## Thyristors

- Usually referred to semiconductor/silicon controlled rectifier (SCR)
- 3 terminals: A (anode), K (cathode) and G (gate)
- A thyristor behaves like a diode except that the instant of conduction can be controlled by " G "; that enables converting DC to AC
- Two conditions to conduct

1. $E_{\mathrm{AK}}>0$
2. Positive current $I_{g}$ flows into "G" for at least a few microseconds

- Once conduction starts, "G" will lose control and conduction will continue until the current $I_{A}$ into "A" falls to zero
- If " $G$ " and " $K$ " are short-circuited, the thyristor is blocked
- A thyristor is partially controllable


Real I-V characteristics

## Principles of gate firing


(a)

(b)

- We can control the current in an AC circuit by delaying the gate (G) pulses with respect to the start of each positive half-cycle.
- If the pulses occur at the very beginning of each half-cycle, conduction lasts for $180^{\circ}$ like a diode
- If the pulses are delayed by $\theta$, current only flows during the remaining $180^{\circ}-\theta$


## Controllable power semi-conductor switches

- Examples:
- GTO (Gate-turn-off thyristor)
- IGBT (Insulated gate bipolar transistor)
- BJT (Bipolar junction transistor)
- MOSFET (Metal-oxide-semiconductor field effect transistor)
- Ideal switch
- Vanishingly small power required from the control signal to trigger the switch
- Switch between ON and OFF instantaneously when triggered by the control signal
- When OFF, block arbitrarily large forward and reverse voltages with zero current flow
- When ON, conduct arbitrarily large currents with zero voltage drop



## Controllable power semi-conductor switches (cont'd)

## - Real switches:

- Requiring control power for switches (the less control power the simpler the control circuit)
- Limited switching frequency
- Have OFF-state leakage current
- Have ON-state voltage (relevant to conducting losses)
- Limited forward- \& reverse-voltage blocking capability (the higher voltage blocking capability, the fewer switches in series)
- Limited ON-state current rating (the higher current rating, the fewer switches in parallel)
- Limited $d E / d t$ and $d I / d t$ ratings (requiring additional circuit to limit $|E I|)$


Switch control signal


## Step-down DC-to-DC converter (buck chopper)

- Voltage step-up/step-down in AC systems can easily be done with a transformer, but in DC systems, a DC-to-DC switching converter is required using a different approach
- To transfer power from a high-voltage DC source $E_{\mathrm{S}}$ to a lower-voltage DC load $E_{\mathrm{o}}$, one solution is to connect them by an inductor and to open and close the circuit periodically
- When the switch closes, energy is transferred from $E_{S}$ to $E_{0}$ during time of closure $T_{1}$

$$
\begin{array}{ll}
E_{S}-E_{o}=L \frac{d i}{d t} & i=\frac{E_{S}-E_{o}}{L} t \\
I_{a} \triangleq i\left(T_{1}\right)=\frac{E_{S}-E_{o}}{L} T_{1} & W=\frac{1}{2} L I_{a}^{2}
\end{array}
$$

- When the switch opens, magnetic energy $W$ stored in the inductor is dissipated in the arc across the switch, so efficiency of power transfer is poor



## Basic 1-Quadrant DC-to-DC converter

- Add an diode in order to deliver energy $W$ to load $E_{\mathrm{o}}$ also when the switch opens:

$$
L \frac{d i}{d t}+E_{o}=0 \quad \square i-I_{a}=-\frac{E_{o}}{L} t
$$

If $i$ takes $T_{2}$ to become zero

$$
I_{a}=\frac{E_{o}}{L} T_{2}
$$



$$
I_{a}=\frac{E_{S}-E_{o}}{L} T_{1} \quad \square \quad \mathrm{~A}+=\mathrm{A}-
$$

(from previous the slide)

- The inductor absorbs energy at a relatively high voltage $\left(E_{S}-E_{o}\right)$ and delivers it at a lower voltage $E_{o}$
- This circuit enables us to transfer energy without incurring any losses
- In reality, the mechanical switch is replaced by a controllable semi-conductor switch (GTO, MOSFET or IGBT).



## Rapid switching

- Open and close the switch rapidly so that the current increases and decreases in a narrow range between $I_{a}$ and $I_{b}$
- When the current falls to $I_{b}$ (after $T_{b}$ ), the switch recloses
- When the current rises to $I_{a}\left(\right.$ after $\left.T_{a}\right)$, the switch reopens
- Duty cycle:

$$
D=T_{a} /\left(T_{a}+T_{b}\right)=T_{a} / T<1
$$

- Average DC current to the load:

$$
I_{\mathrm{o}}=\left(I_{a}+I_{b}\right) / 2
$$

- Average DC current from the source:

$$
I_{S}=I_{0}\left(T_{a} / T\right)=I_{0} D \quad \Rightarrow I_{o}=I_{S} / D
$$

- If there is no power loss

$$
E_{S} I_{S}=E_{0} I_{0}=E_{o} I_{S} / D \Rightarrow E_{0}=D E_{S}
$$

DC output voltage can simply be controlled by varying the duty cycle

- See Example 21-11


Figure 21.60a
Currents in a chopper circuit.

$$
I_{a}-I_{b}=\frac{E_{S}-E_{o}}{L} T_{a}=\frac{E_{o}}{L} T_{b}
$$



Figure 21.60b
Current in the load.


