# Shifting Impedances (P→S)







9

#### **Examples 9-4&9-5**

### **Considering an imperfect core**



#### Under no-loading conditions: $I_1 = I_2 = 0$

- $P_{\rm m}+jQ_{\rm m}$  and  $I_{\rm o}$  are the complex power and current outputs of source  $E_g$ .  $P_{\rm m}$  is the iron loss (why?)
- $R_{\rm m}$  is a resistance causing the iron loss  $P_{\rm m}$  and resulting heat

$$R_{\rm m} = |E_1|^2 / P_{\rm m}$$
  $I_{\rm f} = E_1 / R_{\rm m}$ 

•  $X_{\rm m}$  is the magnetizing reactance that measures permeability of the core. A smaller  $X_{\rm m}$  means lower permeability and needs a higher magnetizing current  $I_{\rm m}$  (i.e. bigger reactive power  $Q_{\rm m} = |E_1|^2 / X_{\rm m}$ ) to set up mutual flux  $\Phi_{\rm m}$ 

$$X_{\rm m} = |E_1|^2 / Q_{\rm m}$$
  $I_{\rm m} = E_1 / j X_{\rm m}$ 

### **Considering loose coupling and resistances of windings**



#### Figure 10.5

A transformer possesses two leakage fluxes and a mutual flux.

• Treat  $E_{f1}$  and  $E_{f2}$  as voltage drops on two winding impedances (including winding resistance and leakage reactance)

 $E_{f1} = (R_1 + jX_{f1}) I_1 \qquad E_{f2} = (R_2 + jX_{f2}) I_2$ 



#### Figure 10.6

Separating the various induced voltages due to the mutual flux and the leakage fluxes.

#### **Equivalent Circuit of a Practical Transformer**



Complete equivalent circuit of a practical transformer. The shaded box T is an ideal transformer.

| TABLE 10A             |     | ACTUAL TRANSFORMER VALUES |        |        |        |        |
|-----------------------|-----|---------------------------|--------|--------|--------|--------|
| $\overline{S_n}$      | kVA | 1                         | 10     | 100    | 1000   | 400000 |
| $E_{np}$              | V   | 2400                      | 2400   | 12470  | 69000  | 13800  |
| $E_{\rm ns}$          | V   | 460                       | 347    | 600    | 6900   | 424000 |
| I <sub>np</sub>       | Α   | 0.417                     | 4.17   | 8.02   | 14.5   | 29000  |
| $I_{\rm ns}$          | Α   | 2.17                      | 28.8   | 167    | 145    | 943    |
| $R_1$                 | Ω   | 58.0                      | 5.16   | 11.6   | 27.2   | 0.0003 |
| $R_2$                 | Ω   | 1.9                       | 0.095  | 0.024  | 0.25   | 0.354  |
| $X_{\rm fl}$          | Ω   | 32                        | 4.3    | 39     | 151    | 0.028  |
| $X_{\rm f2}$          | Ω   | 1.16                      | 0.09   | 0.09   | 1.5    | 27     |
| $X_{\rm m}$           | Ω   | 200000                    | 29000  | 150000 | 505000 | 460    |
| <i>R</i> <sub>m</sub> | Ω   | 400000                    | 51000  | 220000 | 432000 | 317    |
| I <sub>o</sub>        | А   | 0.0134                    | 0.0952 | 0.101  | 0.210  | 52.9   |

#### **No-load conditions**

- $I_1 = I_2 = 0$
- Ignore  $R_1, X_{f1}, R_2$  and  $X_{f2}$
- $E_{p} \approx E_{1} = aE_{2} = aE_{s}$
- 10%-100% load conditions
- $I_p >> I_o$ ,
- Ignore  $I_{\rm o}$

# **Simplified Equivalent Circuits**

- No-load conditions  $(I_1 = I_2 = 0)$ 
  - Ignoring winding leakage fluxes and losses



Figure 10.21 Simplified circuit at no-load.

- 10%-100% load conditions (Ignoring I<sub>o</sub>)
  - Ignoring core reluctance and losses



Figure 10.22 Simplified equivalent circuit of a transformer at full-load.

