

- VR is a measure of line voltage drop and usually should not exceed $\pm 5\%$ (or $\pm 10\%$)
- VR depends on the load power factor:
 - VR is often high (bad) for a low lagging power factor
 - Perhaps, VR<0 for a leading power factor (i.e. $|E_1| \le |E_2|$).
 - If ignore $X_{\rm C}$, three typical loads with lagging, unity and leading power factors

Resistive line

• There is an upper limit on the power transferred by the line to the load

$$P = |E_{R}| \cdot |I| = |I|^{2} (kR) = \left|\frac{E_{S}}{R + kR}\right|^{2} kR$$
$$= \frac{|E_{S}|^{2}}{R(1/k + k + 2)} \le \frac{|E_{S}|^{2}}{4R}$$

$$P = P_{\text{max}} = |E_{\text{S}}|^2 / 4R$$
 when $k = 1$, i.e. $E_{\text{R}} = E_{\text{S}} / 2$

- If $E_{\rm R} \ge 0.95 E_{\rm S}$ (around 5% VR) is required, the line can support a load that is only 19% of $P_{\rm max}$
- The total power from the sender is $P+|I|^2R$
- VR is a key factor that limit the power transmission capacity

Figure 25.21 Characteristics of a resistive line.

Inductive line

$$P = |I|^{2} (kX) = \left|\frac{E_{S}}{jX + kX}\right|^{2} kX$$
$$= \frac{|E_{S}|^{2}}{X | k - 1 / k + 2j |} \le \frac{|E_{S}|^{2}}{2X}$$

 $P_{\text{max}} = |E_{\text{S}}|^2 / 2X$ when k=1, $|E_{\text{R}}| = |E_{\text{S}}| / \sqrt{2} = 0.707 |E_{\text{S}}|$

- A inductive line can deliver twice as much power as a resistive line (if *X*=*R*)
- If E_R≥0.95E_S (around 5% VR) is required, the line can support a load that is 60% of P_{max}, i.e. 6x as much as power as a resistive line
- VR is a key factor that limit the power transmission capacity
- The total power from the sender is $P+j|I|^2X$

Figure 25.22 Characteristics of an inductive line.

Inductive line connecting two systems

$$S = E_{S}I^{*} = E_{S}\left(\frac{E_{S} - E_{R}}{jX}\right)^{*} = |E_{S}| \angle \delta\left(\frac{|E_{S}| \angle -\delta - |E_{R}| \angle 0^{\circ}}{X \angle -90^{\circ}}\right)$$
$$= \frac{|E_{S}|^{2}}{X} \angle 90^{\circ} - \frac{|E_{S}||E_{R}|}{X} \angle (\delta + 90^{\circ})$$
$$P = -\frac{|E_{S}||E_{R}|}{X} \cos(\delta + 90^{\circ}) = \frac{|E_{S}||E_{R}|}{X} \sin\delta \approx \frac{|E_{S}||E_{R}|}{X} \delta(\text{in rad})$$
$$Q = \frac{|E_{S}|^{2}}{X} - \frac{|E_{S}||E_{R}|}{X} \sin(\delta + 90^{\circ}) = \frac{|E_{S}|^{2}}{X} - \frac{|E_{S}||E_{R}|}{X} \cos\delta$$
$$= \frac{|E_{S}|}{X} (|E_{S}| - |E_{R}| \cos\delta) \approx \frac{|E_{S}|}{X} (|E_{S}| - |E_{R}|)$$
$$P = \frac{|E_{S}||E_{R}|}{X} \sin\delta$$

• The size of reactive flow depends on the voltage drop from the sending end to the receiving end.

• If $|E_{\rm S}| = |E_{\rm R}| = E$, $Q \approx 0$, i.e. almost no reactive flow

$$P = \frac{E^2}{X} \sin \delta \le \frac{E^2}{X}$$

Figure 25.30a Power versus angle characteristic.

Increasing the power transmission capacity

$$S = P + jQ = \frac{|E_S||E_R|}{X} \sin \delta + j|I|^2 X$$

1. Use a shunt capacitor

• To have $|E_{\rm R}| = |E_{\rm S}|$, the line can fully be compensated by adding a shunt capacitor to the receiving end whose $X_{\rm C}$ is adjustable so that

 $|E_{\rm S}|^2/X_{\rm C}=0.5|I|^2X$

while the other $0.5|I|^2X$ is provided by the source or another capacitor with $X_{\rm C}$ at the sending end.

