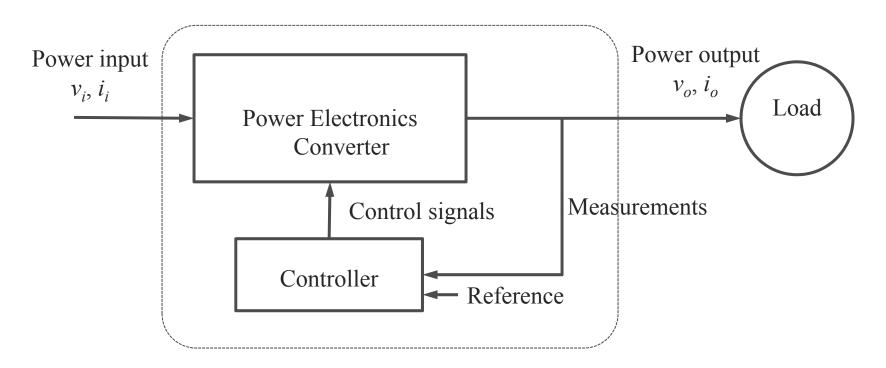
ECE 325 – Electric Energy System Components 8- Fundamental Elements of Power Electronics

Instructor: Kai Sun Fall 2016

Content

(Selected materials from Chapter 21)

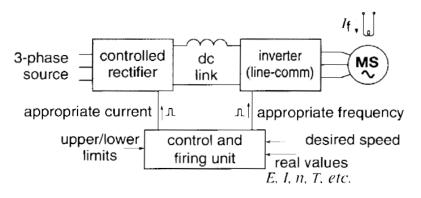

• Power semiconductor switches

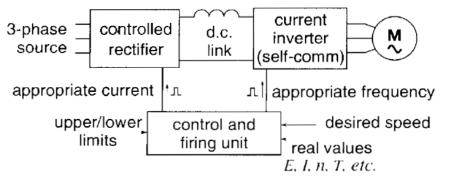
-Diodes, thyristors, etc.

- DC-to-DC switching converters
- DC-to-AC switching converters

Introduction

- A power electronics system is to process and control the flow of electric energy by supplying voltages and currents in a form that optimally suits the loads
- A typical power electronics (PE) system:


Applications of PE converters


- For DC voltage or current, a PE converter can regulate the magnitude at a desired level or adjust the magnitude to a desired level
- For AC voltage or current, a PE converter can adjust the magnitude and frequency and change the number of phases
- Applications:
 - Switched-mode (DC) power supplies
 - Uninterrupted power supplies (UPS)
 - Adjustable speed motor drives
 - High-voltage DC transmission (HVDC)
 - Battery-based utility energy storage
 - Electric vehicles (EVs) and hybrid electric vehicles (HEVs)
 - Renewable energy integration, e.g. solar PV and wind generation

Classification of PE converters

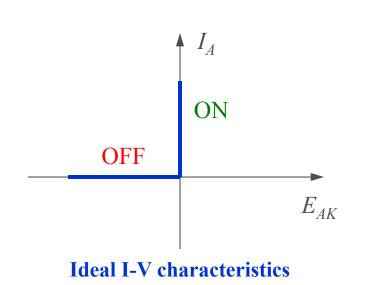
Four types of PE converters	Examples of application
DC-to-DC (boost up/step down):	Power supplies for electronic devices
DC-to-AC (inverter, to 1-phase or 3-phase AC)	The battery (discharging) and solar PV interfaces to the power grid
AC-to-DC (rectifier)	The battery (charging) interface to the power grid and power adapters for electronic devices
AC-to-AC	Variable-speed motor drive

• Two examples of variable-speed motor drives

Figure 23.3

Variable-speed synchronous motor drive using a controlled rectifier and a line-commutated inverter fed from a dc link current source (see Section 23.2).

Figure 23.5


Variable-speed drive using a controlled rectifier and a self-commutated inverter fed from a dc link current source (see Section 23.9).

Power semiconductor switches

- Power semiconductor switches are the key functional components in a PE converter; other components are such as resistors, inductors and capacitors.
- Two states: ON (conducting) and OFF (open-circuit)
- Three types of power semiconductor devices in terms of the controllability
 - Diodes: their ON and OFF states are controlled by the polarity and magnitude of its voltage and the magnitude of its current.
 - Thyristors: they are turned ON by a control signal and turned OFF when its current goes to zero
 - Controllable switches: both ON and OFF states are controllable by control signals

Ideal Diode

- 2 terminals: A (anode) and K (cathode)
- It starts to conduct (ON) as long as the voltage E_{AK} becomes >0 (forward biased) (a)
- When ON, it has zero voltage drop
- When E_{AK} becomes <0 (reverse biased), it turns OFF and has no leakage current
- Both ON and OFF switches are instantaneous

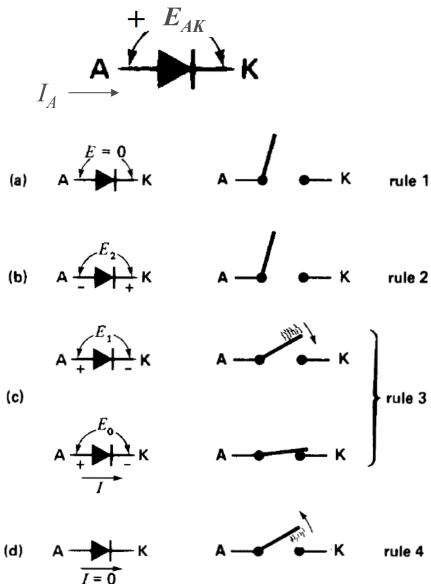
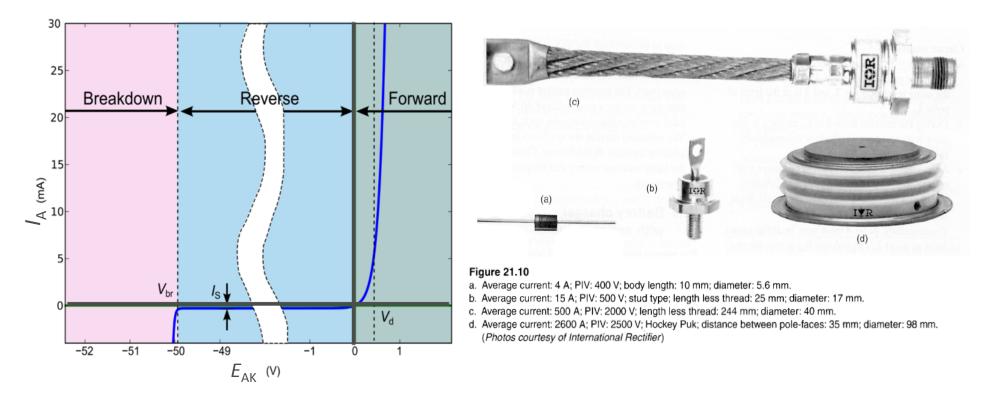



Figure 21.9 Basic rules governing diode behavior.

Practical Diodes

Real I-V Characteristics

- When a diode is forward biased with a voltage V_d about 0.7V or more is applied, it acts like a closed switch with a negligible voltage drop <1.5V.
- When a diode is reverse biased, it has a negligible current I_S flowing through
- At very large reverse bias, beyond its peak inverse voltage (V_{br} =50 to 4000V), the diode breaks down, begins to conduct in reverse and is usually damaged