ECE 325, Fall 2016, Test 2

Problem 1 (12 points, 3 points each): True or False?
a. Like the electrical conductivity σ of a conducting material, the permeability μ of a magnetic material is also a constant. Not constant
b. When a source delivers electric power through a transformer to a load of unity power factor, the voltage regulation of the transformer is positive.
c. If a transmission line increases its length, R, X_{L} and X_{C} of its equivalent lumped circuit will all increase. X_{C} decreases since C increases
d. An inductive line having reactance of X delivers power to a load that is resistor of $R=X / 2$. If R decreases, the line will deliver more power to the load. Once R decreases beyond the "nose" point (where $R=X$), power decreases.

Problem 2 (9 points) A stationary conductor AB is placed in a rotating magnetic field. At the instant show in the figure, circle the correct statement(s):

1) The current induced in the conductor is from A to B.
2) The force on the conductor is to the right.
3) The force on the moving S pole is to the left.

Problem 3 (9 points) Consider a load coupled to a motor by means of a shaft. The load exerts a constant load torque T_{L}. When the mechanical torque T_{M} developed by the motor and the rotation of the shaft have opposite directions as shown in the figure, circuit the correct statement(s)

1) There must be $T_{M}<T_{L}$. At this time instant, T_{M} may be $>,=$ or $<T_{L}$
2) The speed n must decrease. n may increase if $T_{L}>T_{M}$
3) The power flow must be from the load to the motor. $T_{m} \times n<0$

Problem 4 (9 points) In a three-region power system, region a is connected to both region \mathbf{b} and region \mathbf{c} by two tie lines having the same reactance X. Voltage phasors of three regions are
 given in the figure. Circle the correct statement(s):

1) The net active power consumption of region \mathbf{b} is positive.

$$
\mathrm{P}_{\mathrm{ab}}=\mathrm{P}_{\mathrm{bc}}=120 \times 100 \times \sin 30^{\circ} / 10
$$

2) If we increase the angle of E_{b} from 0° to 5° without changing the angles of E_{a} and E_{c}, region \mathbf{b} will become an active power source in the system.
3) Adding a shunt capacitor to region \mathbf{b} can increase the power transmission capacities between regions \mathbf{a} and \mathbf{b} and between regions \mathbf{b} and \mathbf{c}.
$P_{a b, \max }=\left|\mathrm{E}_{\mathrm{a}}\right| \times\left|\mathrm{E}_{\mathrm{b}}\right| / \mathrm{X} \quad \mathrm{P}_{\mathrm{bc}, \max }=\left|\mathrm{E}_{\mathrm{b}}\right| \times\left|\mathrm{E}_{\mathrm{c}}\right| / \mathrm{X}$

Problem 5 (16 points) A single-phase $500 \mathrm{~V} / 150 \mathrm{~V}$ transformer has a rating of 15 kVA at 60 Hz .
a. Indicate how to reconnect the terminals to make a step-down autotransformer with 500 V primary to 350 V secondary: on the figure, show which terminals to be short-circuited and which to connect with a source or load
b. What is the rating of this new $500 \mathrm{~V} / 350 \mathrm{~V}$ autotransformer?

$$
\begin{aligned}
& \left|S_{i}\right|=500 \times 70=35 \mathrm{kVA} \\
& \left|S_{o}\right|=350 \times 100=35 \mathrm{kVA}
\end{aligned}
$$

a. 9 pts

Solution-1: Short circuit X1 and H1 (3),
connect H1 \& H2 to source (3) and
connect X2 and H2 to load (3)
Solution-2: Short circuit X2 and H2 (3),
connect H1 \& H2 to source (3) and
connect X1 and H1 to load (3)
b. 7 pts
$\mathrm{I}_{\mathrm{H}}=15000 / 500=30 \mathrm{~A}(2)$,
$\mathrm{I}_{\mathrm{X}}=15000 / 150=100 \mathrm{~A}(2)$
New Rating $=500 \times(100-30)=350 \times 100=35 \mathrm{kVA}(3)$

Problem 6 ($\mathbf{3 0}$ points): The shaded box T is an ideal transformer connected in the circuit. Calculate I_{1} and I_{2}.

