within a database and can
use a topic model to find the topics. Once we have some topics
from the description and permission, we can further generate

ATs and compare these two ATs to see if they are same. If not,
we may claim that this description is misleading. Furthermore,
we can also check the category in Google Play2to see if the
developer has selected the correct category.

The paper is organized as follows. In Section 2, we discuss
the general structure of APPIC and how does it verify the app.
We further describe the main components of APPIC in Section
3. In Section 4, we present the result of using LDA and PLDA
to extract ATs. We will also compare these two methods to
check their suitability for our problem. Section 5 discusses
related works. Finally, Section 6 concludes our work.

II. APPIC OVERVIEW

APPIC is a framework that can extract tags3from descrip-
tions and permissions. It can then compare both of these tags
to see if they are matching and will further decide whether the
description is correctly describing the apps. The methodology
for the APPIC can be shown in Fig. 1. This chart begins with
the assumption that the user wants to download an app. In
order to find the correct app, the user will try to search the app
market to locate apps which are suitable for his requirements.
Once the apps are located, he can then read the description
for each app. Unfortunately, he does not know whether the
description is accurate. Next with the APPIC server he can
now check the description for correctness. The APPIC will
then tell him the validity of the description. The information
provided by APPIC can either be an embedded tag (correct
sign) attached to a description, or a message from the APPIC
server.

Fig. 1. APPIC Overview: User finds app ”A” which is suitable for his
requirement by reading the description but he is not sure about the correctness
of description for such app. APPIC will check it for him and forward the result
to user or embed the result beside the description

2We have not tested the app within the Apple Store but the method is still
the same

3Generally, the topics generated by LDA is not same as Tags on Google
play, but these topics can be converted to similar tags (ATs). We will further
talk about this process in the next section.
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The total time for the evaluation process can be very short
- testing and comparing a specific app description takes less
than 1 second even if the description contains 1000 words.
Furthermore, the whole process can be precalculated before
the user reads the description and can embed the result tag
beside the description. In such conditions, the user can read
the tag before the description and save themselves valuable
time. (If they see a misleading sign provided by the APPIC,
they can simply pass the app). APPIC can largely reduce the
chance of mal-written descriptions which can mislead the user.
It may also purify the app market environment to encourage
developers to write an understandable and truthful description
of their apps.

III. APPIC

From a flexibility standpoint - the APPIC is using the
topic models as embedded tools for generating auto-tags but
it is not limited to any specific topic model. By selecting a
different topic model the APPIC can achieve different goals.
For instance, it can do a screenshot check or user comments
attitude check and so on.

The APPIC contains several components: raw data crawling,
data filtering, training, auto-tag generation, app description
and permission testing and comparison of the auto-tags. These
processes can use different programming languages and plat-
forms. For the demonstration, we are using a .NET platform,
C# , and a Stanford Topic Model [11] package, though the
framework is not limited to just these tools.

We will discuss training and testing in the following section.

A. Data Filtering Before Training

Fig. 2. APPIC flow chart

From Fig. 2 we can see that the raw data has been filtered
before it enters into the database. This process is necessary be-
cause some of the descriptions are a non-English document or
too short (less than 10 characters) to be considered valid. Some
documents have poorly written sentences or an inaccurate
translation4, which we can not detect, leading to inaccuracies
in future training process. The above processes have been done
using C# .NET and MS-SQL stored procedures.

After we have purified the data, we store it in our MS-
SQL database and further divide it into different categories
based on years and category tags. The information is coming

4Google Play provides translation service to developers who are from other
countries.

directly from Google Play. From the database, we can send
training data to the topic model. The topic model can either
be embedded in the database server or in other servers (More
servers mean more security but less efficiency. In here, we are
using only one server that has both database and topic models).
After training, we can use the model for testing. The training
process may take 2.5 minutes (34 topics on 2.4-GHz quad-
core, 6GB machine) to 30 minutes (84 topics) depending on
how large the training set is and how many topics were needed.
Because of the special property of LDA - refer section III-C,
to calculate each per-description topic distributions and per-
topic word distributions will take an exponential time when
the number of topics increases. Furthermore, the training uses
the Gibbs-sampling approaches [12]. In order to converge,
the total iteration should be large enough. The testing phase,
however, is faster than training phase (less than 1 seconds).

