Thyristors

- Usually referred to semiconductor/silicon controlled rectifier (SCR)
- 3 terminals: A (anode), K (cathode) and G (gate)
- A thyristor behaves like a diode except that the instant of conduction can be controlled by "G"; that enables converting DC to AC
- Two conditions to conduct
 - 1. $E_{AK} > 0$
 - 2. Positive current I_g flows into "G" for at least a few microseconds
- Once conduction starts, "G" will lose control and conduction will continue until the current I_A into "A" falls to zero
- If "G" and "K" are short-circuited, the thyristor is blocked
- A thyristor is partially controllable

 I_{g}

Real I-V characteristics

Principles of gate firing

- We can control the current in an AC circuit by delaying the gate (G) pulses with respect to the start of each positive half-cycle.
 - If the pulses occur at the very beginning of each half-cycle, conduction lasts for 180° like a diode
 - If the pulses are delayed by θ , current only flows during the remaining 180°- θ

Controllable power semi-conductor switches

• Examples:

- GTO (Gate-turn-off thyristor)
- **IGBT** (Insulated gate bipolar transistor)
- **BJT** (Bipolar junction transistor)
- MOSFET (Metal-oxide-semiconductor field effect transistor)

• Ideal switch

- Vanishingly small power required from the control signal to trigger the switch
- Switch between ON and OFF instantaneously when triggered by the control signal
- When OFF, block arbitrarily large forward and reverse voltages with zero current flow
- When ON, conduct arbitrarily large currents with zero voltage drop

Controllable power semi-conductor switches (cont'd)

- Real switches:
 - Requiring control power for switches (the less control power the simpler the control circuit)
 - Limited switching frequency
 - Have OFF-state leakage current
 - Have ON-state voltage (relevant to conducting losses)
 - Limited forward- & reverse-voltage blocking capability (the higher voltage blocking capability, the fewer switches in series)
 - Limited ON-state current rating (the higher current rating, the fewer switches in parallel)
 - Limited *dE/dt* and *dI/dt* ratings (requiring additional circuit to limit |*EI*|)

Step-down DC-to-DC converter (buck chopper)

- Voltage step-up/step-down in AC systems can easily be done with a transformer, but in DC systems, a DC-to-DC switching converter is required using a different approach
- To transfer power from a high-voltage DC source $E_{\rm S}$ to a lower-voltage DC load $E_{\rm o}$, one solution is to connect them by an inductor and to open and close the circuit periodically
 - When the switch closes, energy is transferred from E_S to E_0 during time of closure T_1

$$E_{S} - E_{o} = L \frac{di}{dt}$$
 $i = \frac{E_{S} - E_{o}}{L}t$

$$I_a \triangleq i(T_1) = \frac{E_s - E_o}{L} T_1 \qquad W = \frac{1}{2} L I_a^2$$

 When the switch opens, magnetic energy W stored in the inductor is dissipated in the arc across the switch, so efficiency of power transfer is poor

Basic 1-Quadrant DC-to-DC converter

• Add an diode in order to deliver energy W to load E_0 also when the switch opens:

Rapid switching

- Open and close the switch rapidly so that the current increases and decreases in a narrow range between I_a and I_b
 - When the current falls to I_b (after T_b), the switch recloses
 - When the current rises to I_a (after T_a), the switch reopens
- Duty cycle:

 $D = T_a / (T_a + T_b) = T_a / T < 1$

- Average DC current to the load: $I_0 = (I_a + I_b)/2$
- Average DC current from the source: $I_{S} = I_{o}(T_{a}/T) = I_{o}D \implies I_{o} = I_{S}/D$
- If there is no power loss

 $E_S I_S = E_o I_o = E_o I_S / D \implies E_o = D E_S$

DC output voltage can simply be controlled by varying the duty cycle

• See Example 21-11

Figure 21.60a Currents in a chopper circuit.

Figure 21.60b Current in the load.

Figure 21.60c Current pulses provided by the source.

