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 Transient stability analysis using direct methods

— Transient stability of an SMIB system
— Direct methods for multi-machine systems

* Time-domain transient stability simulation

— Explicit and implicit numerical integration techniques

— Simulation of a multi-machine system

» References:
— Kundur’s Chapter 13
— Saadat’s Chapters 11.5-11.10
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Transient Stability

 The ability of the power system to maintain synchronism when subjected to a severe disturbance such as a
fault on transmission facilities, loss of generation or loss of a large load.

— The system response to such disturbances involves large excursions of generator rotor angles, power flows, bus
voltages, and other system variables.

— Stability 1s influenced by the nonlinear characteristics of the system

— If the resulting angular separation between the machines in the system remains within certain bounds, the system
maintains synchronism.

— If loss of synchronism due to transient instability occurs, it will usually be evident within 2-3 seconds after the
nitial disturbances
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To analyze the stability of a nonlinear system modeled by DAEs (differential-algebraic
equations) following a disturbance:

x =1(x,y,?) DE
0=g(x,y,?) AE

(based on Lyapunov’s second method for stability): Determine stability without
explicitly solving the DAE:s:

1. Define a Transient Energy Function, which 1s an exact or approximate Lyapunov function.

2. Compare the value of the function to a critical energy to judge whether the system state can stay
inside a stability region of the equilibrium.

(indirect method): Solve an Initial Value Problem of the nonlinear
Differential-Algebraic Equations (DAEs) with a given initial state x=x,, at /=¢, by using step-by-
step numerical integration (explicit or implicit).
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Transient Stability Analysis Using
Direct Methods




Stability on a General Dynamical System

* In mathematics, stability theory addresses the stability of solutions of a set of differential
equations, or in other words, stability of trajectories of a dynamical system under small
perturbations of an 1nitial condition.

* Lyapunov Stability: Consider a nonlinear dynamical system
T = f(t,x) (1)

Assume origin x=0 is an equilibrium, i.e. f(£,0) =0.¥V{ > 0

The equilibrium point x=0 1s stable in the sense of Lyapunov

if, for each ¢ > 0, there is 6 = 6(e,%p) > 0 such that

()l <6 = llz@)l <e, VI2t20 — (2)
25

In other words, the system variable will stay in any

given small region (<g) around the equilibrium point K& A
once becoming close enough (<0) to that point.
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Lyapunov Stability Criterion (Lyapunov’s second method)

_ £ =f(x,y,) DE
x = f(x(7)) 0=g(x,y,?) AE

Its equilibrium x,, which satisfies f(x,)=0, is stable if there exists a positive definite function
V(x), called a Lyapunov function, such that its time-derivative is not positive, 1.e.

¢ V(x)=0 “=0" 1f and only 1f x= x, (x¢ has the minimum //=0)
» 4V(X) o  (Vdoes not increase with time)
dt
Equilibrium x, is asymptotically stable if the time-derivative of V is negative definite, 1.e.
. dV(x) <o =071fand only if x= x|
dt
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Transient Energy Function (TEF) Method

« It is a special case of Lyapunov’s second method that
relaxes V(x) to an approximate Lyapunov function,
1.e. called a Transient Energy function (TEF)

» Consider “a rolling ball” analogy. two quantities are
required to determine whether “ball” (state x) can
leave “bowl” (stability region of x,)

— Initial kinetic energy of the ball

— The height of the bowl rim at the crossing point
(depending on the direction of the initial motion)

V=V,

cr

Figure 13.59 A ball rolling on the inner surface of a bowl
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Application to a Power System
* Initially the system operates at stable equilibrium point (SEP) x..

« If a fault occurs, the system gains kinetic energy V. and
potential energy V. during the fault-on period and then moves
away from Xx..

* After fault clearing, V. 1s converted into V.

* To avoid instability, the system must be capable of absorbing
Vi while moving towards the old SEP x, or a new SEP.