Training and testing happen in both the description and
permission. The results have been compared in the server using
the stored procedure. After testing the result can either be
attached to description or directly sent to the user.

B. Topic Model

The topic model is a probabilistic modeling tool that can
extract various topics from different corpus (description). The
topic model generally uses what is called the machine learning
method - a training method using large set corpus and then
predicting hidden topics from testing dataset. After training,
given an unknown app description the model can tell to which
category the app belongs. Another feature is that given a set
of permission labels of a specific app, the topic model can tell
to which class the app belongs.

Suppose we have an app which we have named ”A” (see
Fig.2). This app first is taken through the testing procedures
with the data filtering mentioned earlier. After this testing
phase, we have a topic category pa by analyzing a set of
permission labels. Next we can analyze the description file,
and gain the topic sa . We can also have topic ca by reading
the developers chosen category tag. By comparing pa, sa, ca
we can easily find out if this description is correctly describing
the application.

C. LDA and PLDA

Since each description has a category, we can choose partial
labeled latent Dirichlet allocation (PLDA) [13] to find the
hidden category of a specific application. PLDA differs from
LDA because it is partially supervised which means there
are human added tags (”tags” are related categories for each
application) for each description. Since each description may
exhibit several different topics, we have only chosen the top
two largest topic rates in which to verify our model. We will
also compare the precision rate of traditional LDA and PLDA
in the evaluation section.

The LDA model is one of the chosen topic models [14].
It is a multidimensional distribution model [15] with the total
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joint distribution as,

p(ϕ1:K , θ1:D, z1:D, w1:D;α, β) =

K∏
i=1

p(ϕi;β)

D∏
d=1

p(θd;α)

N∏
n=1

p(zd,n|θd)p(wd,n|ϕ1:K , zd,n)

(1)

The ϕk indicates a distribution over each word in kth topic.
θd indicates the topic proportions for the dth app description.
θd,k is the topic proportion for topic k in description file d.
zd,n indicates the topic assignment for the nth word in the
description file d. wd,n is the nth word in description d, which
is an element from the fixed vocabulary. α is a concentration
parameter which controls the sparsity of the topic that is
assigned to each description. β is a smoothing vector similar
to α which controls the sparsity of per-description word
distribution.

It is easier to understand the model from the training and
testing aspect. The training process is used to find a list with
the most possible words for several similar descriptions. It
should list these words based on their probability. While, on
the other hand, the testing process is assigning topics to a
specific description based on probability. One description can
be assigned several topics, but only the first two topics are
important to us.

PLDA [13] uses a partially supervised (tagged) procedure
with humans to generate topics. It is very suitable for our
problems because each app must have a category - this is
required by many of the app markets including Google Play
and the Apple store. These categories can be used as human
annotated tags for training purposes which have made the
testing phase more accurate.

D. Using the Topic Model

We are using the Stanford topic model package to train
and infer description and permission. This package is open
source, and we first calculate the count of each word in each
and every document. Then we add some meaningless words
into the stop list because they are too common to be useful for
representation of any topic. Some examples are ”the”, ”and”,
”you”, ”your”, ”for” and so forth. There are about 40 kinds
of words in the description and 60 in the permission.

Next we need to select a reasonable α parameter in function
1. α is the parameter of the Dirichlet shown prior on the per
document topic distributions. This parameter controls the topic
sparsity in each document. For this paper, we need no more
than 2 topics to be assigned to each document. After testing,
we find the α = 0.05 fits our requirements the best. After this,
we set the training iteration to 4000 with the average change
in the expected log likelihood to be less than 0.001%.

By end of the testing phase, each document has been
assigned two topics. Topics will contain the most co-occurring
words in similar documents and are arranged based on the
probability order. An example of the topic would be, ”Topic2:
music, player, play, guitar, audio, video, album, media, song,

mp3, sound”. This is a string of words arranged based on
probability (with the largest first). In the former example, we
can easily see that it is about music and media which will
correspond to ”media” category in Google Play.

E. Generating Auto-Tags

The topic generated by our model is a distribution of words
in the description in which all of the words in each topic are
derived from a word in the description with the order of highest
probability first. An example of these would be: ”Topic1: gps,
speed, distance, google, while, track, direction, map, ...”.

