Example 13-3

- A 0.5 hp, 6-pole induction motor is excited by a 3-phase, 60 Hz source. Calculate the slip, and the frequency of the rotor current under the following conditions:
 - a. At standstill
 - b. Motor turning at 500r/min in the same direction as the revolving field
 - c. Motor turning at 500r/min in the opposite direction to the revolving field
 - d. Motor turning at 2000r/min in the same direction as the revolving field

Solution:

$n_s = 120 f/p = 120 \times 60/6 = 1200 \text{ r/min}$	Slip	
a. $s = (n_s - n)/n_s = (1200 - 0)/1200 = 1$ pu		
$f_2 = sf = 60 \text{Hz}$	<i>s</i> =1	
b. $s = (1200-500)/1200 = 0.583$ pu	0 < 1	
$f_2 = sf = 0.583 \times 60 \text{Hz} = 35 \text{Hz}$	U <s<1< td=""><td></td></s<1<>	
c. <i>s</i> = [1200- (-500)]/1200 =1.417 pu	c>1	
$f_2 = sf = 1.417 \times 60 \text{Hz} = 85 \text{Hz}$	5~ 1	
d. <i>s</i> = [1200- 2000)]/1200 = -0.667 pu		
$f_2 = sf = -0.667 \times 60 \text{Hz} = -40 \text{Hz}$	<i>s</i> <0	

Slip	Rotor speed & freq	Operating mode
<i>s</i> =1	n=0 $f_2=f$	Transformer (standstill)
0 <s<1< td=""><td>$0 < n < n_{\rm s}$ $0 < f_2 < f$</td><td>Motor</td></s<1<>	$0 < n < n_{\rm s}$ $0 < f_2 < f$	Motor
s>1	n < 0 $f_2 > f$	Brake
0>2	$n > n_s$ $f_2 < 0$	Generator (reversed phase sequence A-C-B)

Equivalent circuits: wound-rotor induction motor

- 1. When the motor is at standstill (i.e. *n*=0, *s*=1), it acts exactly like a conventional transformer. Assume a Y-connection for both the stator and rotor, and a turns ratio of 1:1. Consider the per-phase equivalent circuit:
 - $E_{\rm g}$: source voltage, line to neutral,
 - x_1, r_1 : stator leakage reactance and winding resistance
 - x_2, r_2 : rotor leakage reactance and winding resistance
 - $X_{\rm m}$, $R_{\rm m}$: magnetizing reactance and resistance modeling losses of iron, windage and friction
 - $R_{\rm x}$: external resistance, connecting one slip-ring to the neutral of the rotor

Note: I_0 may reach 40% of I_p due to the air gap between the stator and rotor (much bigger than the air gap between the P and S windings of a transformer), so we cannot eliminate the magnetizing branch.

 $R_{2} = r_{2} + R_{X}$ jsx2 \boldsymbol{r}_2 r_1 stator rotor 1 12 resistance resistance R_X external т $E_{\rm g}$ jX_{m} R_m 1:1 frequency sf frequency f

2. When the motor runs at a slip s, i.e. $n=(1-s)n_s$

 $|E_{2}| = |sE_{1}|, \quad |I_{2}| = |I_{1}|, \quad jx_{2} \to jsx_{2} \quad r_{2} \text{ and } R_{X} \text{ are the same}$ $I_{2} = \frac{E_{2}}{R_{2} + jsx_{2}} = \frac{|sE_{1}| \angle 0}{|R_{2} + jsx_{2}| \angle \beta} = \frac{|sE_{1}| \angle -\beta}{\sqrt{R_{2}^{2} + (sx_{2})^{2}}} \quad \beta = \arctan \frac{sx_{2}}{R_{2}}$

Note: the phasors on the primary side (E_1 and I_1) and the secondary side (E_2 and I_2) cannot be drawn in one phasor diagram because they have different frequencies

Phasor diagrams on the rotor and stator

- *I*₁ and *I*₂ have the same effective value even though they have different frequencies
 |*I*₁|=|*I*₂|
- sE_1 and E_2 have the same effective values $|sE_1| = |E_2|$
- E_1 leads I_1 and E_2 leads I_2 both by β

Figure 15.5

The voltage and current in the stator are separated by the same phase angle β , even though the frequency is different.

Figure 15.4

- a. Equivalent circuit of the rotor; *E*₂ and *I*₂ have a frequency *sf*.
- b. Phasor diagram showing the current lagging behind the voltage by angle β .

Simplified equivalent circuit: referred to the stator side

Note: The value of R_2/s will vary from R_2 to ∞ as the motor goes from start-up (s=1) to n_s (s=0)

• Total power absorbed by the motor: • Active power supplied to the rotor:

$$S = \frac{|E_g|^2}{R_m} + j\frac{|E_g|^2}{X_m} + |I_1|^2(r_1 + jx + \frac{R_2}{s})$$

$$P = \frac{|E_g|^2}{R_m} + |I_1|^2 r_1 + |I_1|^2 \frac{R_2}{s}$$

• Stator iron losses

 $P_f = |E_g|^2 / R_m$

• Stator copper losses

 $P_{is} = |I_1|^2 r_1$

$$P_r = |I_1|^2 R_2 / s$$

• Total I^2R losses in the rotor circuit

$$P_{jr} = |I_1|^2 R_2 = sP_r$$

• Mechanical power developed by the motor 1 c

$$P_m = P_r - P_{jr} = P_r(1-s) = |I_1|^2 \frac{1-s}{s} R_2$$

Torque developed by the motor

$$T = \frac{9.55P_m}{n} = \frac{9.55P_r(1-s)}{n_s(1-s)} = \frac{9.55P_r}{n_s}$$

Note: The torque only depends on P_r