* For a given post-disturbance network configuration, there is a
critical, maximum amount of transient energy V., that the system
can absorb without loss of synchronism

» Therefore, assessment of transient stability for the system state at
fault clearing (x) requires:

1. Define a TEF V(x,) that adequately describes the transient
energy responsible for separating one or more generators
from the rest of the system

2. Estimate the critical energy V., and calculate transient
stability margin, 1.e. V_— V(x_).




Classic Model of a Single-Machine-Infinite-Bus System

do @,=21tx60~377 rad/s
. = wr T wO
| dt H ins
2H dw K
=P — P, — —L2(w, —w,) ®, in rad/s
| w, dt W,
P o inrad
I)e :Pmax Sin&: . Siﬂé KD inp.u
T
2H . K, . :
—6+—"L6+ P, sin6—P =0
Wy W
\ Pendulum subject to a constant torque
Equilibria satisfy P, ., sino —P,=0
e o,=arcsin(P,/P,..)

stable equilibrium point (SEP)

¢ 0,=180°-9,
unstable equilibrium point (UEP)
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T, =mglsino m
m®>.6+D-5+mgl-sind-T_ =0

With all resistances neglected:
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T
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Py a.b @ P, with circuit 2 O/S
B i,
0 5, 0, 90° 180°

Figure 13.3 Power-angle relationship



Phase-Space Trajectories

2H .. K,

S5+ —L26+P sin6—P, =0
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Response to a step change in P
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Ignore all losses (K,=0):

~—=P, —P =P — P, sind= P, (accelerating power)
w, dt

Consider a sudden increase n P,: P, ,— P, ;.
* New SEP b satistying P ,(0,)=P,,,

« a—> b: Due to the rotor’s inertia, 6 cannot jump from §, to 5,, so
P =P, ,-P(5,)>0 and o, increases from ®,. When b is reached,
P.=0 but ©, >m,, and & continues to increase.

* b— c: 6>9, and P <0, so ®, decreases while d increases until c.
At C, ®,=®, and d reaches its maxmum 9, ..

* « C: Starting from c, the rotor starts to decelerate (since P_,<0),
s0 ®,<®, and 0 decreases.

« With all resistances (damping) neglected, 6 and o, oscillate
around new SEP b with a constant amplitude.

Question 1: Does o have a sinusoidal waveform in time?

Question 2: When does @, reach the minimum speed?
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Nonlinear Oscillation of an SMIB System

Let Ao=0-0,, a=Kp/(2H) . y PR _
P @0P (21D o+a-0+f-(Sind—sing) =0
AO

2H . K,
> A5+a-A5+,B-sinc(A75jcos(5s +7)-A5:0

——8+—L6+F,,
o W

sin0 — P, =0

2H/w;=0.1, D=0, P, =1, P,=0.5 = a=0, =10, 5=30°

1 1
i ~—/[3cos O : f =
Small disturbance | y p 5 Marginally stable (0. ) +1,(0.)
150 |
.o . é;ﬂ‘dX
P A+ a-AS+ fcoso, - AS =0
90 -
A 60 Approximately sinusoidal
2 £
B 30t NS N e A B B0 e e e
0 -
80T 5nlill |
-60 I I I | | I I | | | | -60 I L ! L L
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© 2021 Kai Sun 12



Frequency-Amplitude (F-A) Curve 18
1 16
f(annx’amln): \E/ al
tl(gm)+t2(5mn) g:
ti (X) - 2H J'X_5s dA5 - S;j ! —j=0orj=0,1
DPrax 7°  JCOS(AS + 6,) — COSX + (AS + 5, —X)sin &, § oz =0, 1,2
S 0.6 o023
= ijo |:ti,2j (x) + ti,2j+1(x):| ©oql L—LERE

o
[N
o

Define oscillation amplitude as Ad,,,,=0 ., — O OF A0, ;.= 0= O - 20 40 60 80 100 120 140 160
Oscillation Amplitude (deg)

fn Stability margin

SEP f(5max9 5rmn)

Frequency

Nose Point

UEP -
Oscillation amplitude (5, -6 (UEP) " 724

max s)
[1] B. Wang, K. Sun, “Formulation and Characterization of Power System Electromechanical Oscillations,” IEEE Trans. Power Systems, Nov. 2016

© 2021 Kai Sun [2] B. Wang, X. Su, K. Sun, “Properties of the Frequency-Amplitude Curve,” IEEE Trans. Power Systems, Jan. 2017 13



Equal-Area Criterion (EAC)

2H

“—b6+—L6+P

( )

w
Pendulum with a constant torque L

Kinetic energy:

1

Vke:5m12°52 Vk

e

= 5(2%1%))-

Potential energy (ref: o,)
V,.=mgl(cosd, —cosd)—T, (6—6,)
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1 [Awr

K

max

Wy

 Ignore all losses (K,=0):

Wy

A
lg a as  w,
— 2 (p_p
53"' dt_z 2H(m e)
2 2
t A g[d_ﬂ 0 A _dbey
T, =mglsing ~ m dt| dt dt di* dt H
2
mi?.5+D-6+mgl-siné-T, =0 [ﬁ :f‘swo(Pm—Pe)d(S
\. J dt 50 H
A w

2 _ Yo ["p _
V_Hf%(Pm P 6

Jz = f;(Pm — P)d$

Moment of inertia in p.u.

V,e=PB(cosd, —cosd)— P, (6—0,)

sin6—P =0

P
Area . = P, sind
4, 5
— Area A
P At N .
gvat ;
e |
—— : 8
8y 9, O O

At o, exists, Aw,=dd/d=0:

5m ax
0= [ (P, = P)ds

0

_ f: (B, ~P)S~ [ ~(B, ~ P.)d5

=4 —[4=0
* |A,FV,, gained from a to b
* |4,|=P,,, (cosé —cosé ,)—P (6

max

o 51)
=V, at c relative to b

Question: What if K,>0? "



Equal-Area Criterion (EAC):

The stability is maintained only if a decelerating area |A,| > accelerating area |A,| can

be located above P ..

* When oreaches UEP, if |4,|<|4,|, 0 will continues to
increase (since @,>a®,) and accelerate to lose stability.

* Transient stability depends on the size of the step
changein P, .
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FIGURE 11.12
Equal-area criterion—maximum power limit.
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Transient stability limit for a step change of P,

Following a step change P, ,— P, , solve the transient stability limit of P, :

m>

e Assume | 4, |=| 4, | in order to solve the limit of P,

b Ormex
P.(6 —6,)— fé P sinéds= [ "~ P_sinéds—P,(5_ —&)

&

—P 6,+ P, (cosé, —cosd,)=—P_ (coso  —coso,)—Po

max max max

(6

max

—0,)P, = P__ (cosd, —cosd

max )

« Since atthe UEP P = P_ siné there is

max max ?

(6

max

— 0,)sino

max

+coso,, = Cos0,

* Solveo,,,.

* Thus, transient stability limit for a step change of P,
AP <P_sind__—P,

max

e The new SEP:

Question: From P
61 = T — 6max

m0»
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FIGURE 11.12
Equal-area criterion—maximum power limil.

is there anyway to increase P, beyond P, sino,,,.?

max max °
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Solve o, by the Newton-Raphson method

(6, —0,)sind__ +cosd_ = coso,
 Define nonlinear function: f (5max) — (6max — 0) Sin 5max -+ CcoS 5max — COS 50
. . 2
« Taylor expansion at an estimate: FEW)+ a |\ 5 14 2f (ASD Y 4= 0
max |5k) 2! dgmax 5
e . (0)
 Select an initial estimate: T/ 2 <O <0
« Calculate iterative solutions by the N-R algorithm:
(S0 (8
SO Z 50 | AS®  where Al =L ) S Cm)
max max max df (51;33( o 60 ) Cos 6r(na)x
Do gy

» Give a solution when a specific accuracy ¢ is reached.

SUAHD _ 500 <e

max max

0 ;iﬂ 0 I 0 Ty "

FIGURE 11.12

Equal-area criterion—maximum power limit.
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Response to a three-phase fault

E'E
_ . - B .
P =P_sin6é= sin 6
T
Py
P
- P, with both circuits I/S
a/ b g . L
Py % @\ \ P, with circuit 2 O/S
. P
L l 5
0 S5, 6, 90° 180°
o 1 I, P P for any fault
n general, e, during fault “<=< 1 ¢, post-fault Oor any lau

 For a permanent fault cleared by tripping the fault

ClI’Clllt, Pe,post-fault < Pe,pre-fault

C

Al =A2

P, - prefault
P, - postfault

\\\\\
o o e e i e e e e

P, - during
\ fault

1(s) 1

 For a temporary fault without losing any circuit,

P e, post-fault =P
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e,pre-fault

