

• The curve is nearly linear between no-load and full-load because s is small and R_2/s is big (Z_1 is ignored)

$$I_1 \approx sE_g / R_2$$
 $T \approx \frac{9.55 |E_g|^2}{R_2 n_s^2} (n_s - n) = \frac{9.55 |E_g|^2}{R_2 n_s} s$

33

Two practical squirrel-cage induction motors

Motor rating:

5 hp, 60 Hz, 1800 r/min, 440 V, 3-phase full-load current: 7 A locked-rotor current: 39 A

- $r_1 = \text{stator resistance } 1.5 \ \Omega$
- $r_2 = \text{rotor resistance } 1.2 \ \Omega$
- jx = total leakage reactance 6 Ω
- $jX_{\rm m}$ = magnetizing reactance 110 Ω
- $R_{\rm m}$ = no-load losses resistance 900 Ω

(The no-load losses include the iron losses plus windage and friction losses.)

Figure 15.12

Equivalent circuit of a 5 hp squirrel-cage induction motor. Because there is no external resistor in the rotor, $R_2 = r_2$.

Motor rating:

5000 hp, 60 Hz, 600 r/min, 6900 V, 3-phase full-load current: 358 A locked-rotor current: 1616 A

- $r_1 = \text{stator resistance } 0.083 \ \Omega$
- $r_2 = rotor resistance 0.080 \Omega$
- jx = total leakage reactance 2.6 Ω
- $jX_{\rm m}$ = magnetizing reactance 46 Ω
- $R_{\rm m}$ = no-load losses resistance 600 Ω

The no-load losses of 26.4 kW (per phase) consist of 15 kW for windage and friction and 11.4 kW for the iron losses.

Figure 15.13

Equivalent circuit of a 5000 hp squirrel-cage induction motor. Although this motor is 1000 times more powerful than the motor in Fig. 15.12, the circuit diagram remains the same.

TABLE 15A

TORQUE-SPEED CHARACTERISTIC

Torque-Speed Curve: 5 hp motor

- When the motor is stalled, i.e. locked-rotor condition, the current is 5-6 times the full-load current, making *I*²*R* losses 25-36 times higher than normal, so the rotor must never remain locked for more than a few second
- Small motors (15 hp and less) develop their breakdown torque at about 80% of n_s

Torque-Speed Curve: 5000 hp motor

Big motors (>1500 hp) :

- Relatively low starting (locked-rotor) torque
- Breakdown torque at about 98% of n_s

• Rated *n* is close to n_s

Effect of rotor resistance (5 hp induction motor)

Effects of rotor resistance

• When $R_2 \uparrow$, starting (locked-rotor) torque $T_{LR} \uparrow$, starting current $I_{1,LR} \downarrow$, and breakdown torque T_b remains the same

$$T_{LR} = \frac{9.55 |E_g|^2 R_2}{|Z_1 + R_2|^2 n_s} \approx \frac{9.55 |E_g|^2}{|Z_1|^2 n_s} R_2 \quad I_{1,LR} = \frac{E_g}{Z_1 + R_2} \quad P_{jr} = |I_1|^2 R_2 \quad T_b = \frac{9.55 |E_g|^2}{4n_s |Z_1| \cos^2 \frac{\alpha}{2}}$$

- Pros & Cons with a high rotor resistance R_2
 - It produces a high starting torque T_{LR} and a relatively low starting current $I_{1,LR}$
 - However, because the torque-speed curve becomes flat it produces a rapid falloff in speed with increasing load around the rated torque, and the motor has high copper losses and low efficiency and tends to overheat
- Solution
 - For a squirrel-cage induction motor, design the rotor bars in a special way so that the rotor resistance R_2 is high at starting and low under normal operations
 - If the rotor resistance needs to be varied over a wide range, a wound-rotor motor needs to be used.

Asynchronous generator

Connect the 5 hp, 1800 r/min, 60Hz motor to a 440 V, 3-phase line and drive it at a speed of 1845 r/min

 $s=(n_s-n)/n_s=(1800-1845)/1800=-0.025 < 0$ $R_2/s=1.2/(-0.025)=-48\Omega < 0$

The negative resistance indicates the actual power flow from the rotor to the stator

Power flow from the rotor to the stator:

|E|= 440/1.73=254 V $|I_1|=|E|/|-48+1.5+j6|=254/46.88=5.42\text{ A}$ $P_r=|I_1|^2R_2/s=-1410 \text{ W} \text{ (in fact, rotor } \rightarrow \text{ stator)}$

Mech. power & torque inputs to the shaft:

 $P_{jr} = |I_1|^2 R_2 = 35.2 \text{ W}$ $P_m = P_r + P_{jr} = 1410 + 35.2 = 1445 \text{W}$ $T = 3 \times 9.55 \times P_m / n = 22.3 \text{ N} \cdot \text{m}$

Total active power delivered to the line:

 $P_{js} = |I_1|^2 r_1 = 44.1 \text{ W}, \quad P_f = |E|^2 / R_m = 71.1 \text{ W}$ $P_e = P_r - P_{js} - P_f = 1410 - 44.1 - 71.7 = 1294 \text{ W}$ $P_{3\phi} = 3P_e = 3882 \text{W}$

Reactive power absorbed from the line: $Q_{3\phi} = (|I_1|^2 x + |E|^2/X_m) \times 3 = (176 + 586) \times 3 = 2286 \text{ var}$ **Complex power delivered to the line:** $S_{3\phi} = P_{3\phi} - Q_{3\phi} = 3882 - j2286 \text{ VA}$ $\cos\theta = 86.2\%$

Efficiency of this asynchronous generator $\eta = P_e/P_m = 1294/1445 = 89.5\%$