#### **Equivalent Circuits Referred to One Side**



15

### **Simplified Equivalent Circuits Referred to One Side**



# **Voltage Regulation**

• With the primary voltage held constant at its rated value, the voltage regulation is % change of the secondary voltage from no-load to full load (rated)

Voltage Regulation = 
$$\frac{|E_{NL}| - |E_{FL}|}{|E_{FL}|} \times 100$$

 $E_{NL}$ : secondary voltage at no-load  $E_{FL}$ : secondary voltage at full-load

- The voltage regulation depends on the power factor of the load on the secondary side
  - If the load is capacitive, the full-load voltage may exceed the no-load voltage, in which case the voltage regulation becomes negative

#### **Measuring Transformer Impedances**





**Figure 10.27** Open-circuit test and determination of  $R_m$ ,  $X_m$ , and turns ratio.

#### • Short-circuit test

- Apply a low voltage  $E_{SC}$  to the primary side to create  $I_{SC}$  less than the nominal value to prevent overheating and rapid change in winding resistance
- Neglect  $R_{\rm m}$  and  $X_{\rm m}$  due to low core flux

$$|Z_p| = \frac{|E_{sc}|}{|I_{sc}|}$$
$$R_p = \frac{P_{sc}}{|I_{sc}|^2}$$

$$X_p = \sqrt{|Z_p|^2 - R_p^2}$$





#### Figure 10.28

Short-circuit test to determine leakage reactance and winding resistance.

## **Construction of a power transformer**





Figure 10.9a Construction of a simple transformer.

- Core: made of iron for high permeability; laminated and high resistive to reduce iron losses
- Windings: the primary and secondary coils are wound closely on top of each other with careful insulation for tight coupling; the HV winding has more turns but uses a smaller size of conductor, so copper/aluminum of two windings are about the same

# **Standard terminal markings and polarity tests**



subtractive polarity





#### Figure 10.10

Additive and subtractive polarity depend upon the location of the  $H_1$ - $X_1$  terminals.

Figure 10.11 Determining the polarity of a transformer using an ac source.

- High-Voltage winding  $(H_1\&H_2)$  and Low-Voltage winding  $(X_1\&X_2)$  $E_{H1,H2}/E_{X1,X2}=E_H/E_X=N_H/N_X$
- Polarity test:
  - 1. Connect HV winding to a low voltage source  $E_g$
  - 2. Connect a jumper J between any two adjacent HV and LV terminals
  - 3. Connect two voltmeters to as shown in Figure 10.11
  - 4. The polarity is additive if  $|E_x/>|E_p|$  or, otherwise, is subtractive.

# **The Per-Unit System**

- Quantity in **Per-Unit** = **Actual** quantity / **Base or nominal** value of quantity
- Why per-unit notations?



Figure 2-6. Example of the Usage of the Per-Unit System

- Neglecting different voltage levels of transformers, lines and generators
- Powers, voltages, currents and impedances are expressed as decimal fractions of respective base quantities

• Four base quantities are required to completely define a per-unit system

$$S_{pu} = \frac{S}{S_n}$$
  $E_{pu} = \frac{E}{E_n}$   $I_{pu} = \frac{I}{I_n}$   $Z_{pu} = \frac{Z}{Z_n}$ 

• We need to select two independent base quantities of the four and calculate the other two, e.g. selecting  $S_n$  and  $E_n$ 

$$I_n = \frac{S_n}{E_n} \qquad \qquad Z_n = \frac{E_n}{I_n} = \frac{\left(E_n\right)^2}{S_n}$$

- For a transformer:
  - Usually,  $S_n$ ,  $E_{pn}$ ,  $E_{sn}$  and the total impedance  $Z_p$  (in p.u. or %) referred to the primary side are given.

$$I_{np} = \frac{S_n}{E_{np}} \qquad I_{ns} = \frac{S_n}{E_{ns}} \qquad a = \frac{N_p}{N_s} = \frac{E_{np}}{E_{ns}}$$
$$Z_{np} = \frac{E_{np}}{I_{np}} = \frac{\left(E_{np}\right)^2}{S_n} \quad (\Omega) \qquad Z_{ns} = \frac{E_{ns}}{I_{ns}} = \frac{\left(E_{ns}\right)^2}{S_n} \quad (\Omega)$$

$$Z_p(\Omega) = Z_p(\mathbf{p}.\mathbf{u}.) \times Z_{np}$$

#### Examples 10-5, 10-6, 10-7, 10-8 & 10-10