Three-Phase Systems

- Balanced 3-phase voltage:
- Sequence: a-b-c (CW).
- Phase voltages are displaced at 120° (a leads b, b leads c, and c leads a by 120°, respectively)
- Equal voltage magnitudes

3-Phase, 4-Wire AC System

29

3-Phase, 3-Wire AC System (balanced)

- Line currents: $|I_a| = |I_b| = |I_c| = I_L$
- Phase voltages (phase-to-neutral or line-to-neutral):

Nodes 1, 2, $3 \rightarrow Node n$

 $|E_{an}| = |E_{bn}| = |E_{cn}| = E_{LN}$

• From KVL, line voltages (line-to-line or phase-to-phase):

$$E_{ab} = E_{an} + E_{nb} = E_{an} - E_{bn}$$
$$E_{bc} = E_{bn} + E_{nc} = E_{bn} - E_{cn}$$
$$E_{ca} = E_{cn} + E_{na} = E_{cn} - E_{an}$$
$$|E_{ab}| = |E_{bc}| = |E_{ca}| = E_{L}$$

Wye (Y) Connection

• Each line current $(I_a, I_b \text{ and } I_c)$ equals the phase current.

 $I_{\rm L} = I_{\rm Z}$

• Each line voltage is $\sqrt{3}=1.73$ times of a phase voltage in magnitude

 $E_{\rm L} = \sqrt{3} \times E_{\rm LN}$ ($|E_{\rm ab}| = \sqrt{3} |E_{\rm an}|$)

• Apparent power of each phase:

$$\mid S_{Z} \mid = E_{LN}I_{Z} = \frac{E_{L}}{\sqrt{3}}I_{L}$$

• Total 3-phase apparent, active and reactive power:

$$|S_{3\phi}| = 3\frac{E_L}{\sqrt{3}}I_L = \sqrt{3}E_LI_L = \frac{E_L^2}{|Z_Y|} = 3I_L^2|Z_Y|$$
$$P_{3\phi} = \sqrt{3}E_LI_L\cos\theta \qquad \qquad Z_Y = |Z_Y| \angle\theta$$
$$Q_{3\phi} = \sqrt{3}E_LI_L\sin\theta$$

 θ is the power factor angle and load impedance angle

Delta (Δ) Connection

• From KCL:

$$I_{a} = I_{ab} - I_{ca}$$
$$I_{b} = I_{bc} - I_{ab}$$
$$I_{c} = I_{ca} - I_{bc}$$

Because three equations are symmetric, and I_a leads I_b , I_b leads I_c and I_c leads I_a all by 120°, we may easily conclude:

- 1. $|I_{ab}| = |I_{bc}| = |I_{ca}| = I_Z$
- 2. I_{ab} leads I_{bc} , I_{bc} leads I_{ca} , and I_{ca} leads I_{ab} by 120°, respectively
- Each line current is $\sqrt{3}=1.73$ times of a phase current in magnitude

 $I_{\rm L} = \sqrt{3} \times I_{\rm Z}$ ($|I_{\rm a}| = \sqrt{3} |I_{\rm ab}|$)

• Each phase voltage equals the line voltage

 $E_{\rm LN} = E_{\rm L}$

Delta (\Delta) Connection

• Apparent power of each phase:

$$|S_{Z}| = E_{L}I_{Z} = E_{L}\frac{I_{L}}{\sqrt{3}}$$

• Total 3-phase apparent, active and reactive power:

$$|S_{3\phi}| = 3E_L \frac{I_L}{\sqrt{3}} = \sqrt{3}E_L I_L = \frac{3E_L^2}{|Z_{\Delta}|} = I_L^2 |Z_{\Delta}|$$
$$P_{3\phi} = \sqrt{3}E_L I_L \cos\theta \qquad \qquad Z_{\Delta} = |Z_{\Delta}| \angle \theta$$
$$Q_{3\phi} = \sqrt{3}E_L I_L \sin\theta$$

a
$$I_a$$

 I_{ab}
 I_{ab}
 I_{ab}
 I_{ab}
 I_{ca}
 I_{b}
 I_{bc}
 I_{c}

 θ is the power factor angle and load impedance angle

 $|Z_{\rm Y}| = |Z_{\Lambda}|/3$

• Given line voltage E_L , line current I_L and power factor $\cos\theta$, calculation of power is independent of the connection (Y / Δ)

Examples 8-8 & 8-11

Summary

- Important questions: Exp 2-16, Prob 2-26, Exp 7-2&7-3, Prob 7-11, Exp 8-11
- $jX_L = j\omega L$, $jX_C = -1j/(\omega C)$
- KVL: $E_{14} = E_{12} + E_{23} + E_{34}$ or $E_{41} + E_{12} + E_{23} + E_{34} = 0$
- How many KVL & KCL are needed for N-node B-branch network?
 - Keep adding new KVL and KCL equations until no new *E* or *I* can be introduced (# of KCLs: N-1; # of KVLs: B-N+1)
- Source or Load?
 - 1. Treat the branch with the (+) terminal receiving *I* as the load for calculation of power S=P+jQ
 - 2. $P>0 \rightarrow$ active load; $P<0 \rightarrow$ active source; $Q>0 \rightarrow$ reactive load = inductive load; $Q<0 \rightarrow$ reactive source = capacitive load
- Do calculations with all complex numbers to avoid confusion among RMS, phasor, peak and apparent values (Saadat's Example 2.2).
 - Most basic formulas $S = EI^*$ and E = IZ
 - Understand the power triangle for load (S=P+jQ, Z=R+jX, E leading I by θ)
- Three-phase system: here to put $\sqrt{3}$