Stable

(¢) Response to a fault cleared

in ty seconds - stable case

%ﬁ
Q)
=3
ANNN

E
B X X 215
; s XZI F X22 o
; EYS E,£0
E cctr2 0 ' I
Pt A, >4,
. P, - prefault
P, - postfault
Pyl AN P, - during
i fault
; ;’ 5
d

Unstable

t(s)

(d) Response to a fault cleared
in I, seconds - unstable case



No damping (K;,=0)

Multi-Swing Stability

P4 A, > A,

Spead (radis)

P, - prefault
P, - postfault

—

M -450 420 -380 -300 -240 180 120 &80 a 60 120 180
P, - during

Angle(deqg)
fault

) Large damping

Speed (radis)

4
3 _—
, -
“ _-"; =
e %,
\

_15 —= L ' L J
-450 -420 -360 -300 -240 -180 120 80 O B0 120 180 240 300 360 420 480
Angle (deg.)

1 (s)1

(d) Response to a fault cleared * For an SMIB or two-machine system (a 2-body problem), first-swing stability is usually
in 7., seconds - unstable case sufficient to judge its transient stability over multiple swings.

* However, this is not enough to determine transient stability of a multi-machine system

_ (an N-body problem in which chaos often arises).
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Critical Clearing Angle (CCA) and Critical Clearing Time (CCT)

» Consider a simple case: a three-phase fault at the sending end

wWith P, jing =0 (all resistances are neglected)

* Solve Critical Clearing Angle o,

LPd(S f (P. siné— P )ds

4] |4,
Integrating both sides:

Pm(6c—6) P (coso, —coso, . )—P, (6

max max max )

coso, =

max =T — 60)
* Solve the CCT from the CCA:
During the fault (P =0):

e, during fault

2H d?6 dé wo
_ _ = dt = Pt
W dt2 Pm 0 <::> dt f

o Sepign, @ fﬂw—w

© 2021 Kai Sun
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A more general case with P >0

e, during fault

1 2 If the fault is cleared at the CCA 0.
O ]@ A, = |4
Ee 6, . 8o .
4 == P (6,—8,) —L P sinédd = L P, siné do—P. (6 . —6.)
Py b P e, pre-fault
Pe’ post:fault :P3max81n8 ( max 60) + 1)3max Cos 6 ])2max COS 60

cosd, =

3 P max o P max
P RRRARRARAAR P, during fault P axSINO 3 i
PZmax _____ i
\ * |A] is the kinetic energy V,, at d,
] : -0 )
So &, 5, S max (5,) . . |A!|+|A3| is the total energy V=Vt V e
d,rad V (8)= f —(P.—P)dé gained at o, after the fault is cleared
pe m e
 Potential * 2 ¢ |AYHAS =V,(8,)=V,, i.e. the maximum
Ve(0)=? energy Ve V. (Aw, )= 1 (2Hw,)- Aw, potential energy, or in other words, the
7 ) r 2 W critical energy
Ou) =14 +4s)

* The generator is stable if and only if

V(0 )=V, (Le. [AF|A;] <[Aq[+|As] or
equivalently, |A| <|A,] ),
A \

E:u‘.z ui
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8max

8c3

Od1 Bz Oc19c2 Ous

(30)

Multiple Faults
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Some factors that influence transient stability of a generator

e How heavily the generator is loaded.
e The fault-clearing time
e The post-fault transmission system reactance

e The generator reactance: A lower reactance increases peak power and
reduces initial rotor angle.

e The generator output during the fault: This depends on the fault location
and type

*The generator inertia: The higher the inertia, the slower the rate of change
in angle. This reduces the kinetic energy gained during fault; i.e. the
accelerating area A, is reduced.

e The generator internal voltage magnitude (E’): This depends on the field
excitation

e The voltage magnitude (E;) of the bus receiving power from the generator

© 2021 Kai Sun 23



Applying EAC to a Two-Machine System

* Reduce two interconnected machines to an equivalent SMIB system. @

d*6 W W
L= (Pml_Pel): . Pal

)

