ECE 325 – Electric Energy System Components 7- Synchronous Machines

Instructor: Kai Sun Fall 2016

Content

(Materials are from Chapters 16-17)

- Synchronous Generators
- Synchronous Motors

Types of Rotors

- Salient pole rotors
 - Have concentrated windings on poles and nonuniform air gap
 - Short axial length and large diameter to extract the maximum power from a waterfall
 - On hydraulic turbines operated at low speeds at 50-300 r/min (having a large number of poles)
 - Have a squirrel-cage windings (damper windings) embedded in the pole-faces to help damp out speed oscillations
- Cylindrical/round rotors
 - Distributed winding and uniform air gap
 - Large axial length and small diameter to limit the centrifugal forces
 - Steam and gas turbines, operated at high speeds, typically 1800-3600r/min (4 or 2-pole)
 - Eddy in the solid steal rotor gives damping effects
 - 70% of large synchronous generators (150~1500MVA)

16 poles salient-pole rotor (12 MW)

Round rotor generator under construction (Source: <u>http://emadrlc.blogspot.com</u>)

Main features of the stator

- Same as the stator of a 3-phase inductor motor
- The winding is always in Y connection with the neutral grounded (the voltage per phase only 1/1.73 or 58% of that in Δ connection)
- Factors affecting the size of synchronous generators: usually, a larger generator has
 - a larger capacity
 - a higher efficiency
 - a larger power output per kilogram (cheaper)
 - more serious cooling problems (higher power losses per unit surface area)

Stator winding of a hydor-unit

An employee of Siemens Charlotte Turbine-Generator Center in the Stator winding area inspects the coils

Field excitation and exciters

• Using a main exciter and a pilot exciter, the DC field excitation not only ensures a stable AC terminal voltage of the synchronous generator, but must also quickly respond to sudden load changes in order to maintain system stability.

Figure 16.1

Schematic diagram and cross-section view of a typical 500 MW synchronous generator and its 2400 kW dc exciter. The dc exciting current I_x (6000 A) flows through the commutator and two slip-rings. The dc control current I_c from the pilot exciter permits variable field control of the main exciter, which, in turn, controls I_x .

Brushless excitation

• Electronic rectifiers replace the commutator, slip-rings and brushes

Figure 16.8 Typical brushless exciter system.

Equivalent circuit of a 3-phase AC generator

Determining the value of X_s

- Open-circuit test:
 - Open stator terminals (I=0) and drive the generator at the rated speed
 - Raise exciting current I_X until the rated line-to-line voltage is attained.
 - Measure the corresponding $I_X = I_{Xn}$ and line-to-neutral voltage E_n
- Short-circuit test:
 - Reduce the excitation to 0 and short-circuit three stator terminals.
 - With the generator running at rated speed, gradually raise I_X to I_{Xn} .
 - Record current I_{SC} in the stator windings

If armature resistance *R* is ignorable:

$$X_S = E_n / I_{SC}$$

• **Per-unit** $X_{\rm S}$: $X_{\rm S}$ (pu) = $X_{\rm S}/Z_{\rm B}$ (usually in 0.8-2 pu) $Z_{\rm B} = E_{\rm B}^2/S_{\rm B}$ base impedance (line-to-neutral) of the generator [Ω] $E_{\rm B}$ = base voltage (line-to-neutral) [V] $S_{\rm B}$ = base power per phase [VA]

Synchronous generator connected to an isolated load

$$E_{o} = E_{X} + E = jX_{s}I + ZI$$

$$Z = |Z| \angle \theta \qquad PF = \cos \theta$$
Voltage Regulation = $\frac{|E_{NL}| - |E_{B}|}{|E_{B}|} \times 100$

 \mathbf{T}

 E_{NL} : no-load voltage (E_o) E_{B} : rated voltage (E_{n})

Figure 16.20 Phasor diagram for a lagging power factor load.

Figure 16.21 Phasor diagram for a leading power factor load.

Example 16-2

A 3-phase synchronous generator produces an open-circuit line voltage of 6928V when the DC exciting current is 50A. The AC terminals are then short-circuited, and the three line currents are found to be 800A

a. Calculate the synchronous reactance per phase

$$|E_{o}| = E_{oL}/1.73 = 6928/1.73 = 4000V$$

 $X_{S} = |E_{o}|/|I| = 4000/800 = 5 \Omega$

b. Calculate the terminal voltage if three 12 Ω resistors are connected in Y across the terminals

$$|Z| = \sqrt{R^2 + X_S^2} = 13 \Omega$$

 $|E| = |I|R = |E_0|R/|Z| = 4000 \times 12/13 = 3696 \text{ V}$
 $E_L = 1.73|E| = 6402 \text{ V}$

Example 16-3

A 30MVA, 15kV, 60Hz AC generator has a synchronous reactance X_S =1.2 pu and a winding resistance R= 0.02 pu. Calculate

a. Its base voltage, base power and base impedance

$$E_{\rm B} = E_{\rm L}/1.73 = 15000/1.73 = 8660 \text{ V}$$

 $S_{\rm B} = 30/3 = 10 \text{ MVA}$
 $Z_{\rm B} = E_{\rm B}^2/S_{\rm B} = 8600^2/10^7 = 7.5 \Omega$

b. The actual values of $X_{\rm S}$ and R per phase

$$X_{\rm S} = X_{\rm S}({\rm pu}) \times Z_{\rm B} = 1.2 \times 7.5 = 9 \ \Omega$$

 $R = R({\rm pu}) \times Z_{\rm B} = 0.02 \times 7.5 = 0.15 \ \Omega$

c. The total full-load copper losses

$$I(pu) = E(pu)/Z(pu) = 1/1 = 1 pu$$

 $P_{loss} = 3I^2R \times S_B = 3 \times 1 \times 0.02 \times 10 = 0.6 MW$