ECE 325 - Electric Energy System Components 2- Fundamentals of Electrical Circuits

Instructor:
Kai Sun
Fall 2016

Content

- Fundamentals of electrical circuits (Ch. 2.0-2.15, 2.32-2.39)
- Active power, reactive power and apparent power (Ch. 7)
- Three-phase AC systems (Ch. 8)

Notations: Current and Alternating Current

- Arbitrariily determine a positive direction, e.g. $1 \rightarrow 2$
- If a current of 2 A flows from 1 to $2, I=+2 \mathrm{~A}$
- If a current of 2 A flows from 2 to $1, I=-2 \mathrm{~A}$

Notations: Voltage

1. Double-subscript notation:
$E_{21}=+100 \mathrm{~V}$ (the voltage between 2 and 1 is 100 V , and 2 is positive w.r.t 1)

$$
E_{12}=-100 \mathrm{~V}
$$

2. Sign notation:

Arbitrarilly mark a terminal with (+); $E>0$ if and only if that marked terminal is positive w.r.t the other. E.g. if $E_{21}=+100 \mathrm{~V}, E=E_{21}=+100 \mathrm{~V}$.

Both the double-subscript notation and sign notation apply to alternating voltage

Notations: Alternating Voltage

Notations: Sources and Loads

Figure 2.4
Distinction between a source and a load.

- Definition: given the instantaneous, actual polarity of voltage and actual direction of current
- Actual Source: whenever current flows out of the terminal (+)
- Actual Load: whenever current flows into the terminal (+)
- How about these?
- Resistor, battery cell, electric motor, capacitor and inductor

Resistor

Inductor

Capacitor

1-Phase AC System with Sinusoidal Voltage and Current

- e,i: instantaneous voltage (V) and current (A)
- E_{m}, I_{m} : peak values of the sinusoidal voltage (V) and current (A)
- $\omega=2 \pi f(\mathrm{rad} / \mathrm{s})$: angular frequency, which is assumed constant here
- θ_{e}, θ_{i} constant phase angles (rad. or deg.) of voltage and current
- $E_{m} \sqrt{ } 2, I_{m} / \sqrt{ } 2$: RMS (root-mean-square, effective) values

$$
\int_{t-T}^{t}[i(t)]^{2} R d t=\frac{I_{m}^{2} R T}{2}=I_{d c}^{2} R T \quad \rightarrow I_{d c}=\frac{I_{m}}{\sqrt{2}} \triangleq \text { RMS value }
$$

Phasor Representation

$$
\begin{aligned}
& e(t)=E_{m} \cos \left(\omega t+\theta_{e}\right)=\sqrt{2}|E| \cos \left(\omega t+\theta_{e}\right) \\
& i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)=\sqrt{2}|I| \cos \left(\omega t+\theta_{i}\right)
\end{aligned}
$$

$$
\langle\text { Constant } \omega\rangle E=\frac{E_{m}}{\sqrt{2}} \angle \theta_{e}=|E| \angle \theta_{e}=|E| e^{j \theta_{e}}
$$

$$
I=\frac{I_{m}}{\sqrt{2}} \angle \theta_{i}=|I| \angle \theta_{i}=|I| e^{j \theta_{i}}
$$

- E and I are called RMS phasors of $e(t)$ and $i(t)$; E leads I by $\theta=\theta_{e}-\theta_{i}$ or in other words, I leads E by $2 \pi-\theta$
- Phasor:
- mapping a time-domain sinusoidal waveform (infinitely long in time) to a single complex number
- carries the amplitude and phase angle information of a sinusoidal signal of a common frequency (ω) w.r.t. a chosen reference signal.

Impedance

- Impedance is a complex number (in Ω) defined as

Impedance of branch 1-2 = Voltage drop on 1-2
$Z \stackrel{\text { def }}{=} \frac{E_{12}}{I}=\frac{E}{I}=\frac{|E| \angle \theta_{e}}{|I| \angle \theta_{i}}=|Z| \angle\left(\frac{\left.\theta_{e}-\theta_{i}\right)}{\text { def }}=R+j X\right.$

- Purely resistive: $\quad Z=|Z|=R$
- Purely inductive: $Z=|Z| \angle 90^{\circ}=j X=j X_{L}=j \omega L$
- Purely capacitive: $Z=|Z| \angle-90^{\circ}=j X=-j X_{C}=-j \frac{1}{\omega C}$

Example 2-5

- Draw the phasor diagram of the voltage and current at a frequency of 60 Hz . Calculate the time interval Δt between the positive peaks of E and I

Solution:

$$
\begin{aligned}
& \omega=2 \pi f=377(\mathrm{rad} / \mathrm{s})=21600(\mathrm{deg} / \mathrm{s}) \\
& |E|=339 / \sqrt{ } 2=240(\mathrm{~V}) \\
& |I|=14.1 / \sqrt{ } 2=10(\mathrm{~A})
\end{aligned}
$$

Choose an arbitrary reference to draw phasors E and I
$\Delta t=\theta / \omega=30 / 21600=0.00139$ (s)

