ECE 325, Fall 2016, Test 2

Problem 1 (12 points, 3 points each): True or False?

- a. Like the electrical conductivity σ of a conducting material, the permeability μ of a magnetic material is also a constant. Not constant
- b. When a source delivers electric power through a transformer to a load of unity power factor, the voltage regulation of the transformer is positive.
- c. If a transmission line increases its length, R, X_L and X_C of its equivalent lumped circuit will all increase. X_C decreases since C increases
- d. An inductive line having reactance of X delivers power to a load that is resistor of R=X/2. If R decreases, the line will deliver more power to the load. Once R decreases beyond the "nose" point (where R=X), power decreases.

Problem 2 (9 points) A stationary conductor AB is placed in a rotating magnetic field. At the instant show in the figure, circle the correct statement(s):

- 1) The current induced in the conductor is from A to B.
- 2) The force on the conductor is to the right.
- 3) The force on the moving S pole is to the left.

Problem 3 (9 points) Consider a load coupled to a motor by means of a shaft. The load exerts a constant load torque T_L . When the mechanical torque T_M developed by the motor and the rotation of the shaft have opposite directions as shown in the figure, circuit the correct statement(s)

- 1) There must be $T_M < T_L$. At this time instant, T_M may be >, = or < T_L
- 2) The speed *n* must decrease. *n* may increase if $T_L > T_M$
- 3) The power flow must be from the load to the motor. $T_m \times n < 0$

Problem 4 (9 points) In a three-region power system, region **a** is connected to both region **b** and region **c** by two tie lines having the same reactance X. Voltage phasors of three regions are given in the figure. Circle the correct statement(s):

- 1) The net active power consumption of region **b** is positive. $P_{ab}=P_{bc}=120\times100\times\sin 30^{\circ}/10$
- 2) If we increase the angle of E_b from 0° to 5° without changing the angles of E_a and E_c , region **b** will become an active power source in the system.
- 3) Adding a shunt capacitor to region **b** can increase the power transmission capacities between regions **a** and **b** and between regions **b** and **c**.

 $P_{ab, max} = |E_a| \times |E_b| / X \quad P_{bc, max} = |E_b| \times |E_c| / X$

Problem 5 (16 points) A single-phase 500V/150V transformer has a rating of 15kVA at 60Hz.

- a. Indicate how to reconnect the terminals to make a step-down autotransformer with 500V primary to 350V secondary: on the figure, show which terminals to be short-circuited and which to connect with a source or load
- b. What is the rating of this new 500V/350V autotransformer?

a. 9 pts

Solution-1: Short circuit X1 and H1 (3), connect H1 & H2 to source (3) and connect X2 and H2 to load (3) Solution-2: Short circuit X2 and H2 (3), connect H1 & H2 to source (3) and connect X1 and H1 to load (3) b. 7 pts $I_{H}=15000/500=30A$ (2), $I_{X}=15000/150=100A$ (2) New Rating= $500 \times (100-30)=350 \times 100=35kVA$ (3) **Problem 6 (30 points):** The shaded box T is an ideal transformer connected in the circuit. Calculate I_1 and I_2 .

Referred to the P side:		Or referred to the S side:	
$Z_2=1+j1 \Omega$		$Z_2=1+j1 \Omega$	
Z _{2p} =Z ₂ x100=100+j100 Ω	5	$Z_{1s} = (10+j10)/100 = 0.1+j0.1 \Omega$	4
$Z_0 = 200 \text{xj} 200/(200 + \text{j} 200) = 100 + \text{j} 100 \Omega$	3	$Z_0 = 200 \text{xj} 200/(200 + \text{j} 200) = 100 + \text{j} 100 \Omega$	2
$Z_{o//2} = Z_o / / Z_{2p} = 50 + j50 \Omega$	3	$Z_{os}=1+j1 \Omega$	2
$Z=Z_1+Z_{0//2}=10+j10+50+j50=60+j60 \Omega$	3	$Z_{o//2} = Z_{os} / Z_2 = 0.5 + j0.5 \Omega$	2
$I_1 = E_g/Z = 5-j5 \text{ A}$	5	$Z_s = Z_{1s} + Z_{0/2} = 0.1 + j0.1 + 0.5 + j0.5 = 0.6 + j0.6 \Omega$	2
$E_1 = E_g - I_1 x Z_1 = 500 V$	3	E _{gs} =600/10=60 V	2
$E_2 = E_1 / a = 50 V$	3	$I_{1s} = E_{gs} / Z_s = 50 - j50 \text{ A}$	3
$I_2 = E_2/Z_2 = 25 - j25 A$	5	$I_1 = I_{1s} / 10 = 5 - j5 A$	5
		$E_2 = E_{gs} - I_{1s} \times Z_{1s} = 50 \text{ V}$	3
		$I_2 = E_2/Z_2 = 25 - j25 A$	5

Problem 7 (35 points): A 3-phase step-up transformer is rated 600MVA, 34.5kV/345kV and 60Hz, and has an impedance of 10%. It steps up the voltage of a 3-phase generator to power a 3-phase line. When the HV side of the transformer delivers 330MVA at 380kV with a unity power factor.

- a. Its equivalent circuit per phase is shown in the figure using the nominal voltage and power rating of the transformer as base quantities. Calculate the per-unit values of the voltage $E_{\rm L}$ across the load and the voltage $E_{\rm g}$ across the generator terminals.
- b. Calculate the actual line-to-line voltage across the generator terminals in volt.

You may choose any reference of phasors

a. a=345/34.5=10 $E_B=345/1.73=199.4kV$ 3 S_B=600/3=200MVA 3 Z_T (pu)=0.1j pu |S_L|=330/3=110MVA 3 3 $|S_L|$ (pu) = S_L/S_B = 110/200 or 330/600= 0.55 pu 1 $S_L = 0.55 \text{ pu}$ 3 $E_1 = 380/1.73 = 219.7 kV$ $E_L(pu) = E_L/E_B = 219.7/199.4 = 1.101 pu$ or =380/345=1.101 pu 3 $I_L(pu) = (S_L/E_L)^* = 0.5 pu$ 3 $E_{S}(pu) = E_{L}(pu) + I_{L}(pu) \times Z_{T}(pu)$ $= 1.101 + i0.05 = 1.103 \angle 2.60^{\circ} \text{ pu}$ 6 b. $|E_g| = |E_S|$ (pu) × 34.5= 38.04 kV 6

