Three-Phase Systems

- Balanced 3-phase voltage:
- Sequence: a-b-c (CW).
- Phase voltages are displaced at 120° (a leads b, b leads c, and c leads a by 120°, respectively)

- Equal voltage magnitudes

3-Phase, 4-Wire AC System

3-Phase, 3-Wire AC System (balanced)

- Line currents:

$$
\left|I_{\mathrm{a}}\right|=\left|I_{\mathrm{b}}\right|=\left|I_{\mathrm{c}}\right|=I_{\mathrm{L}}
$$

- Phase voltages (phase-to-neutral or line-to-neutral):
Nodes 1, 2, $3 \rightarrow$ Node n
$\left|E_{\mathrm{an}}\right|=\left|E_{\mathrm{bn}}\right|=\left|E_{\mathrm{cn}}\right|=E_{\mathrm{LN}}$
- From KVL, line voltages (line-to-line or phase-to-phase):

$$
\begin{aligned}
& E_{\mathrm{ab}}=E_{\mathrm{an}}+E_{\mathrm{nb}}=E_{\mathrm{an}}-E_{\mathrm{bn}} \\
& E_{\mathrm{bc}}=E_{\mathrm{bn}}+E_{\mathrm{nc}}=E_{\mathrm{bn}}-E_{\mathrm{cn}} \\
& E_{\mathrm{ca}}=E_{\mathrm{cn}}+E_{\mathrm{na}}=E_{\mathrm{cn}}-E_{\mathrm{an}} \\
& \left|E_{\mathrm{ab}}\right|=\left|E_{\mathrm{bc}}\right|=\left|E_{\mathrm{ca}}\right|=E_{\mathrm{L}}
\end{aligned}
$$

Wye (Y) Connection

- Each line current ($I_{\mathrm{a}}, I_{\mathrm{b}}$ and I_{c}) equals the phase current.

$$
I_{L}=I_{Z}
$$

- Each line voltage is $\sqrt{ } 3=1.73$ times of a phase voltage in magnitude

$$
\boldsymbol{E}_{\mathrm{L}}=\sqrt{3} \times \boldsymbol{E}_{\mathbf{L N}} \quad\left(\left|E_{\mathrm{ab}}\right|=\sqrt{3}\left|E_{\mathrm{an}}\right|\right)
$$

- Apparent power of each phase:

$$
\left|S_{Z}\right|=E_{L N} I_{Z}=\frac{E_{L}}{\sqrt{3}} I_{L}
$$

- Total 3-phase apparent, active and reactive power:

$$
\begin{array}{ll}
\left|S_{3 \phi}\right|=3 \frac{E_{L}}{\sqrt{3}} I_{L}=\sqrt{3} E_{L} I_{L}=\frac{E_{L}^{2}}{\left|Z_{Y}\right|}=3 I_{L}^{2}\left|Z_{Y}\right| \\
P_{3 \phi}=\sqrt{3} E_{L} I_{L} \cos \theta & Z_{Y}=\left|Z_{Y}\right| \angle \theta
\end{array} \quad \begin{aligned}
& \theta \text { is the power factor angle } \\
& \text { and load impedance angle }
\end{aligned}
$$

Delta (Δ) Connection

- From KCL:

$$
\begin{aligned}
& I_{\mathrm{a}}=I_{\mathrm{ab}}-I_{\mathrm{ca}} \\
& I_{\mathrm{b}}=I_{\mathrm{bc}}-I_{\mathrm{ab}} \\
& I_{\mathrm{c}}=I_{\mathrm{ca}}-I_{\mathrm{bc}}
\end{aligned}
$$

Because three equations are symmetric, and I_{a} leads I_{b}, I_{b} leads I_{c} and I_{c} leads I_{a} all by 120°, we may easily conclude:

1. $\left|I_{\mathrm{ab}}\right|=\left|I_{\mathrm{bc}}\right|=\left|I_{\mathrm{ca}}\right|=I_{\mathrm{Z}}$
2. I_{ab} leads $I_{\mathrm{bc}}, I_{\mathrm{bc}}$ leads $I_{\mathrm{c} a}$, and I_{ca} leads I_{ab} by 120°, respectively

- Each line current is $\sqrt{ } 3=1.73$ times of a phase current in magnitude

$$
\boldsymbol{I}_{\mathrm{L}}=\sqrt{ } 3 \times \boldsymbol{I}_{\mathrm{Z}} \quad\left(\quad\left|I_{\mathrm{a}}\right|=\sqrt{ } 3\left|I_{\mathrm{ab}}\right|\right)
$$

- Each phase voltage equals the line voltage

$$
E_{\mathrm{LN}}=E_{\mathrm{L}}
$$

Delta (Δ) Connection

- Apparent power of each phase:

$$
\left|S_{Z}\right|=E_{L} I_{Z}=E_{L} \frac{I_{L}}{\sqrt{3}}
$$

- Total 3-phase apparent, active and reactive power:

$$
\begin{array}{rll}
\left|S_{3 \phi}\right|=3 E_{L} \frac{I_{L}}{\sqrt{3}}=\sqrt{3} E_{L} I_{L}=\frac{3 E_{L}^{2}}{\left|Z_{\Delta}\right|}=I_{L}^{2}\left|Z_{\Delta}\right| & \left|Z_{Y}\right|=\left|Z_{\Delta}\right| / 3 \\
P_{3 \phi}=\sqrt{3} E_{L} I_{L} \cos \theta & Z_{\Delta}=\left|Z_{\Delta}\right| \angle \theta & \begin{array}{l}
\theta \text { is the power factor angle } \\
\text { and load impedance angle }
\end{array} \\
Q_{3 \phi}=\sqrt{3} E_{L} I_{L} \sin \theta &
\end{array}
$$

a

$$
\left|Z_{Y}\right|=\left|Z_{\Delta}\right| / 3
$$

θ is the power factor angle and load impedance angle

- Given line voltage E_{L}, line current I_{L} and power factor $\cos \theta$, calculation of power is independent of the connection (Y / Δ)

Examples 8-8 \& 8-11

Summary

- Important questions: Exp 2-16, Prob 2-26, Exp 7-2\&7-3, Prob 7-11, Exp 8-11
- $\mathrm{j} X_{L}=\mathrm{j} \omega L, \mathrm{j} X_{C}=-1 \mathrm{j} /(\omega C)$
- KVL: $\mathrm{E}_{14}=\mathrm{E}_{12}+\mathrm{E}_{23}+\mathrm{E}_{34}$ or $\mathrm{E}_{41}+\mathrm{E}_{12}+\mathrm{E}_{23}+\mathrm{E}_{34}=0$
- How many KVL \& KCL are needed for N-node B-branch network?
- Keep adding new KVL and KCL equations until no new E or I can be introduced (\# of KCLs: N-1; \# of KVLs: B-N+1)
- Source or Load?

1. Treat the branch with the $(+)$ terminal receiving I as the load for calculation of power $S=P+\mathrm{j} Q$
2. $\quad P>0 \rightarrow$ active load; $\quad P<0 \rightarrow$ active source;
$Q>0 \rightarrow$ reactive load = inductive load;
$Q<0 \rightarrow$ reactive source = capacitive load

- Do calculations with all complex numbers to avoid confusion among RMS, phasor, peak and apparent values (Saadat's Example 2.2).
- Most basic formulas $S=E I^{*}$ and $E=I Z$
- Understand the power triangle for load $(S=P+\mathrm{j} Q, Z=R+\mathrm{j} X$, E leading I by $\theta)$
- Three-phase system: here to put $\sqrt{ } 3$

