ECE 325 – Electric Energy System Components 4- Transformers

Instructor:

Kai Sun

Fall 2016

Content

- Ideal Transformer (Ch. 9)
- Practical Transformers (Ch. 10)
- Special Transformers (Ch. 11)
- Three-Phase Transformers (Ch. 12)

Power Transformer

- Ideal transformers
 - Winding resistance is negligible
 - No leakage flux
 - Permeability of the core is infinite (zero magnetizing current I_p is needed to produce flux)
 - No core loss

• Real transformers:

- Windings resistance is not negligible
- Have leakage flux (windings do not link the same flux)
- Permeability of the core is finite
- Have core losses (hysteresis losses and eddy current losses due to time varying flux)

Ideal Transformer

• Primary winding (assuming sinusoidal flux):

Because there is no flux leakage,

$$\phi_1 = \phi_2 = \phi_m$$
 (mutual flux)

$$\phi_m = \Phi_{\text{max}} \cos \omega t$$

$$e_g = e_1 = N_1 \frac{d\phi_m}{dt} = \omega N_1 \Phi_{\text{max}} (-\sin \omega t) = 2\pi f N_1 \Phi_{\text{max}} \cos(\omega t + 90^\circ)$$

$$= E_{1\text{max}} \cos(\omega t + 90^\circ) \quad \text{Leading } \phi_m \text{ by } 90^\circ$$

$$E_{1\text{max}} = 2\pi f N_1 \Phi_{\text{max}} = \sqrt{2} \times 4.44 f N_1 \Phi_{\text{max}}$$

$$E_g = E_1 = \frac{E_{1\text{max}}}{\sqrt{2}} \angle 90^\circ$$
$$= 4.44 f N_1 \Phi_{\text{max}} \angle 90^\circ$$

• Secondary winding:

Because there is no flux leakage

$$e_2 = N_2 \frac{d\phi_m}{dt} = -\omega N_2 \Phi_{\text{max}} \sin \omega t$$
$$= E_{2\text{max}} \cos(\omega t + 90^\circ)$$
$$E_{2\text{max}} = 2\pi f N_2 \Phi_{\text{max}} = \sqrt{2} \times 4.44 f N_2 \Phi_{\text{max}}$$

• Voltage/turns ratio
$$a=E_1/E_2=N_1/N_2$$

$$E_2 = \frac{E_{2\text{max}}}{\sqrt{2}} \angle 90^\circ$$
$$= 4.44 f N_2 \Phi_{\text{max}} \angle 90^\circ$$

No-load and Load Conditions

• Under no-load conditions, because of infinitely permeable core, no magnetizing current is required to produce flux ϕ_m .

$$I_1 = I_2 = 0$$

• Under load conditions $(I_1 \neq 0, I_2 \neq 0)$, power factor angle θ) because of the infinitely permeable core, there is an exact mmf balance

$$F_1 = I_1 N_1 = I_2 N_2 = F_2$$

$$a = \frac{E_1}{E_2} = \frac{I_2}{I_1} = \frac{N_1}{N_2}$$

Circuit Symbol for an Ideal Transformer

Figure 9.11

- a. Symbol for an ideal transformer and phasor diagram using sign notation.
- b. Symbol for an ideal transformer and phasor diagram using double-subscript notation.

Impedance Ratio

$$Z = \frac{E_2}{I_2} \qquad \begin{aligned} E_1 &= aE_2 \\ I_1 &= I_2 / a \end{aligned}$$

$$Z_X = \frac{E_1}{I_1} = \frac{aE_2}{I_2 / a} = a^2 Z$$

Figure 9.12

- a. Impedance transformation using a transformer.
- b. The impedance seen by the source differs from \boldsymbol{Z}

Impedance transformation

- The impedance seen by the source (primary side) is a^2 times the real impedance (secondary side)
- Thus, an ideal transformer has the amazing ability to increase or decrease the value of an impedance

Shifting Impedances (P←S)

8