L L

dr* 2H 2H E 2
1 1 d 512 _
2 dt2
d 622 — %o (PmZ_})eZ):&})aZ
d*  2H, 2H,

d’5, _d252 _ % ( al
e dft 2 H, H,

2 H1H2 d2612_H2I)al_H113a2 :Hzpml_Hlpmz_Hzpel_Hlpez

w, H, +H, d*  H,+H, H +H, H +H,
2H. . d*6
= 212 — Pm,lz _Pe,12 H, Hy, P, P,
Wy dt H,=0 H | Pm’ . Pe, |
s (0 H,=10H, | 0.909H, 0.91P,, ,—0.09P, , |0.91P, ~0.09P,,
f (P, —F,,)d6=0 H— H)2 P _P 2 RY
120 le w © 2 7 1 ( m,1 m,2) ( el 6,2)
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SMIB Equivalent Based Method (EEAC or SIME) for Multi-Machine Systems [11-3]

Main Idea:

» According to rotor angle curves over a time window
(e.g. being obtained from simulation), partition m
machines into 2 groups

— Ciritical machines (CMs)
— Non-critical machines (NMs)

* Only m-1 ways of partitioning need to be studied.

» For each way of partitioning, construct a 2-machine
equivalent and consequently an SMIB (i.e. “OMIB”
in the papers) equivalent, such that conclusions of
the EAC can be applied.

[1] Y. Xue, et al, "A Simple Direct Method for Fast Transient Stability Assessment
of Large Power Systems". IEEE Trans. PWRS, PWRS3: 400412, 1988.

[2] Y. Xue, et al, "Extended Equal-Area Criterion Revisited". IEEE Trans. PWRS,
PWRS7:10101022,1992.

[3] M. Pavella, et al, “Transient Stability of Power Systems: a Unified Approach to
Assessment and Control”, Kluwer, 2000.

© 2021 Kai Sun

175, %P\_\ o 3y=158.0°
125 Adec
100, Aacc
| 75.)
te=0.117 ty=0.458
. | S Rp
61 02 03 04
Q5 r—— | ¢ (s) 25)
| 75, 100. 125 150.8(deg)
§,=553° & =T1.1°
(a) Critical machines and OMIB trajectories (b) Power-angle OMIB representation.
Nrof CMs: 2 Resulting EAC parameters:
Nr of NMs: 1 be = 71.1° ; 4, = 158.0° — ¢, =0.458s.

(c) Notation:

P. : electrical power : P, : mechanical power :

P, = P,, — P, : accelerating power

t. . clearing time ; ¢, : tume to instability

dc = 0 (t.) : clearing angle : §,, = § (t,) : unstable angle
Subscript D stands for “during-fault” (or fault-on) configuration
Subscript P stands for “post-fault” configuration

Figure 2.1.  Swing curves and OMIB P — § represenfation of the 3-machine system.
Contingency Nr2, f. = 117 ms. General notation
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Main Steps [3]

P(MW)
250 ]

200

150

100

50, Agice

si o i§p=92.2° {6y =146.7°
25, 50.0 75. 100 125. §(deg)
§,=553"" ' §.=65.1°

ax

m
N = Adec - Aﬂ;ﬂﬂ
¥

= — | Pdé
do
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(1) Denoting by d¢(#) the COA of the group of CMs, one writes:

Selt) = MG' S Myop(t) - (2.3)
kel
Similarly:
on(t) = ﬂ/f‘&?l Z M;o; (t) . (2.4)
JEN
In the above formulas:
Me = > My 3 My = > M . (2.5)
kel JEN

(11) Define the rotor angle of the corresponding OMIB by the transformation

5(t) 2 Se(t) — on(t) . (2.6)
The corresponding OMIB rotor speed is expressed by
w(t) = welt) — wy(t) 2.7)
where
we(t) = Mgt > Mrwg(t) 1 wn(t) = My' D> Mjw;(t).  (2.8)
keC JEN

(1i1) Define the equivalent OMIB mechanical power by

P(t) = M (Mgl S Prr(t) — MGt D> ij(t)) \ (2.9)

ke JEN

the equivalent OMIB electric power by

P.(t) = M (Mgl ST Pp(t) — Myt D> Pej(t)) , (2.10)

keC JjEN
and the resulting OMIB accelerating power by
Pu(t) = Pult) = Pe(t) . (2.11)

In the above expressions, M denotes the equivalent OMIB inertia coefficient

_LMC JMJ.'\I

M= —".
_LMC “+ iMN

(2.12)
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Applications to real systems [3!