In LDA, the topic words may or may not match the original
category in Google Play. Two or more topics may belong to
one category. For example, the topic ”gps, speed, distance,
google, while, track, direction, map” and topic ”location, map
current, maps, places, address” are all words that belong to
the ”Travel and Local” category. One of the topics may also
belong to two or more categories, but after we select more than
64 topics this case is seldom seen. We will need to rematch
these topics to each category. This process only happens once,
and we call it human calibration. After the calibration, the
program can now easily match each topic to a category.
In PLDA, because most of the auto-tag areas are generated
from the original category tags, we do not need to rematch
the topics to tags with the category. We can instead select
the top 2 words in each topic and use them directly as an
auto-tag. For example, the words ”tools”, ”productivity”, and
”communication” can be placed in one topic and we can select
the words ”tools” and ”productivity” as our auto-tags. This
category will have the same words.

F. Comparison

The last step is comparing the permission auto-tag with the
description auto-tag and the categories. Once we have the auto-
tags in the permission and description this step becomes easier
to manage. Next we will once again use the stored procedure
within a database to compare each of the auto-tags. The final
testing result can be published to a website using Javascript, or
a message can be sent to the user who can trigger the APPIC
service.

IV. EVALUATION

We will be evaluating the APPIC in this section. After
the training phase, the APPIC can now classify a new app
and assign it a category tag based on both description and
permission categories. By comparing these two tags we can
deduce whether the description is correct for the app. The
evaluation will focus on two main parts: correctness and
perplexity. We can also compare PLDA with LDA to see which
program can give us the best solution to our problems. The
following experiments try to solve the problems:
• How many topics/tags do we need to classify apps? (i.e.,

more topics/tags means more accuracy but lower efficiency.
We need to find the best number of topics that can achieve
the highest efficiency and accuracy).
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• What is the accuracy of the predicting category given a
specific description or a set of permissions?
•What is the difference between LDA and PLDA in an app

classification?

A. Dataset
The dataset we will be using is from Google Play 2011

to 2012 provided by [16]. The dataset has also been cleaned,
since there could have been multiple applications developed
by same author [8]. The 2011 dataset contains 71,331 apps and
the 2012 dataset contains 136,534 apps. We are also crawling
all of the descriptions from each individual app and will redo
the cleansing again. The recleansing will keep the English
descriptions with more than 10 characters at the newest version
(in Nov, 2013). Finally, there are only 26703 apps left with the
number of words totaling 1100715. Since the LDA does not
suffer from the same overfitting problem that the supervised
models have [14], we use perplexity(2) to find the best number
of parameters. We then randomly slice the dataset into two
parts. The first half has 13339 apps will be used for training5,
and 13364 apps will be used for testing - no overfitting as
mentioned above. All of the training and testing datasets will
have two pairs of a description and permission.

Fig. 3. Evaluation Process

The Figure 3 illustrates the process of inspection. The new
Auto-Tag dataset will be data generated by the APPIC. On
the other hand, the original dataset is data that has been
filtered from Google Play. In both the original data table and
the new auto-tag data table, the first columns are the same
which can be used to uniquely identify an app. The second
columns are generated from the APPIC which have been used
in comparing the original data table to verify the correctness.
For completeness, we also have left both of the raw description
and permission tables untouched. Generally, we only need to
check the second columns to see whether the auto-tags are
correct match or not.

5We will assume all of the data from Google Play is accurate, but in reality
they are not. During the training phase, we find that there are less than 1% of
the data that either have the wrong category or have the wrong description.

B. Evaluation Setup

During the testing period we randomly choose 1000 apps to
test. The results from this testing phase have been inspected
by three different individuals. Each of them independently
evaluated each individual tag to check for correctness.(i.e.,
given a description ”A cool app to track your class grades and
instantly calculate your GPA through the semester.” The model
will generate a tag to classify it. Based on Google Play, the
correct tag is ”Education”. If the auto-tag is not ”Education”,
we mark it as incorrect; if it is ”Education” we can mark it
as correct.) It is also possible that the generated topics have a
very close probability which means APPIC will generate two
or more different auto-tags for such app. For this special case,
we will mark the app as ”ambiguous”. It is also possible that
the three individuals all reach a different conclusion. If so, we
will also mark the app as ”ambiguous”.

