Example 16-4

A 36 MVA, 20.8 kV, 3-phase alternator has $X_{\rm S}$ =9 Ω and a nominal current of 1 kA. The no-load saturation curve gives the relationship between $E_{\rm o}$ and exciting current $I_{\rm X}$. If the excitation is adjusted so that terminal voltage E remains fixed at 20.8 kV, calculate the exciting current $I_{\rm X}$ required and draw the phasor diagram for conditions a-c:

a. No-load

 $E_o = E = 20.8/1.73 = 12 \text{ kV}$ $I_X = 100 \text{ A}$

b. Resistive load of 36 MW

$$P=36/3=12 \text{ MW}$$

$$Z=|E|^{2}/S^{*}=E^{2}/P=12\text{kV}^{2}/12\text{MW}=12 \Omega$$

$$I=E/Z=12000/12=1000\text{A}$$

$$E_{o}=E+jX_{s}I=12000+j9\times1000=15\text{kV}\angle 36.9^{\circ}$$

$$I_{X}=200 \text{ A}$$

c. Capacitive load of 12 Mvar

$$Q=-12/3=-4$$
Mvar
 $Z=|E|^2/S^*=E^2/(jQ)^*=-j12kV^2/4$ Mvar=-j36 Ω
 $I=E/Z=12000/(-j36)=j333$ A
 $E_0=E+jX_sI=12000+j9\times j333=9kV\angle 0^\circ$
 $I_X=70$ A

Synchronization of a generator

- Synchronous generators of a power system under normal operations are all synchronized
 - They all have the same frequency
- To connect a generator to a system (or a bigger generator)
 - 1. Adjust the **speed regulator** of the generator turbine so that the generator frequency is close to the system frequency
 - 2. Adjust the excitation of the generator so that generator voltage E_0 is equal to the system voltage E
 - 3. Observe the phase angle difference between E_0 and E by means a synchroscope
 - 4. Connect the generator at the moment the point crosses the 0 marker

Synchronous generator on an infinite bus

- An infinite bus is a system so powerful that it has constant voltage *E* and frequency, e.g. 60Hz, no matter what apparatus is connected to it.
- For a generator on an infinite bus, only the exciting current I_X and the mechanical torque T_m exerted by the turbine vary
- If $E_0 = E$ (having identical magnitudes and phases), then I=0, the generator delivers no power and it is said to **float** on the line
- If $E_o \neq E$, $E_x = E_o E$, $I = (E_o E)/(jX_s)$
 - Complex power from E_{o}

 $S_{o} = E_{o}I^{*} = E_{o}(E_{o} - E)^{*}/X_{s}^{*} = P_{o} + jQ_{o}$

- Complex power into the infinite bus $S=EI^*=E(E_0-E)^*/X_s^*=P+jQ$

$$P_o = P = \frac{|E_o| \cdot |E|}{X_S} \sin \delta$$

$$Q_o = \frac{|E_o|^2}{X_s} - \frac{|E_o||E|}{X_s} \cos \delta$$
$$Q = \frac{|E_o||E|}{X_s} \cos \delta - \frac{|E|^2}{X_s}$$

Effect of varying the exciting current

Figure 16.26b

Over-excited generator on an infinite bus.

Figure 16.26c

Under-excited generator on an infinite bus.

When E_0 and E are in phase

- There is always $P_0 = P = 0$
- If $|E_o| > |E|$, the generator is over-excited and supplies reactive power to the infinite bus (it looks like an inductor)
- If $|E_o| < |E|$, the generator is under-excited and absorbs reactive power from the infinite bus (it looks like a capacitor)

Effect of varying the mechanical torque $E_{\mathbf{o}}$ - E 5Ω E, 4 k V T_m turbine / = 800 A +12 kV infinite bus E_{o} E T_e δ = **19.2°** 90 E 12 kV

- Starting from $E_0 = E$ (the generator floats on the line) and keeping $|E_0| = |E|$
 - Open the steam value of the turbine to increase the mechanical torque T_m
 - The rotor will accelerate, and phasor E_0 will lead phasor E by $\delta > 0$
 - With the increase of δ , power output of the generator $P=|E|^2\sin\delta/X_s$ will increase, which exerts an increasing electric torque $T_e=9.55P/n$
 - Once $T_m = T_e$, the rotor will stop accelerating, δ will become constant and the generator will again run at synchronous speed
 - What is the direction of Q?
 - What is the angle of *I*?

$$Q = -Q_o = \frac{|E|^2}{X_s} (\cos \delta - 1)$$

(coming from both E_0 and E)

(leading E and lagging E_o by the same angle)

Control of active power

Figure 11.1 Generator supplying isolated load

- A synchronous generator has a governor to control its speed
- A sensitive governor may detect a speed change of 0.01% to modify the valve/gate opening of the turbine so as to maintain an almost constant speed
- A large power system has a computer program called Automatic Generation Control (AGC) to control the active power and frequency of the entire system
- Each synchronous generator has over- and under-speed protections responding to abnormal frequency

How much frequency deviates in a power grid

- Under normal conditions, frequency in a large Interconnected power system (e.g. the Eastern Interconnection) varies approximately ±0.03Hz from the scheduled value
- Under abnormal events, e.g. loss of a large generator unit, frequency experiences larger deviations.

Transient reactance

- For a sudden load current change such as a short-circuit, X_s is replaced by a dynamic reactance X' whose value varies with time
 - X' drops to a much lower value X'_d (called transient reactance, e.g. at $0.15X_S$)
 - The initial short-circuit current is much higher than the rated current

 $I_{SC} = E_{o} / X'_{d} >> E_{o} / X_{S}$

- After a time interval T (typically, <10s), X' basically goes back to X_S
- A short-circuit must be interrupted in 3-6 cycles by circuit breakers
- Learn Example 16-8

Figure 16.30

Variation of generator reactance following a shortcircuit.