Rotational Motion of Electric Machines

- An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension.
- Relative to a given end of the machine's shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive.
- Therefore, for rotation about a fixed shaft, all the concepts are

Figure 3.23. Squirrel cage induction motorrotor scalars.

Angular Position, Velocity and Acceleration

- Angular position θ
- The angle at which an object is oriented, measured from some arbitrary reference point
- Unit: rad or deg
- Analogy of the linear concept of distance along a line.
- Angular velocity $\omega=d \theta / d t$
- The rate of change in angular position with respect to time
- Unit: rad/s or r/min (revolutions per minute or rpm for short)
- Analogy of the concept of velocity on a straight line.

- Angular acceleration $\alpha=d \omega / d t$
- The rate of change in angular velocity with respect to time
- Unit: rad/s ${ }^{2}$
- θ and $\omega>0$ if the rotation is CCW
- $\alpha>0$ if the absolute angular velocity is increasing in the CCW direction or decreasing in the CW direction

Moment of Inertia (or Inertia)

- Inertia depends on the mass and shape of the object (unit: $\mathrm{kg} \cdot \mathrm{m}^{2}$)
- A complex shape can be broken up into 2 or more of simple shapes

$J=\frac{m r^{2}}{2}$

Two useful formulas

$J=\frac{m}{3}\left(R_{1}^{2}+R_{2}^{2}+R_{1} R_{2}\right)$

$J=\frac{m}{2}\left(R_{1}^{2}+R_{2}^{2}\right)$

$$
J=\frac{m L^{2}}{12}
$$

Figure 3.11
Flywheel in Example 3.10.

Torque and Change in Speed

- Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force.

$$
T=F r(\mathrm{~N} \cdot \mathrm{~m})
$$

- Newton's Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.

$$
T=J \alpha=J \frac{\Delta \omega}{\Delta t}=\frac{J}{9.55} \cdot \frac{\Delta n}{\Delta t} \quad n[\mathrm{r} / \mathrm{min}]=\omega[\mathrm{rad} / \mathrm{s}] \times \frac{60[\mathrm{~min}]}{2 \pi}=\frac{30}{\pi} \omega \approx 9.55 \omega
$$

Δn : change in speed (in r/min or rem)
Δt : interval of time during which the torque is applied (in second)

Mechanical Work, Power and Kinetic Energy of Rotational Motion

- Applying a constant torque $T(\mathrm{~N} \cdot \mathrm{~m})$ to a motor
- Work: $\quad W=T \Delta \theta$ (J)
$\Delta \theta$: angular distance (rad)
- Power: $\quad P=T \omega=\frac{T n}{9.55}$
(W)

ω : angular velocity or speed of rotation ($\mathrm{rad} / \mathrm{s}$)
n : speed of rotation ($\mathrm{r} / \mathrm{min}$)
- Kinetic Energy: $E_{k}=\frac{1}{2} J \omega^{2}=\frac{\pi^{2}}{1800} J n^{2}=5.48 \times 10^{-3} J n^{2}$

$$
\begin{equation*}
\omega[\mathrm{rad} / \mathrm{s}]=\frac{\pi}{30} n[\mathrm{r} / \mathrm{min}] \tag{J}
\end{equation*}
$$

Example 4

A solid 1400 kg steel flywheel has diameter of 1 m and a thickness of 225 mm . Calculate:

- Its moment of inertia
- To increase its speed from $60 \mathrm{r} / \mathrm{min}$ to $600 \mathrm{r} / \mathrm{min}$
 1400 kg by applying a torque of $20 \mathrm{~N} \cdot \mathrm{~m}$. For how long must the torque be applied?
- The kinetic energy when the flywheel revolves at $1800 \mathrm{r} / \mathrm{min}$

Solution:

Ignoring the thickness of the flywheel, the moment of inertia:

$$
\begin{gathered}
J=\frac{m r^{2}}{2}=\frac{1400 \times 0.5^{2}}{2}=175 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
T=\frac{J}{9.55} \cdot \frac{\Delta n}{\Delta t} \quad \Delta t=\frac{J}{9.55} \frac{\Delta n}{T}=\frac{175}{9.55} \times \frac{600-60}{20}=494.7 \mathrm{~s} \\
E_{k}=5.48 \times 10^{-3} J n^{2}=5.48 \times 10^{-3} \times 175 \times 1800^{2}=3.1 \mathrm{MJ}
\end{gathered}
$$

Mechanically Coupled System

Figure 3.12
Shaft is stationary $T_{M}=T_{\mathrm{L}}$.

Figure 3.13
Shaft turns $\mathrm{CW} T_{\mathrm{M}}=T_{\mathrm{L}}$.

Figure 3.14
Shaft turns ccw $T_{\mathrm{M}}=T_{\mathrm{L}}$.

- Assume that under normal operating conditions, T_{M} (or n) is cw and T_{L} is ccw.
- When $T_{M}=T_{L}$ and they have opposite directions, speed n (or ω) of the shaft is constant (note: n may be cw, ccw or even 0)
- If n is cw, to increase n to n_{1} (cw)
- current $I \uparrow \rightarrow T_{M}>T_{L} \rightarrow n \uparrow$
- once $n=n_{1}, I \downarrow \rightarrow T_{M}=T_{L}$
- In order to decrease \& reverse n to $n_{2}(\mathrm{ccw})$
- current $I \downarrow \rightarrow T_{M}<T_{L} \rightarrow n \downarrow \rightarrow 0 \rightarrow \mathrm{ccw}$
- once $n=n_{2}, I \uparrow \rightarrow T_{M}=T_{L}$
- What is the direction of power flow?

$$
\begin{equation*}
P=T \omega=\frac{T n}{9.55} \tag{W}
\end{equation*}
$$

Conclusions on a Mechanically Coupled System

- Speed:
- When $T_{M}=T_{L}$ and they have opposite directions, the actual steady-state speed being cw (or ccw) depends on whether T_{M} was greater (or less) than T_{L} for a certain period of time before the actual steady-state condition was reached.
- Power flow:
- When T_{M} and n have the same direction (i.e. $P>0$), the motor (in the motor mode) delivers power to the load; otherwise, the motor (in the generator mode) receives power from the load

Figure 3.13
Shaft turns $\mathrm{CW} T_{\mathrm{M}}=T_{\mathrm{L}}$.

Figure 3.14
Shaft turns ccw $T_{M}=T_{L}$.

Question 3-11

A motor develops a cw torque of $60 \mathrm{~N} \cdot \mathrm{~m}$, and the load develops a ccw torque of $50 \mathrm{~N} \cdot \mathrm{~m}$.

- If this situation persists for some time, will the direction of rotation eventually be cw or ccw?
cw since $60 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{cw})>50 \mathrm{~N} \cdot \mathrm{~m}$ (ccw)
- What value of motor torque is needed to keep the speed constant?

50N.m

Electric Motors Driving Linear Motion Loads

- Power output
$P_{o}=F \cdot v$
F in N and v in m / s
- Power input

$$
P_{i}=T \cdot n / 9.55
$$

- Assuming no losses

$$
P_{i}=P_{o}
$$

Figure 3.15

$$
T \cdot n=9.55 F \cdot v
$$

Converting rotary motion into linear motion.

Homework \#3

- Read Ch. 2.16-2.31, 3.0-3.14
- Questions 2-5, 2-8, 2-9, 3-12, 3-17, 3-18, 3-19
- Due date: 9/30 (Friday)
- hand in your solution in the class or
- to Wenyun Ju at MK207

