## DC-to-AC rectangular wave converter


$E_{L L}=\frac{400}{\pi}\left[\sin (2 \pi f t)+\frac{1}{3} \sin (6 \pi f t)+\frac{1}{5} \sin (10 \pi f t)+\ldots\right]$


- The 4-quadrant converter with $D=0.5$ is able to transform a DC voltage $E_{\mathrm{H}}$ into a rectangular AC voltage $\pm E_{\mathrm{H}}$, which contains a fundamental sinusoidal component having an amplitude of $1.27 E_{\mathrm{H}}$ and an effective value of $1.27 E_{\mathrm{H}} / \sqrt{ } 2=0.90 E_{\mathrm{H}}$
- It is bidirectional (DC-to-AC and AC-to-DC) and frequency-variable
- The output has a fixed amplitude and large $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ harmonics.


## PWM (pulse width modulation)

- 4-quadrant DC-to-DC converter using a carrier frequency $f_{\mathrm{c}}$ and different values of $D$

(b) $D=0.8 \quad E_{\mathrm{LL}}=+0.6 E_{\mathrm{H}}$
(a)

(c) $D=0.5 \quad E_{\mathrm{LL}}=0$

(d) $D=0.2 \quad E_{\mathrm{LL}}=-0.6 E_{\mathrm{H}}$
- To obtain $E_{\mathrm{LL}}(t)=E_{\mathrm{m}} \sin (2 \pi f t+\theta)$,

$$
D(t)=\frac{E_{m}}{2 E_{H}} \sin (2 \pi f t+\theta)+\frac{1}{2}
$$

## DC-to-AC non-sine wave converters with PWM

- With $D$ varying periodically between 0.8 and 0.2 at a frequency $f<0.1 f_{c}$
- Although $f_{\mathrm{c}}$ is fixed, the ON/OFF pulse widths change continually with $D$.
- That is why this type of switching is called pulse width modulation or PWM



## DC-to-AC sine wave converter with PMW

- To obtain $E_{\mathrm{LL}}(t)=E_{\mathrm{m}} \sin (2 \pi f t+\theta)$

$$
D(t)=\frac{E_{m}}{2 E_{H}} \sin (2 \pi f t+\theta)+\frac{1}{2}
$$

Amplitude modulation ratio $m=E_{\mathrm{m}} / E_{\mathrm{H}}$

Frequency modulation ratio $m_{\mathrm{f}}=f_{\mathrm{c}} / f=T / T_{\mathrm{c}}$

- Create a 83.33 Hz sine voltage wave with peak value $E_{m}=100 \mathrm{~V}$ using a DC-to-AC converter with $E_{\mathrm{H}}=200 \mathrm{~V}$ and $f_{c}=1000 \mathrm{~Hz}$ :

$$
T=1 / 83.33=0.012 \mathrm{~s}=12000 \mu \mathrm{~s}
$$

$$
T_{\mathrm{c}}=1 / 1000=1000 \mu \mathrm{~s}
$$

$m_{\mathrm{f}}=T / T_{\mathrm{c}}=12$, so each $T_{\mathrm{c}}$ covers $360 / 12=30^{\circ}$
Calculate $D$ for $\phi(t)=2 \pi f t+\theta=0^{\circ}, 30^{\circ}, 60^{\circ}, \ldots$, which correspond to $E_{\mathrm{LL}}=100 \sin \phi(\mathrm{~V})$
In each carrier period $T_{\mathrm{c}}$, Q1\&Q4 are ON for first $D T_{\mathrm{c}}=1000 D(\mu \mathrm{~s})$ and then $\mathrm{Q} 2 \& \mathrm{Q} 3$ are ON for the remaining $(1-D) T_{c}=1000(1-D)(\mu \mathrm{s})$


Figure 21.82
Positive half-cycle of the fundamental 83.33 Hz voltage comprises six carrier periods of 1 ms each.

| TABLE 21E | GENERATING A SINE WAVE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| angle <br> $[\mathrm{deg}]$ | $E_{\mathrm{LL}}$ | $[\mathrm{V}]$ | $D$ | Q1. Q4 on <br> $[\mu \mathrm{s}]$ | Q2, Q3 on <br> $[\mu \mathrm{s}]$ |
| 0 | 0 | 0.5 | 500 | 500 | interval |
| 30 | 50 | 0.625 | 625 | 375 | B |
| 60 | 86.6 | 0.716 | 716 | 284 | C |
| 90 | 100 | 0.75 | 750 | 250 | D |
| 120 | 86.6 | 0.716 | 716 | 284 | E |
| 150 | 50 | 0.625 | 625 | 375 | F |
| 180 | 0 | 0.5 | 500 | 500 | G |
| 210 | -50 | 0.375 | 375 | 625 | H |
| 240 | -86.6 | 0.284 | 284 | 716 | I |
| 270 | -100 | 0.250 | 250 | 750 | J |
| 300 | -86.6 | 0.284 | 284 | 716 | K |
| 330 | -50 | 0.375 | 375 | 625 | L |
| 360 | 0 | 0.5 | 500 | 500 | M |

## Bipolar PWM and Unipolar PWM



Figure 21.83
Alternative $(+)$ and $(-)$ pulses contain the sinusoidal component.


Figure 21.84
Sequential ( + ) and ( - ) pulses contain the sinusoidal components.

- Once the carrier frequency is filtered out, the resulting voltage will be sinusoidal
- A higher carrier frequency would yield a better sinusoidal waveform but would increase the power losses of the electronic switches, e.g. IGBTs


## 3-phase, 6-pulse thyristor rectifier (AC-to-DC converter)

- Control the DC output voltage $E_{\mathrm{d}}$ by the delay angle $\alpha$ of triggering pulses




## Homework Assignment \#8

- Read Chapter 21
- Questions:
- 21-25, 21-26, 21-33, 21-34, 21-35
- Due date:
- hand in your solution to GTA Wenyun at MK 207 directly or by email before the end of $11 / 29$ (Tuesday)