• Thus,
$$P_{\text{max}} = |E_{\text{S}}|^2 / X$$

To further increase P_{max} , an approach is to reduce line reactance X

2. Use parallel lines:

 $X \rightarrow X/2 \dots X/N$, so $P_{\text{max}} \rightarrow 2P_{\text{max}} \dots N \times P_{\text{max}}$ Also improving security against a line trip.

3. Use a series capacitor

 $P_{\text{max}} = |E_{\text{S}}|^2 / (X - X_{CS})$

• It may cause sub-synchronous resonance (SSR)

$$f_{SSR} = f \sqrt{\frac{X_{CS}}{X}} = f \sqrt{\frac{1}{LC_S}}$$

If $X_{CS}/X=1/4$ (25% compensation), $f_{SSR}=f/2=30$ Hz

Voltage Regulation for EHV lines

A 3-phase 735kV 60Hz 600km line, operated at 727kV, has inductive reactance of 0.5 Ω /km and capacitive reactance of 300k Ω /km.

• At no-load (open-circuit) conditions,

for each phase,

 $|E_{\rm S}| = 727/\sqrt{3} = 420 {\rm kV},$

 $X_{\rm L}$ =0.5×600=300 Ω , $X_{\rm C}$ =300k/600=500 Ω ,

 $X_{C1} = X_{C2} = 2X_{C} = 1000 \Omega$ $E_{R} = E_{S} \times (-jX_{C2}) / (jX_{L} - jX_{C2})$ $= 420 \angle 0^{\circ} \times 1000 / (1000 - 300) = 600 \angle 0^{\circ} \text{ kV}$ To bring $|E_{\rm R}|$ back to $|E_{\rm S}|$, add a shunt reactor of $X_{\rm L2}$ at the receiving end:

If $X_{L2} = X_{C2}$, then $-jX_{C2}//jX_{L2} = \infty$ and $|E_R| = |E_S|$.

The reactive power generated by X_{C2} is entirely absorbed by X_{L2} (cancelling each other)

Figure 25.35 EHV transmission line at no-load.

Figure 25.36 EHV reactor compensation.

Surge-impedance load (SIL)

- When connected to a gradually increasing load with PF=1, $|E_R|$ decreases from $|E_{R,NL}|$ (open-circuit) to 0 (short-circuit).
- When $|E_R| = |E_S|$, the amount of load is called the surge-impedance load (SIL) and the corresponding load impedance is called the surge impedance, which has $Z_Y \approx 400\Omega$ (line-to-neutral impedance) for aerial lines

Inter-region power exchange: Example 25-8

Figure 25.41a

An ordinary transmission line causes power to flow in the wrong direction.

Calculate: (1) the power transmitted by the line and (2) the required phase-shift enabling transmitting 70MW from E_a to E_b

(1) $|E_a| = |E_b| = E$, so $P_{ab} = (E^2/X)\sin(\delta_a - \delta_b) = (100^2/20) \sin(-11^\circ) = -95.4$ W (in fact, a \leftarrow b) (2) $P_{ab} = 70 = (100^2/20) \sin(\delta_a - \delta_b)$, so $\delta_a - \delta_b = 8^\circ$, i.e. 8-(-11)=19° phase-shift of E_a

Figure 25.41b

A phase-shift autotransformer can force power to flow in the desired direction (Example 25-8).

Summary for Test #2

- Short answer questions will be from lecture slides
- Big calculation questions will be similar to some of the following:
 - 3 Electromagnetism & rotation motion:
 - All examples in lectures
 - Homework problems: 2-9, 3-19
 - 4 Transformers:
 - Examples: 9-4, 9-5, 10-5, 10-6, 10-7, 10-8, 10-10, 11-2, 12-1, 12-2, 12-3, 12-7
 - Homework problems: 11-7, 11-8, 11-9
 - 5 Transmission lines
 - Examples: 25-3, 25-4, 25-5, slide # 14-15, 25-8