ECE 325 – Electric Energy System Components 6- Three-Phase Induction Motors

Instructor: Kai Sun Fall 2016

Content

(Materials are from Chapters 13-15)

- Components and basic principles
- Selection and application
- Equivalent circuits

Understanding the Nameplate

- 3-phase, 60Hz, AC induction motor
- Rated power: 30.0 hp (=22.4kW)
- Service factor: 1.15 (i.e. 115% of rated power for short-term use)
- Rated full-load current: 35.0A
- Rated voltage: 460V
- Rated speed: 1765rpm
- Continuous duty at ambient 40°C
- Full-load nominal efficiency: 93.0%
- Frame size: shaft height of 28/4=7 inches; body's length of 6
- Insulation class: F (155°C for 20,000 hours lifetime)
- NEMA design: B (normal starting torque combined with a low current)
- Start inrush kVA: G (5.60-6.29kVA)

AC Induction Motor								
HIGH EFFICIENT								
ORD. NO.	1LA0264SE41			E NO.				
TYPE	RGZESD			FRAM	IE	286T		
H.P.	30.0			SERVIO FACTO		1.15 ^{3 PH}		
AMPS.	35.0			VOLT	S	460		
R.P.M	1765			HERT	Ζ	60		
DUTY	CONT 40°C AMB			DATE CODE				
CLASS INSUL	F	NEMA Design	В	KVA CODE	G	NEMA Nom. EFF	93.0	
SH END BRG	50RU03K30			OPP E BRG	BRG 50BC03JPP3			
○ Made in Mexico ④ Al ⁰ s (€ @								0

Principal components

- Stator (stacked laminations)
- Rotor (stacked laminations)
 - Wound rotor
 - Squirrel-cage rotor
- Air gap (0.4mm-4mm)

Figure 13.2

Exploded view of the cage motor of Fig. 13.1, showing the stator, rotor, end-bells, cooling fan, ball bearings, and terminal box. The fan blows air over the stator frame, which is ribbed to improve heat transfer. *(Courtesy of Baldor Electric Company)*

Stator

- Hollow, cylindrical core made up of stacked laminations.
- Stator winding is placed in the evenly spaced slots punched out of the internal circumference of the laminations.

(Source: EASA.com)

Wound Rotor

- Has a 3-phase winding (usually in Y-connection) uniformly distributed in rotor slots, similar to the stator winding
- Rotor winding terminals are connected to three slip-rings which revolve with the rotor.
- 3 stationary brushes connect the rotor winding to external resistors during the start-up period and are short-circuited during normal operations.

Squirrel-Cage Rotor

- More adopted in induction motors
- Instead of a winding, copper bars are pushed into the slots in the laminations
- Welded to two copper end-rings, all bars are short-circuited at two ends, so as to resemble a "squirrel cage"
- In small and medium motors, the "cage" (bars and end-rings) are made of aluminum.

Figure 13.3a Die-cast aluminum squirrel-cage rotor with integral cooling fan. (Courtesy of Lab-Volt)

Principle of Operation: Faraday's Law and Lorentz Force

- A magnet moving above a conducting ladder induces a voltage *E=Blv* and a current *I* in the conductor underneath according to Faraday's law (the right-hand rule).
- Cut by the moving flux, the current-carrying conductor experiences a Lorentz force (the left-hand rule) always acting in a direction to drag it along the moving magnet
- When the system reaches a steady state, the ladder moves in the same direction as the magnet but has a lower speed <v (why?)
- Roll up the ladder into a cylindrical squirrel-cage rotor and replace the magnet by a stator \rightarrow an induction motor

Parallel conductors are short-circuited by end-bars A and B

Conductors are short-circuited by end-rings A and B)

Rotating magnetic field

• Consider a stator having 6 salient poles with Y-connected stator windings carrying balanced 3-phase alternating currents.

Rotating Magnetic Field: Instant 1

Rotating Magnetic Field: Instant 2

• $\theta \rightarrow 60^{\circ}$: the magnetic field moves CW by 60°; its angular speed equals ω

Rotating Magnetic Field: Instant 3

• $\theta \rightarrow 120^{\circ}$: the magnetic field moves CW by 120°; its angular speed equals ω

Rotating Magnetic Field

- The stator produces a magnetic field having one pair of N-S poles
 - The field rotates 360° during one cycle of the stator current.
 - The speed of the rotating field is synchronized with the frequency f of the source, so it is called **synchronous speed** =60f(r/min) or $2\pi f(rad/s)$
 - With the phase sequence A-B-C (CW), the magnetic field rotates CW.
 - If we interchange any two of the three lines connected to the stator, the new phase sequence will be A-C-B (CW) and the magnetic field will rotate CCW at the synchronous speed

1 10 A

Phase group and Synchronous Speed

- In practice, instead of using a single coil per pole, the coil is sub-divided into 2 or more coils lodged and staggered in adjacent slots connected in series as a phase group
- Each phase group produces one N/S pole, so using more phase groups allows us to increase a number (denoted by *p*) of poles

No. of groups = No. of phases \times No. of poles = $3 \times p$

Figure 13.10b

Four-pole, full-pitch, lap-wound stator and resulting magnetic field when $I_a = +10$ A and $I_b = I_c = -5$ A.

Figure 13.11

Eight-pole, full-pitch, lap-wound stator and resulting magnetic field when $I_a = +10$ A and $I_b = I_c = -5$ A.

• Synchronous speed $n_s = 120 f / p$ [r/min]

Starting of an induction motor

- 1. The magnetic field produced by the stator current rotates CW at synchronous speed n_s .
- 2. Relative to the magnetic field, the rotor rotates CCW.
- 3. According to Faraday's Law (right-hand rule), the rotor windings (bars) have induced voltages in the directions as indicated.
- 4. Large circulating currents are created in rotor windings (bars) by the induced voltages
- 5. The currents have the maximum values at the staring point because the rotor has the maximum speed relative to the magnetic field.
- 6. The rotor windings start to rotate CW subjected to Lorentz forces (left-hand rule) in the directions as indicated
- 7. The rotor will accelerate until the total Lorentz force equals the friction
- 8. Once the rotor starts rotating CW, its speed relative to the filed will decrease, so its winding currents and Lorentz forces will decrease

Can the rotor reach n_s ?

- No, the rotor's speed n<ns at a steady state (if n=ns, then its currents and Lorentz forces would be zero and friction would slow the rotor down).
- Since friction is very small, the rotor speed $n \approx n_s$ at no load conditions

Slip

• <u>Slip</u>: is the difference between synchronous speed n_s and rotor speed n, expressed as a per unit or percent of synchronous speed.

$$s = \frac{n_s - n}{n_s} = \frac{\omega_s - \omega_r}{\omega_s} = \frac{f_2}{f} \qquad (pu)$$

f: frequency of the source connected to the stator [Hz] f_2 : frequency of the voltage and current induced in the rotor [Hz] $n_s = 120 f/p$: synchronous speed [r/min]

n: rotor speed [r/min]

 $\omega_r = 2\pi (f - f_2) = \pi n/30$, $\omega_s = 2\pi f = \pi n_s/30$ [rad/s] corresponding angular speeds of *n* and n_s