Figure 21.60c
Current pulses provided by the source.

## Impedance transformation

Duty cycle $D<1$

$$
I_{o}=I_{S} / D \quad E_{0}=D E_{S}
$$

$$
R_{o}=E_{o} / I_{o}
$$



$$
R_{S}=E_{S} / I_{S}=\left(E_{o} / D\right) /\left(I_{o} D\right)
$$

$$
=R_{o} / D^{2}
$$

Figure 21.62
A chopper can make a fixed resistor $R_{0}$ appear as a variable resistance between terminals 1-2.

- The 1-quadrant DC-to-DC converter can transform the resistance of a fixed resistor to a higher value depending on $D$.
- It behaves like a DC transformer whose turns ratio is $D$
- Unlike a transformer, which allows power to flow bi-directionally, a step-down chopper can transfer power only from the high-voltage side to the low-voltage side
- See Example 21-12


## Basic 2-quadrant DC-to-DC converter



- Consider two mechanical switches S 1 and S 2 that open and close alternatively
- Within the time of a cycle $T=T_{a}+T_{b}, \mathrm{~S} 1$ is closed for $T_{a}$ and S 2 is closed for $T_{b}$
- S1 has duty cycle $D=T_{a} / T$ and S 2 has duty cycle $T_{b} / T=(1-D)$
- Output voltage $E_{12}$ fluctuates between $E_{H}$ and 0 , having the average DC output

$$
E_{L}=D E_{H} \quad(\text { variable by varying } D)
$$

## - 2-quadrant converter:

- Specific voltage polarity: Terminal 1 is always $(+)$ with respect to terminal 2
- Bidirectional current: current and power can flow from $E_{H}$ to $E_{L}$, or vice versa since current always circulate through either S1 or S2
- Assume the load to be a battery $E_{o}$ with internal resistance $R$
- Use inductor $L$ as a buffer between the fluctuating $E_{12}$ and constant $E_{o}$

Average current $I_{L}=\left(E_{L}-E_{o}\right) / R$

- If average DC voltage $E_{L}=E_{o}$, then $I_{L}=0$ and no dc power exchange happens
- Step-down chopper (buck mode):
- If $E_{L}>E_{o}$, power $=\left|E_{L} I_{L}\right|$ flows to $E_{o}$
- Step-up chopper (boost mode):
- If $E_{L}<E_{o}$, power $=\left|E_{L} I_{L}\right|$ flows to $E_{H}$
- In reality, mechanical switches S1 and S2 are replaced by semi-conductor switches Q1 and Q2 each with a diode placed in antiparallel for bi-directional currents
- Q1 and Q2 cannot be closed at the same time to avoid a short-circuit across $E_{H}$; in each half cycle, they both open for a very brief dead time (zero current from $E_{H}$ ) for a safety margin
- See Example 21-13


Figure 21.64
Power can flow from $E_{H}$ to $E_{O}$ and vice versa.


Figure 21.69
Two-quadrant electronic converter.

## Output voltage ripple filter

- A LC low-pass filter is applied to create almost flat DC output voltage $E_{o}$
- Ripples only appear in $I_{L}$, not $I_{\text {o }}$



Figure 21.73
Four-quadrant dc-to-dc converter feeding a passive dc load $R$.

$$
f_{L C}=\frac{1}{2 \pi \sqrt{L C}} \ll f=\frac{1}{T}
$$

$$
\Delta I_{L}=\frac{E_{o}}{L} T_{b}=\frac{E_{o}}{L}(1-D) T
$$

$$
\Delta Q=\int I_{c} d t=\frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T}{2}=\frac{\Delta I_{L} T}{8}=\frac{E_{o}}{8 L}(1-D) T^{2}
$$

$$
\frac{\Delta E_{o}}{E_{o}}=\frac{\Delta Q}{C E_{o}}=\frac{(1-D) T^{2}}{8 L C}=\frac{\pi^{2}(1-D)}{2}\left(\frac{f_{L C}}{f}\right)^{2} \approx 0
$$

## 4-quadrant DC-to-DC converter

- It consists of two identical 2-quadrant converters having the same switching frequency, e.g. 100 kHz


## - Switching rules:

- Q1 and Q2 on arm A open and close alternately
- Q3 and Q4 on arm B open and close alternately
- Q1 and Q4 open and close simultaneously (duty cycle D)
- Q2 and Q3 open and close simultaneously (duty cycle 1-D)


## - 4-quadrant:

- $E_{L L}$ changes between $-E_{H}$ and $+E_{H}$
- The DC current flow of the load between A and B is bidirectional


$$
\begin{aligned}
& E_{A 2}=D E_{H} \quad E_{B 2}=(1-D) E_{H} \\
& E_{L L}=E_{A 2}-E_{B 2}=(2 D-1) E_{H}
\end{aligned}
$$



Figure 21.71
Voltage output when $D=0.5$. The average voltage is zero.


Figure 21.72
Voltage output when $D=0.8$. The average voltage $E_{L L}$ is $0.6 E_{\mathrm{H}}$.

