Shifting Impedances ($\mathrm{P} \rightarrow \mathrm{S}$)

$$
1
$$

$$
\begin{aligned}
\mathrm{Z}_{p} \longrightarrow \mathbf{1} / \mathbf{a}^{2} & \mathrm{Z}_{s} \\
\mathrm{E}_{p} \longrightarrow \mathbf{1} / \boldsymbol{a} & \longrightarrow \mathrm{E}_{s} \\
I_{p} \longrightarrow a & \longrightarrow I_{s}
\end{aligned}
$$

Examples 9-4\&9-5

Considering an imperfect core

Under no-loading conditions: $I_{1}=I_{2}=0$

- $P_{\mathrm{m}}+\mathrm{j} Q_{\mathrm{m}}$ and I_{0} are the complex power and current outputs of source $E_{g} . P_{\mathrm{m}}$ is the iron loss (why?)
- R_{m} is a resistance causing the iron loss P_{m} and resulting heat

$$
R_{\mathrm{m}}=\left|E_{1}\right|^{2} / P_{\mathrm{m}} \quad I_{\mathrm{f}}=E_{1} / R_{\mathrm{m}}
$$

- X_{m} is the magnetizing reactance that measures permeability of the core. A smaller X_{m} means lower permeability and needs a higher magnetizing current I_{m} (i.e. bigger reactive power $Q_{\mathrm{m}}=\left|E_{1}\right|^{2} / X_{\mathrm{m}}$) to set up mutual flux Φ_{m}

$$
X_{\mathrm{m}}=\left|E_{1}\right|^{2} / Q_{\mathrm{m}} \quad I_{\mathrm{m}}=E_{1} / \mathrm{j} X_{\mathrm{m}}
$$

Considering loose coupling and resistances of windings

Figure 10.5
A transformer possesses two leakage fluxes and a mutual flux.

$$
\begin{array}{ll}
E_{1}=4.44 f N_{1} \Phi_{\mathrm{m}} \quad E_{2} & =4.44 f N_{2} \Phi_{\mathrm{m}} \\
E_{\mathrm{f} 1}=4.44 f N_{1} \Phi_{\mathrm{f} 1} \quad E_{\mathrm{f} 2}=4.44 f N_{2} \Phi_{\mathrm{f} 2} \\
\mathrm{KVL}: E_{1}+E_{\mathrm{f} 1}=E_{\mathrm{p}}=E_{\mathrm{g}} & E_{2}-E_{\mathrm{f} 2}=E_{\mathrm{s}}
\end{array}
$$

- Treat $E_{\mathrm{f} 1}$ and $E_{\mathrm{f} 2}$ as voltage drops on two winding impedances (including winding resistance and leakage reactance)

$$
E_{\mathrm{f} 1}=\left(R_{1}+\mathrm{j} X_{\mathrm{f} 1}\right) I_{1} \quad E_{\mathrm{f} 2}=\left(R_{2}+\mathrm{j} X_{\mathrm{f} 2}\right) I_{2}
$$

Figure 10.6
Separating the various induced voltages due to the mutual flux and the leakage fluxes.

Equivalent Circuit of a Practical Transformer

Figure 10.8
Complete equivalent circuit of a practical transformer. The shaded box T is an ideal transformer.

TABLE 10A	ACTUAL TRANSFORMER VALUES					
S_{n}	kVA	I	10	100	1000	400000
E_{np}	V	2400	2400	12470	69000	13800
E_{ns}	V	460	347	600	6900	424000
I_{np}	A	0.417	4.17	8.02	14.5	29000
I_{ns}	A	2.17	28.8	167	145	943
R_{1}	Ω	58.0	5.16	11.6	27.2	0.0003
R_{2}	Ω	1.9	0.095	0.024	0.25	0.354
$X_{\mathrm{n} 1}$	Ω	32	4.3	39	151	0.028
$X_{\mathrm{f} 2}$	Ω	1.16	0.09	0.09	1.5	27
X_{m}	Ω	200000	29000	150000	505000	460
R_{m}	Ω	400000	51000	220000	432000	317
I_{o}	A	0.0134	0.0952	0.101	0.210	52.9

No-load conditions

- $I_{1}=I_{2}=0$
- Ignore $R_{1}, X_{\mathrm{f} 1}, R_{2}$ and $X_{\mathrm{f} 2}$
- $E_{\mathrm{p}} \approx E_{1}=a E_{2}=a E_{\mathrm{s}}$

10\%-100\% load conditions

- $I_{\mathrm{p}} \gg I_{\mathrm{o}}$,
- Ignore I_{0}

Simplified Equivalent Circuits

- No-load conditions ($I_{1}=I_{2}=0$)
- Ignoring winding leakage fluxes and losses

Figure 10.21
Simplified circuit at no-load.
-10\%-100\% load conditions (Ignoring I_{0})

- Ignoring core reluctance and losses

Figure 10.22
Simplified equivalent circuit of a transformer at full-load.

