ECE 325 – Electric Energy System Components 5- Transmission Lines

Instructor: Kai Sun Fall 2016

Content

(Materials are from Chapter 25)

- Overview of power lines
- Equivalent circuit of a line
- Voltage regulation and power transmission of transmission lines

Overview

- Types of transmission lines
 - Overhead lines
 - Underground Cables (less than 1%)
- Properties
 - Series Resistance (stranding and skin effect)
 - Series Inductance (magnetic & electric fields; flux linkages within the conductor cross section and external flux linkages)
 - Shunt Capacitance (magnetic & electric fields; charge and discharge due to potential difference between conductors)
 - Shunt Conductance (due to leakage currents along insulators or corona discharge caused by ionization of air)
- Line-to-line voltage levels
 - 69kV, 115kV, 138kV and 161kV (sub-transmission)
 - 230kV, 345kV, and 500kV (EHV)
 - 765kV (UHV)

Corona discharge on insulator string of a 500 kV line (source: wikipedia.org)

Overhead Transmission Lines

Figure 2-83. Transmission Line Structures

Shield wires (ground wires) are ground conductors used to protect the transmission lines from lightning strikes

(Source: wikipedia.org and EPRI dynamic tutorial)

Overhead Transmission Lines

- Many strands to reduce series resistance
- Materials
 - AAC (All Aluminum Conductor),
 - AAAC (All Aluminum Alloy Conductor)
 - ACSR (Aluminum Conductor Steel Reinforced)
 - ACAR (Aluminum Conductor Alloy Reinforced)
 - ACCC (Aluminum Conductor Composite Core)
- Why not copper?
 - Relative lower costs and higher strength-toweight ratios than copper
- Bundled conductors to reduce series reactance
 - Preferred for high voltages, e.g. 2-conductor bundles for 230kV, 3-4 for 345-500kV, and 6 for 765kV

ACSR (7 steel and 24 aluminum strands)

24/7 ACSR and modern ACCC conductors

A bundle of 4 conductor

Equivalent circuit of a transmission line

- $R=r \times N$, $X_L = x_L \times N$, $X_C = x_C/N$: With the increase of N (i.e. the length of the line), R and X_L increase but X_C decreases
- For HV lines, *R*<<*X*_L

TABLE 25CTYPICAL IMPEDANCE VALUES PERKILOMETER FOR 3-PHASE, 60 HZ LINES

Type of line	$x_{L}[\Omega]$	$x_{\rm C} [\Omega]$
aerial line	0.5	300 000
underground cable	0.1	3 000

Simplifying the equivalent circuit

$$R = r \times N$$
, $X_L = x_L \times N$, $X_C = x_C/N$
HV lines: $R << X_L$

Figure 25.17

Active and reactive powers of a transmission line.

Figure 25.18 Equivalent circuit of a short LV line.

Figure 25.19 Equivalent circuit of a long HV line.

Example 25-3

Consider one phase:

P=300/3=100MW

 $|E|=230/\sqrt{3}=133$ kV

|I|=100MW/133kV=750A

 $P_{\rm J} = |I|^2 R = 1.83 \,\rm{MW} = 0.0183 P$

 $Q_{\rm L} = |I|^2 X_{\rm L} = 14.1 \,{\rm Mvar}$

 $Q_{\rm C} = |E|^2 / X_{\rm C} = 3 \,\mathrm{Mvar} \ll Q_{\rm L}$

a. Find the equivalent circuit b. Calculate $P_{\rm J}$ (loss), $Q_{\rm L}$ and $Q_{\rm C}$

Figure 25.16 Equivalent circuit of a 3-phase line.

