ECE 325 – Electric Energy System Components
7- Synchronous Machines

Instructor:
Kai Sun
Fall 2018
Content

(Materials are from Chapters 16-17)

• Synchronous Generators

• Synchronous Motors
Synchronous Generators

- **Stator**
- **Round rotor**
- **Salient-pole rotor**
- **Field winding**
- **Armature winding**

\[n = n_s = 120f/p \]
Types of Rotors

- **Salient pole rotors**
 - Have concentrated windings on poles and non-uniform air gap
 - Short axial length and large diameter to extract the maximum power from a waterfall
 - On hydraulic turbines operated at low speeds at 50-300 r/min (having a large number of poles)
 - Have a squirrel-cage windings (damper windings) embedded in the pole-faces to help damp out speed oscillations

- **Cylindrical/round rotors**
 - Distributed winding and uniform air gap
 - Large axial length and small diameter to limit the centrifugal forces
 - Steam and gas turbines, operated at high speeds, typically 1800-3600r/min (4 or 2-pole)
 - Eddy in the solid steal rotor gives damping effects
 - 70% of large synchronous generators (150-1500MVA)

(Source: http://emadrle.blogspot.com)
Main features of the stator

• Same as the stator of a 3-phase inductor motor

• The winding is always in Y connection with the neutral grounded (the voltage per phase only 1/1.73 or 58% of that in Δ connection)

• Factors affecting the size of synchronous generators: usually, a larger generator has
 – a larger capacity
 – a higher efficiency
 – a larger power output per kilogram (cheaper)
 – more serious cooling problems (higher power losses per unit surface area)

Sources: Wikipedia & PatrickSchneiderPhoto.com

Stator winding of a hydor-unit

An employee of Siemens Charlotte Turbine-Generator Center in the Stator winding area inspects the coils
Field excitation and exciters

- Using a main exciter and a pilot exciter, the DC field excitation not only ensures a stable AC terminal voltage of the synchronous generator, but must also quickly respond to sudden load changes in order to maintain system stability.

DC Exciter (DC generator) AC generator

Figure 16.1
Schematic diagram and cross-section view of a typical 500 MW synchronous generator and its 2400 kW dc exciter. The dc exciting current \(I_x \) (6000 A) flows through the commutator and two slip-rings. The dc control current \(I_c \) from the pilot exciter permits variable field control of the main exciter, which, in turn, controls \(I_x \).
Brushless excitation

- Electronic rectifiers replace the commutator, slip-rings and brushes

![Diagram of brushless excitation system]

Figure 16.8
Typical brushless exciter system.
Equivalent circuit of a 3-phase AC generator

- \(E_o \) is the electromotive force induced by rotor flux \(\phi \) (field current \(I_x \))
- \(E_{ar} \) is induced by armature flux \(\phi_{ar} \) (armature current \(I \))
- \(X_l \) is leakage reactance
- \(R \) is armature resistance
- KVL: \(E_o + E_{ar} = jX_lI + RI + E \)
- Let \(E_{ar} = -jX_{ar}I \): \(E_o = j(X_l + X_{ar})I + RI + E \)
- Define \(X_s = X_{ar} + X_l \) (called synchronous reactance)

\[
E_o = jX_sI + R_dI + E
\]
Determining the value of X_S

• **Open-circuit test:**
 - Open stator terminals ($I=0$) and drive the generator at the rated speed
 - Raise exciting current I_X until the rated line-to-line voltage is attained.
 - Measure the corresponding $I_X=I_{Xn}$ and line-to-neutral voltage E_n, which is equal to the internal electromotive force $E_{on}=E_o(I_{Xn})$

• **Short-circuit test:**
 - Reduce the excitation to 0 and short-circuit three stator terminals.
 - With the generator running at rated speed, gradually raise I_X to I_{Xn} in order to induce the same $E_{on}=E_n$.
 - Record current I_{SC} in the stator windings
 If armature resistance R is ignorable:
 \[
 X_S = \frac{E_n}{I_{SC}}
 \]

• **Per-unit X_S:** $X_S \text{ (pu)} = \frac{X_S}{Z_B}$ (usually in 0.8-2 pu)
 \[
 Z_B = \frac{E_B^2}{S_B} \quad \text{base impedance (line-to-neutral) of the generator} \quad \Omega
 \]
 \[
 E_B = \text{base voltage (line-to-neutral)} \quad \text{[V]}
 \]
 \[
 S_B = \text{base power per phase} \quad \text{[VA]}
 \]
Synchronous generator connected to an isolated load

\[E_o = E_x + E = jX_s I + Z I \]
\[Z = |Z| \angle \theta \quad PF = \cos \theta \]

Voltage Regulation = \(\frac{|E_{NL}| - |E_B|}{|E_B|} \times 100 \)

\(E_{NL} \): no-load voltage \((E_o) \)
\(E_B \): rated voltage \((E_n) \)
Example 16-2

A 3-phase synchronous generator produces an open-circuit line voltage of 6928V when the DC exciting current is 50A. The AC terminals are then short-circuited, and the three line currents are found to be 800A.

a. Calculate the synchronous reactance per phase

\[|E_o| = 6928 / 1.73 = 4000 \text{V} \]
\[X_S = |E_o| / |I| = 4000 / 800 = 5 \Omega \]

b. Calculate the terminal voltage if three 12 Ω resistors are connected in Y across the terminals

\[Z = 12 + j5 \Omega \]
\[E = R \times E_o / Z = 4000 \times 12 / (12 + j5) = 3692 \angle -22.6^\circ \text{ V} \]
\[E_L = 1.73 |E| = 6387 \text{ V} \]
Example 16-3

A 30MVA, 15kV, 60Hz AC generator has a synchronous reactance $X_S=1.2$ pu and a winding resistance $R=0.02$ pu. Calculate

a. Its base voltage, base power and base impedance

$$E_B = E_L / 1.73 = 15000 / 1.73 = 8660 \text{ V}$$
$$S_B = 30 / 3 = 10 \text{ MVA}$$
$$Z_B = E_B^2 / S_B = 8600^2 / 10^7 = 7.5 \text{ } \Omega$$

b. The actual values of X_S and R per phase

$$X_S = X_S(\text{pu}) \times Z_B = 1.2 \times 7.5 = 9 \text{ } \Omega$$
$$R = R(\text{pu}) \times Z_B = 0.02 \times 7.5 = 0.15 \text{ } \Omega$$

c. The total full-load copper losses

$$I(\text{pu}) = 1 \text{ pu}$$
$$P_{\text{loss}} = 3I^2R \times S_B = 3 \times 1 \times 0.02 \times 10 = 0.6 \text{ MW}$$