Another problem we have faced is how many different
topics/auto-tags do we need to properly classify different apps.
The method that Google Play uses is to separate the apps
into 34 different categories. Within these 34 categories, they
further divide them into 98 smaller categories. The problem
with this method is we do not know how many categories
specifically we will really need to classify the different apps.
We use perplexity [17] to approximate calculate the number
of topics. The perplexity is monotonically decreasing in the
likelihood of the test data. It measures how well a probability
model predicting the test data. The lower the perplexity score,
the better the generalization performance [14]. Generally, it
will be stable at some number of topics. However, it is just
an approximation - may or may not reflect the best number
of topics. For a dataset that contains M apps descriptions, the
perplexity is:

perplexity(Dtest) = exp{−
∑M

d=1 logp(wd)∑M
d=1Nd

} (2)

wdis a specific word in a document d. Nd is the total number
of words in a document d. The perplexity is algebraically
equivalent to the inverse of the geometric mean per-word
likelihood.

C. Result

In this section we will demonstrate the effectiveness of the
APPIC in predicting the app tag based on the description and
permission.

1) Topic/Auto-Tag number selection: The number of topics
directly affect the efficiency of our framework. For instance,
too many topics are unnecessary and inefficient while too few
topics may not be enough to classify the data.

Because perplexity can only be viewed as a simple but
necessary guess for the trend of a topic number, it may not be
an accurate enough guess for our problem. We may instead
need to do a more accurate human inspection which will be
discussed in the next subsection. From Figure 4, we can see
that the two lowest points happened between 50 to 100 and
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150 to 200 6from the description. On the other hand, in the
permission, the lowest points are between 1 to 50.

Fig. 4. Perplexity in different number of topics (the lower the better). y-axis
is the logarithm of perplexity to base 10. x-axis is the number of topics.

2) Why PLDA: We have discovered that the best topic
number will fall into three different intervals from the last
subsection. In these intervals we may need to find a specific
number for the topics. At the same time, we also will take
this chance to further compare PLDA and LDA based on the
varying numbers of the topic. A better model will outperform
the other in most of these cases.

Fig. 5. Comparison between LDA and PLDA in different number of topics

Using Figure 5 we have found that after using human
inspection of 34 to 104 topics, PLDA is better than LDA within
our model but in some cases such as 64 and 74 topics LDA is
better. This is because of a special property of PLDA 7. Both
PLDA and LDA will reach there peek when a topic number
is 84. Now we can check the correctness of the auto-tags as

6We did not consider 150 to 200 topics because if we compare these
numbers to Google Play’s classification numbers (34), the 150 topics are too
high to be valid.

well as further check the suitability of LDA and PLDA in the
final tag generation.

3) Description Classification Using Both PLDA and LDA:
In this experiment, we will check the correctness of an auto-
tag for each individual app based on a given description. We
will also take this chance to further compare the suitability of
LDA and PLDA as a solution to our problem.

The process shown in Figure 3 will be demonstrated as
we compare the auto-tag with the original tag to see if they
are a match. Please note that in Figure 5, we are verifying
the correctness of a topic distribution table such as ”music,
player, play, guitar, audio, video, album, media, song, mp3,
and sound”. Thus we can verify the correctness of the topic
that is assigned to each document. From table I we can see
PLDA is more suitable than LDA from the correctness and
ambiguity aspect. In this testing phase, the total precision using
PLDA achieved 88.1% precision in the category reference.

TABLE I
PRECISION USING PLDA AND LDA IN CATEGORY REFERENCE

Model Correct Inference Incorrect Inference Ambiguous Inference

PLDA 88.1% 11.1% 0.08%

LDA 78.4% 16.6% 0.5%

*The precision rate of PLDA and LDA (randomly choose 1000 apps
from testing dataset).