Referred to the P side:		Or referred to the S side:	
$\mathrm{Z}_{2}=1+\mathrm{j} 1 \Omega$		$\mathrm{Z}_{2}=1+\mathrm{j} 1 \Omega$	
$\mathrm{Z}_{2 \mathrm{p}}=\mathrm{Z}_{2} \mathrm{x} 100=100+\mathrm{j} 100 \Omega$		$\mathrm{Z}_{1 \mathrm{~s}}=(10+\mathrm{j} 10) / 100=0.1+\mathrm{j} 0.1 \Omega$	4
$\mathrm{Z}_{\mathrm{o}}=200 \mathrm{xj} 200 /(200+\mathrm{j} 200)=100+\mathrm{j} 100 \Omega$	3	$\mathrm{Z}_{\mathrm{o}}=200 \mathrm{xj} 200 /(200+\mathrm{j} 200)=100+\mathrm{j} 100 \Omega$	2
$\mathrm{Z}_{\mathrm{o} / 2}=\mathrm{Z}_{\mathrm{o}} / / \mathrm{Z}_{2 \mathrm{p}}=50+\mathrm{j} 50 \Omega$	3	$\mathrm{Z}_{\mathrm{os}}=1+\mathrm{j} 1 \Omega$	2
$\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{\mathrm{o} / 2}=10+\mathrm{j} 10+50+\mathrm{j} 50=60+\mathrm{j} 60 \Omega$	3	$\mathrm{Z}_{\mathrm{o} / 2}=\mathrm{Z}_{\mathrm{os}} / / \mathrm{Z}_{2}=0.5+\mathrm{j} 0.5 \Omega$	2
$\mathrm{I}_{1}=\mathrm{Eg}_{\mathrm{g}} / \mathrm{Z}=5-\mathrm{j} 5 \mathrm{~A}$	5	$\mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{1 \mathrm{~s}}+\mathrm{Z}_{\mathrm{o}} / 2=0.1+\mathrm{j} 0.1+0.5+\mathrm{j} 0.5=0.6+\mathrm{j} 0.6 \Omega$	2
$\mathrm{E}_{1}=\mathrm{E}_{\mathrm{g}}-\mathrm{I}_{1} \mathrm{x} \mathrm{Z}_{1}=500 \mathrm{~V}$	3	$\mathrm{E}_{\mathrm{gs}}=600 / 10=60 \mathrm{~V}$	2
$\mathrm{E}_{2}=\mathrm{E}_{1} / \mathrm{a}=50 \mathrm{~V}$	3	$\mathrm{I}_{1 \mathrm{~s}}=\mathrm{E}_{\mathrm{gs}} / \mathrm{Z}_{\mathrm{s}}=50-\mathrm{j} 50 \mathrm{~A}$	3
$\mathrm{I}_{2}=\mathrm{E}_{2} / \mathrm{Z}_{2}=25-\mathrm{j} 25 \mathrm{~A}$	5	$\mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~s}} / 10=5-\mathrm{j} 5 \mathrm{~A}$	5
		$\mathrm{E}_{2}=\mathrm{E}_{\mathrm{gs}}-\mathrm{I}_{1 \mathrm{~s}} \mathrm{XZ} \mathrm{Z}_{1 \mathrm{~s}}=50 \mathrm{~V}$	3
		$\mathrm{I}_{2}=\mathrm{E}_{2} / \mathrm{Z}_{2}=25-\mathrm{j} 25 \mathrm{~A}$	5

Problem 7 (35 points): A 3 -phase step-up transformer is rated $600 \mathrm{MVA}, 34.5 \mathrm{kV} / 345 \mathrm{kV}$ and 60 Hz , and has an impedance of 10%. It steps up the voltage of a 3-phase generator to power a 3-phase line. When the HV side of the transformer delivers 330 MVA at 380 kV with a unity power factor.
a. Its equivalent circuit per phase is shown in the figure using the nominal voltage and power rating of the transformer as base quantities. Calculate the per-unit values of the voltage E_{L} across the load and the voltage E_{g} across the generator terminals.
b. Calculate the actual line-to-line voltage across the generator terminals in volt.

You may choose any reference of phasors
a. $a=345 / 34.5=10$
$\mathrm{E}_{\mathrm{B}}=345 / 1.73=199.4 \mathrm{kV} 3$
$\mathrm{S}_{\mathrm{B}}=600 / 3=200 \mathrm{MVA} 3$
$\mathrm{Z}_{\mathrm{T}}(\mathrm{pu})=0.1 \mathrm{j} \mathrm{pu} \quad 1$
$\left|\mathrm{S}_{\mathrm{L}}\right|=330 / 3=110 \mathrm{MVA} 3$
$\left|\mathrm{S}_{\mathrm{L}}\right|(\mathrm{pu})=\mathrm{S}_{\mathrm{L}} / \mathrm{S}_{\mathrm{B}}=110 / 200$ or $330 / 600=0.55 \mathrm{pu} \quad 3$
$\mathrm{S}_{\mathrm{L}}=0.55 \mathrm{pu} \quad 1$
$\mathrm{E}_{\mathrm{L}}=380 / 1.73=219.7 \mathrm{kV} 3$
$\mathrm{E}_{\mathrm{L}}(\mathrm{pu})=\mathrm{E}_{\mathrm{L}} / \mathrm{E}_{\mathrm{B}}=219.7 / 199.4=1.101 \mathrm{pu}$
or $=380 / 345=1.101 \mathrm{pu} 3$
$\mathrm{I}_{\mathrm{L}}(\mathrm{pu})=\left(\mathrm{S}_{\mathrm{L}} / \mathrm{E}_{\mathrm{L}}\right)^{*}=0.5 \mathrm{pu} \quad 3$
$E_{S}(p u)=E_{L}(p u)+I_{L}(p u) \times Z_{T}(p u)$
$=1.101+\mathrm{j} 0.05=1.103 \angle 2.60^{\circ} \mathrm{pu}$
b. $\left|\mathrm{E}_{\mathrm{g}}\right|=\left|\mathrm{E}_{\mathrm{S}}\right|(\mathrm{pu}) \times 34.5=38.04 \mathrm{kV} \quad 6$