Impedance transformation

Duty cycle D < 1 $I_o = I_S / D$ $E_o = DE_S$

 $R_o = E_o / I_o$ $R_S = E_S / I_S = (E_o / D) / (I_o D)$ $= R_o / D^2$

Figure 21.62 A chopper can make a fixed resistor R_0 appear as a variable resistance between terminals 1-2.

- The 1-quadrant DC-to-DC converter can transform the resistance of a fixed resistor to a higher value depending on *D*.
 - It behaves like a DC transformer whose turns ratio is *D*
 - Unlike a transformer, which allows power to flow bi-directionally, a step-down chopper can transfer power only from the high-voltage side to the low-voltage side
- See Example 21-12

Basic 2-quadrant DC-to-DC converter

• Consider two mechanical switches S1 and S2 that open and close alternatively

- Within the time of a cycle $T=T_a+T_b$, S1 is closed for T_a and S2 is closed for T_b
- S1 has duty cycle $D=T_a/T$ and S2 has duty cycle $T_b/T=(1-D)$
- Output voltage E_{12} fluctuates between E_H and 0, having the average DC output

 $E_L = DE_H$ (variable by varying D)

• 2-quadrant converter:

- **Specific voltage polarity**: Terminal 1 is always (+) with respect to terminal 2
- **Bidirectional current**: current and power can flow from E_H to E_L , or vice versa since current always circulate through either S1 or S2

- Assume the load to be a battery E_o with internal resistance R
- Use inductor *L* as a buffer between the fluctuating E_{12} and constant E_o

Average current $I_L = (E_L - E_o)/R$

- If average DC voltage $E_L = E_o$, then $I_L = 0$ and no dc power exchange happens
- Step-down chopper (buck mode):
 - If $E_L > E_o$, power= $|E_L I_L|$ flows to E_o
- Step-up chopper (boost mode):

- If $E_L \leq E_o$, power= $|E_L I_L|$ flows to E_H

- In reality, mechanical switches S1 and S2 are replaced by semi-conductor switches Q1 and Q2 each with a diode placed in antiparallel for bi-directional currents
- Q1 and Q2 cannot be closed at the same time to avoid a short-circuit across E_H ; in each half cycle, they both open for a very brief **dead time** (zero current from E_H) for a safety margin
- See Example 21-13

Figure 21.69 Two-quadrant electronic converter.

Output voltage ripple filter

- A LC low-pass filter is applied to create almost flat DC output voltage E_o
- Ripples only appear in I_L , not $I_{o.}$

Figure 21.73

Four-quadrant dc-to-dc converter feeding a passive dc load *R*.

$$f_{LC} = \frac{1}{2\pi\sqrt{LC}} \ll f = \frac{1}{T}$$

$$\Delta I_L = \frac{E_o}{L} T_b = \frac{E_o}{L} (1 - D)T$$

$$\Delta Q = \int I_c dt = \frac{1}{2} \frac{\Delta I_L}{2} \frac{T}{2} = \frac{\Delta I_L T}{8} = \frac{E_o}{8L} (1 - D)T^2$$

$$\frac{\Delta E_o}{E_o} = \frac{\Delta Q}{CE_o} = \frac{(1-D)T^2}{8LC} = \frac{\pi^2(1-D)}{2} \left(\frac{f_{LC}}{f}\right)^2 \approx 0$$

4-quadrant DC-to-DC converter

- It consists of two identical 2-quadrant converters having the same switching frequency, e.g. 100kHz
- Switching rules:
 - Q1 and Q2 on arm A open and close alternately
 - Q3 and Q4 on arm B open and close alternately
 - Q1 and Q4 open and close simultaneously (duty cycle D)
 - Q2 and Q3 open and close simultaneously (duty cycle 1-D)

• 4-quadrant:

- E_{LL} changes between $-E_H$ and $+E_H$
- The DC current flow of the load between A and B is bidirectional

Figure 21.71 Voltage output when D = 0.5. The average voltage is zero.

$$E_{LL} = E_{A2} - E_{B2} = (2D - 1)E_H$$

Figure 21.72 Voltage output when D = 0.8. The average voltage E_{LL} is 0.6 E_{H} .