4) Permission Classification Using PLDA: From the result
of the last subsection, we have found that PLDA has better
performance than LDA. In this section, we will complete the
testing phase for the permissions to see how well the PLDA
performs on different categories. We randomly selected 1500
apps from the testing results found in the earlier subsection.
Next, we separate all 1500 apps into different categories
(priori) based on their original categories in the Google Play.
Once again the apps will be inspected by three different
people. We now will define the following measurements: true
positive (TP) is the correct tag generated by the APPIC for a
specific category of an app based on permissions; false positive
(FP) is the incorrect tag generated by the APPIC of an app
category; true negative (TN) will be an app that the APPIC
correctly identifies but it does not belong to a defined category;
false negative (FN) will be an app that the APPIC incorrectly
identify and it does not belong to a defined category. For
example, the defined category is ”tools” and given the app the
APPIC correctly tags it as ”tools”. So within the APPIC server
we count TP +1 because if the defined category is not ”tools”
this shows the APPIC has incorrectly tagged it as ”tools”. Thus
the APPIC server will add FP +1. Finally if the given app is
not ”tools” and the APPIC has tagged it as ”something else”
then TN +1. Otherwise if the given app is tagged as ”tools”,

7In PLDA, the words in each topic are generated based on a category tag
as well as the words in the description. Some of the tags only contain general
concepts(i.e. Lifestyle or Shopping; Game or Entertainment, etc.). It is hard to
decide the correctness of a specific topic, especially when the topic contains
too many of such words. We will mark all of these topics as ambiguous in
PLDA, though they are essentially correct. In topic 64 and 74, APPIC happens
to select much of these words.
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but the APPIC incorrectly tags it as ”something else”, we will
add FN +1. Once all of the tags have been collected we can
calculate the accuracy of each category using the following
equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

From Figure 6, we now know that within the category
”tools” we have an average accuracy of 97.3% from a total
of 371 apps. The tag ”game” has a 80.3% from a total of
224 apps. The tag ”lifestyle” has a 89.5% from a total of 173
apps. The tag ”video” has a 63.8% from a total of 105 apps.
The tag ”travel” has a 88.2% from a total of 204 apps. The
tag ”education” has a 20.5% from a total of 107 apps. The
tag ”finance” has a 10.6% from a total of 94 apps, and the
other categories have a 77.4% total from 222 apps. Overall, the
average accuracy is 76.5% for permission classification. The
lowest point exists in ”education” and ”finance”. The reason is
that in both of these two categories the app tends to requests
different permissions. There are very few co-occurring special
permissions that can precisely identify these two types of apps.

Fig. 6. Accuracy of different categories in permission file. We assume that
one document (permission file) can match only one category. The sizes of
each category are listed as follows: tools 371, game 224, lifestyle 173, video
105, travel 204, education 107, finance 94, others 222.

D. Summary

We have fully tested our framework using data filtering,
auto-tag generating, and a category comparison. We also have
compared different topic models like LDA and PLDA and
found that PLDA is a better solution to our problems. In
addition, we have calculated the perplexity in a various range
of topics. We have now found that the best number of topics
is 84 which has an accuracy of 88.1% using PLDA. Next
we compared LDA and PLDA in suitability. The results for
(PLDA) look promising for most of the topics. We then
checked the performance of PLDA using various categories.
Finally, we have listed the top 7 categories. From the results,
we can see that in most categories PLDA has a 76.5% accuracy

rate on average for permission classification. We also have a
88.1% accuracy rate on average for description classification.

V. DISCUSSIONS AND FUTURE WORK

With the current setup, we have only built a n-tiers [18]
framework that can automatically extract a desired app de-
scription from Google Play using C#.NET and Javascript. In
the database tier, we have several stored procedures that can
further trim and format the raw data from the cowling results.
By using the topic modeling tool box provided by Stanford
University [19], we can achieve PLDA and LDA training and
testing. They are java packages that are open source which
are very easy to embed and implement. We have already
written several stored procedures to further annotate the result.
After the human calibration of our result set, we can further
complete the program to inspect an unknown app without any
human supervision in the future.

We have not covered all of the possible range of topics in
this paper. The framework we have so far is only to consider
that the topic numbers are less than 104. It is possible that
a topic number in between 150 to 200 may generate a better
result, which can be considered for further investigation.

Another issue that we have acknowledged is the low infer-
ence accuracy in some categories, especially in the education
and finance tags. This low accuracy is due to a lack of
sufficient symbolic permissions for these categories. It has
proven to be very hard to separate them. This issue could be
solved by using better topic model or using a more reasonable
classification method. For example, a education app may
physically seem similar to a game app from the permissions
view. In such case, we should consider it as a category
between a game and education. Unfortunately, Google Play
does not provide such a category. We do not know how
many of these cases exist within the market, or how well the
prediction could perform if we generated an additional and
more appropriate catagory. We believe that it should improve
the overall accuracy.

