DC-to-AC rectangular wave converter

- The 4-quadrant converter with D=0.5 is able to transform a DC voltage $E_{\rm H}$ into a rectangular AC voltage $\pm E_{\rm H}$, which contains a fundamental sinusoidal component having an amplitude of $1.27E_{\rm H}$ and an effective value of $1.27E_{\rm H}/\sqrt{2}=0.90E_{\rm H}$
- It is bidirectional (DC-to-AC and AC-to-DC) and frequency-variable
- The output has a fixed amplitude and large 3rd, 5th and 7th harmonics.

PWM (pulse width modulation)

• 4-quadrant DC-to-DC converter using a carrier frequency f_c and different values of D

DC-to-AC non-sine wave converters with PWM

- With *D* varying periodically between 0.8 and 0.2 at a frequency $f < 0.1 f_c$
- Although f_c is fixed, the ON/OFF pulse widths change continually with D.
- That is why this type of switching is called *pulse width modulation* or PWM

DC-to-AC sine wave converter with PMW

• To obtain $E_{LL}(t) = E_{m} \sin(2\pi f t + \theta)$

$$D(t) = \frac{E_m}{2E_H} \sin(2\pi f t + \theta) + \frac{1}{2}$$

Amplitude modulation ratio $m=E_{\rm m}/E_{\rm H}$ Frequency modulation ratio $m_{\rm f}=f_{\rm c}/f=T/T_{\rm c}$

• Create a 83.33Hz sine voltage wave with peak value E_m =100V using a DC-to-AC converter with $E_{\rm H}$ =200V and f_c =1000Hz:

T=1/83.33=0.012s=12000µs

 $T_{\rm c} = 1/1000 = 1000 \,\mu s$

 $m_{\rm f} = T/T_{\rm c} = 12$, so each $T_{\rm c}$ covers 360/12=30°

Calculate *D* for $\phi(t)=2\pi ft+\theta=0^{\circ}, 30^{\circ}, 60^{\circ}, ...,$ which correspond to $E_{LL}=100\sin\phi$ (V)

In each carrier period T_c , Q1&Q4 are ON for first $DT_c = 1000D(\mu s)$ and then Q2&Q3 are ON for the remaining $(1-D)T_c = 1000(1-D) (\mu s)$

Figure 21.82

Positive half-cycle of the fundamental 83.33 Hz voltage comprises six carrier periods of 1 ms each.

TABLE 21E GENERATING A SINE WAVE

angle [deg]	E _{LL} [V]	D	Q1, Q4 on [µs]	Q2, Q3 on [µs]	interval
0	0	0.5	500	500	A
30	50	0.625	625	375	В
60	86.6	0.716	716	284	С
90	100	0.75	750	250	D
120	86.6	0.716	716	284	Е
150	50	0.625	625	375	F
180	0	0.5	500	500	G
210	-50	0.375	375	625	Н
240	-86.6	0.284	284	716	Ι
270	-100	0.250	250	750	J
300	-86.6	0.284	284	716	К
330	-50	0.375	375	625	L
360	0	0.5	500	500	Μ

Bipolar PWM and Unipolar PWM

Figure 21.83

Alternative (+) and (-) pulses contain the sinusoidal component.

- Once the carrier frequency is filtered out, the resulting voltage will be sinusoidal
- A higher carrier frequency would yield a better sinusoidal waveform but would increase the power losses of the electronic switches, e.g. IGBTs

3-phase, 6-pulse thyristor rectifier (AC-to-DC converter)

Homework Assignment #8

- Read Chapter 21
- Questions:
 - -21-25, 21-26, 21-33, 21-34, 21-35
- Due date:
 - hand in your solution to GTA Wenyun at MK 207 directly or by email before the end of 11/29 (Tuesday)