Equivalent Circuits Referred to One Side

Simplified Equivalent Circuits Referred to One Side

- Under load conditions

Figure 10.23
Equivalent circuit with impedances shifted to the primary side.

$$
\begin{aligned}
Z_{p} & =R_{p}+j X_{p} \\
& =R_{1}+a^{2} R_{2}+j\left(X_{f 1}+a^{2} X_{f 2}\right)
\end{aligned}
$$

Voltage Regulation

- With the primary voltage held constant at its rated value, the voltage regulation is \% change of the secondary voltage from no-load to full load (rated)

$$
\text { Voltage Regulation }=\frac{\left|E_{N L}\right|-\left|E_{F L}\right|}{\left|E_{F L}\right|} \times 100
$$

$E_{N L}$: secondary voltage at no-load
$E_{F L}$: secondary voltage at full-load

- The voltage regulation depends on the power factor of the load on the secondary side
- If the load is capacitive, the full-load voltage may exceed the no-load voltage, in which case the voltage regulation becomes negative

Measuring Transformer Impedances

- Open-circuit (no-load) test
- Neglect $R_{1}, X_{\mathrm{f} 1}, R_{2}, X_{\mathrm{f} 2}$
- Measure P_{m} (core loss), $\left|E_{\mathrm{p}}\right|$, $\left|I_{\mathrm{o}}\right|$ and $\left|E_{\mathrm{s}}\right|$

$$
R_{m}=\frac{\left|E_{p}\right|^{2}}{P_{m}} \quad\left|I_{f}\right|=\frac{\left|E_{p}\right|}{R_{m}}
$$

$\left|I_{m}\right|=\sqrt{\left|I_{o}\right|^{2}-\left|I_{f}\right|^{2}}$
$X_{m}=\frac{\left|E_{p}\right|}{\left|I_{m}\right|}$
$a=\frac{N_{1}}{N_{2}}=\frac{\left|E_{p}\right|}{\left|E_{s}\right|}$

Figure 10.27
Open-circuit test and determination of R_{m}, X_{m}, and turns ratio.

- Short-circuit test
- Apply a low voltage $E_{S C}$ to the primary side to create $I_{S C}$ less than the nominal value to prevent overheating and rapid change in winding resistance
- Neglect R_{m} and X_{m} due to low core flux

$$
\begin{gathered}
\left|Z_{p}\right|=\frac{\left|E_{s c}\right|}{\left|I_{s c}\right|} \\
R_{p}=\frac{P_{s c}}{\left|I_{s c}\right|^{2}} \\
X_{p}=\sqrt{\left|Z_{p}\right|^{2}-R_{p}^{2}}
\end{gathered}
$$

Figure 10.28
Short-circuit test to determine leakage reactance and winding resistance.

Construction of a power transformer

Figure 10.9a

Construction of a simple transformer.

- Core: made of iron for high permeability; laminated and high resistive to reduce iron losses
- Windings: the primary and secondary coils are wound closely on top of each other with careful insulation for tight coupling; the HV winding has more turns but uses a smaller size of conductor, so copper/aluminum of two windings are about the same

Standard terminal markings and polarity tests

Figure 10.10
Additive and subtractive polarity depend upon the location of the $\mathrm{H}_{1}-\mathrm{X}_{1}$ terminals.

Figure 10.11
Determining the polarity of a transformer using an ac source.

- High-Voltage winding $\left(\mathrm{H}_{1} \& \mathrm{H}_{2}\right)$ and Low-Voltage winding $\left(\mathrm{X}_{1} \& \mathrm{X}_{2}\right)$

$$
\mathrm{E}_{\mathrm{H} 1, \mathrm{H} 2} / \mathrm{E}_{\mathrm{X} 1, \mathrm{X} 2}=\mathrm{E}_{\mathrm{H}} / \mathrm{E}_{\mathrm{X}}=\mathrm{N}_{\mathrm{H}} / \mathrm{N}_{\mathrm{X}}
$$

- Polarity test:

1. Connect HV winding to a low voltage source E_{g}
2. Connect a jumper J between any two adjacent HV and LV terminals
3. Connect two voltmeters to as shown in Figure 10.11
4. The polarity is additive if $\left|E_{x}\right|>\left|E_{p}\right|$ or, otherwise, is subtractive.

The Per-Unit System

- Quantity in Per-Unit = Actual quantity / Base or nominal value of quantity
- Why per-unit notations?

Figure 2-6. Example of the Usage of the Per-Unit System

- Neglecting different voltage levels of transformers, lines and generators
- Powers, voltages, currents and impedances are expressed as decimal fractions of respective base quantities
- Four base quantities are required to completely define a per-unit system

$$
S_{p u}=\frac{S}{S_{n}} \quad E_{p u}=\frac{E}{E_{n}} \quad I_{p u}=\frac{I}{I_{n}} \quad Z_{p u}=\frac{Z}{Z_{n}}
$$

- We need to select two independent base quantities of the four and calculate the other two, e.g. selecting S_{n} and E_{n}

$$
I_{n}=\frac{S_{n}}{E_{n}} \quad Z_{n}=\frac{E_{n}}{I_{n}}=\frac{\left(E_{n}\right)^{2}}{S_{n}}
$$

- For a transformer:
- Usually, $S_{n}, E_{p n}, E_{s n}$ and the total impedance Z_{p} (in p.u. or \%) referred to the primary side are given.

$$
\begin{array}{ll}
I_{n p}=\frac{S_{n}}{E_{n p}} \quad I_{n s}=\frac{S_{n}}{E_{n s}} & a=\frac{N_{p}}{N_{s}}=\frac{E_{n p}}{E_{n s}} \\
Z_{n p}=\frac{E_{n p}}{I_{n p}}=\frac{\left(E_{n p}\right)^{2}}{S_{n}} \quad(\Omega) & Z_{n s}=\frac{E_{n s}}{I_{n s}}=\frac{\left(E_{n s}\right)^{2}}{S_{n}} \\
Z_{p}(\Omega)=Z_{p}(\text { p.u. }) \times Z_{n p}
\end{array}
$$

Examples 10-5, 10-6, 10-7, 10-8 \& 10-10