The training dataset we are using may not be accurate for
some parts of the app since we have made the assumption that
all the data from Google Play is accurate. In actuality there
is about 1% data that is incorrect in Google Play. However,
to further trim and correct the inaccurate data may take long
periods of time. We believe the data in the App Store could
be better, but we have not used their data. For future work we
could consider adding this dataset to the APPIC Server.

Indeed, the APPIC is not only for Android but is also
available for various products including Apple iOS and Win-
dows. We can verify their description and category if given an
app with permission file. We can further verify whether the
permission requirement matches the description tags.

Finally, the APPIC can not only be used as detection system
for mal-written descriptions, but it can also be used to evaluate
an app from user comments or even evaluate the images the
developer has uploaded. This is possible because APPIC can
be used as an extraction tool for common words based off of
user comment and then decide if the comments are positive
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or negative. The App Store and Google Play all require a
developer to upload at least 2 to 6 screenshots of their app.
These screenshots can also be misleading. Using a different
topic model, the APPIC can process the image [20] and check
the category of said image and compare with the permission
to see the validity of the image.

VI. RELATED WORK

Our framework has crossed several areas: topic modeling,
information security, text mining, machine leaning, and soft-
ware evaluation. In this section, we will discuss the relevant
research that is pertinent to our work.

In 2012, Harman et al. [21] first applied the data mining
approach to the App Store. They used data mining to extract
certain feature information from the app and combined it
with some business information. Later Pandita et al. [1] has
discussed the important relationships between description and
permission when the user is trying to understand permission
tags. They are using the traditional First-Order-Logic (FOL)
to analyze the sentences in the description. The flaw of such
approach is: it is hard to analyze the sentence with complex
grammar. The APPIC uses a topic model that is grammar free
and more accurate especially when dealing with unsupervised
descriptions with no human selected tags. The APPIC can also
achieve very high accuracy (please refer evaluation section).

The topic model has first been described by Papadimitriou
et al. [22]. They have proven that Latent Semantic Indexing
(LSI) can capture the underlying semantics of the corpus
under certain conditions. Later Hofmann and Thomas [23]
improved LSI in probabilistic way. In 2002, David Blei et
al. [14] developed the Latent Dirichlet Allocation (LDA) and
proved that it is a better tool than PLSI from a perplexity view
because LDA can be easily embedded into different models.
Lots of types of topic modeling tools have been developed in
last decade. One of them is the Partially Labeled Dirichlet
Allocation (PLDA) [13] developed by Ramage et al. The
APPIC uses these two traditional topic models (PLDA and
LDA) for description and permission classification. A plethora
of ideas have been developed between NLP and the software
industry [24]–[26]. Due to the flexibility and high precision
rate, some of the cross area NLP models have achieved very
successful implementations such as Hidden Markov Model
using face recognition [27] and network regularization [28].
The topic model also be used as a classification tool and has
achieved impressive results [29]. Unfortunately, very few of
these tools have been able to be properly used with topic
modeling in the app market. Our work has properly used this
tool to demonstrate the effectiveness of using the topic model.

With respect to mobile software verification there are several
different types of work done being done on permissions
analyzing [8], [30]–[32]. Among them, Felt et al. [30] has
stated the relationship between malware detection and per-
mission. Zhou et al. started using a probabilistic method to
analyze permission classifications. In addition, Enck et al. [33]
suggested using the dynamic analysis technique to detect the
potential misusage within private information.

The works mentioned above are mainly focused on either
NLP for specific problems or a permission security issue on an
Android system. A true analysis of the validity of a description
based off of a permission is so far unseen. The APPIC uses
both the topic modeling and the android permissions to find the
scene behind the app. It has also filled the gap for description
verification.

VII. CONCLUSION

We have described the APPIC framework. From the test
results, we can see that the APPIC can be used as a backend
system that verifies the validity of a description with a very
high average accuracy rate (76.5% accuracy rate for permis-
sion classification,and an 88.1% average precision rate for
the description classification). The APPIC can become a very
useful tool for the user who is reading an app description. It
can largely reduce the number of misleading descriptions, and
it is also an important framework to purify the environment of
the app market. This market is not just limited to Google Play,
but can also include the App Store and the Windows Store.
After the APPIC tagged the user can truly trust the validity of
a description for different apps.
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