|r|.-.-_i]‘ CM (Ii;'
100, '
0.0 @
100,
=200.
-1.]
-1
& [ s
(dex) {deg) | L5
113, 14 s 2
0.0 e X 28
ol G ! . i . -
| 1 0.0 L5 5. 7.5 10. Time {s)
0.0 =14 |
LERL I . 5 1 |
i
=115, ' ty=5.632 =71
i -
PMW)| R Al &
P J|,::Jr .
s0 | ST = -4
FYH RS TN (a) t. = 171 ms (L) t. = 162 ms
. N ol
= - \—\T 5{'2-'&2} Figure 4.3, Multunachine and OMIB curves for etg Nr 9 on the 627-machine syvstem.

oy 57 ns. |2 o)
[ P, &, = 174.06°
/ . JCT1=180ms
| i
V/ v Y T CT2=171ms
] / A0 a{md}
(a) t. = 198 ms by t. = 175 ms
Figure 2.9 Tlustration of back- and multi-swing phenomena on the Hvdro-Québec system: CT3=162ms
swingand P — § cwrves. CCT(SIME)=1755ms ; CCT(ST-600)= 176 ms . . ) _ ) - .
= Figure 4.4 Phase plane representation of simulations of Table 4.3, 627-maclime system.

CCT(SIME) = 168 ms ; CCT(ETMSP) = 168 ms
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Application in Commercialized Software

TSAT Scenario Edit Window - Parameters:

Parameters

=+ Scenario Data

- Dlezcriphion

- Parameters

- Powerflow Data

- Diynamic Data

- Monitor Data

- Critenia Data

! - Contingency D ata

I'. - Diynamic Aepresentation Data
- Transzaction ['ata

- Sequence Netwark D ata

Security Criteria | Simulation Contral I b odel I Tranzaction I E arly Termination | Paost-Filkering S_‘_i‘__.

Security Criterion ;| Transient Stabiliy -

Tranzient Stability Criterion

Stabily Margh Thieshold 3333 % - From TSAT v.14 User Manual by Powertech Labs

@ Usze Swing Margin &lgorithm

1 Usze Angle Margin Algaorithm

In TSAT, two methods are provided to assess the severity of a contingency, each of which gives a

| (@ Stability Margin Only ; I
transient stability index:

(1 CCT Calculation

CCT Secunty Criternat [ 5.00 ] . . . '
WSS — Power swing-base stability margin or index (§M)

R e i i Cycle
b awimnum CCT SearchVWalue | 30,00 ) o . , . , . .
S — ['his 1s based on an approach described in reference [2]. This method consists of three steps in

determining the stability index:

(1) Step 1: Identify eritical cluster of generators (CCG). This 1s the group of generators that
become unstable or will likely become unstable at the more stressed system condition.

(2) Step 2: Form parametric one-machine-infinite-bus (OMIB) equivalent. The parameters of

this equivalent are constantly updated using simulation results of the full system.

(3) Step 3: Determine stability of the system and compute stability margin (index).

The full dertvation and description of this method 1s contamed 1 [2] and the associated hiterature
on the subject.
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* Assumptions:

— Each group of coherent machines, which swing together, are
represented by one equivalent machine with damping neglected:

2H, d*6,
w, dt’

—P -P,  i=12--,m
— Then, each machine is represented by
(neglecting armature resistance R, the effect of saliency and the
changes in flux linkages); of each
machine coincides with the angle of £

during the entire period of
simulation (neglecting governor control).

— Using the pre-fault bus voltages, all loads are converted to equivalent
admittances to ground. These admittances are assumed to remain
constant, 1.e.
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* Add m internal generator nodes (i.e. £, behind X)) to the n-bus network to form an (n+m)-bus network.

» Then node voltage equations with ground as the reference
IbuS:Ybus Vbus

I Y11 Yin Yigay) Yi(ntm) 1
I‘E }f?l Y‘En }/T_?{n.-l—ljl }{E(rl-l—m} VE
In — fnl T Y.rm }/".rn[n-l—lj,l 1i/'rn{'.r:L-I—'m.:}I Vn
In-i—l f{r£+1:|1 P{'n-l—l]n 15fl{-n+17ﬁlfn+1) ) }flffa-|—1]|{'.rr,+m} E::,-H_
L In-!-m i h Y{n-& mjl """ }f{n-}- m)n Y(n-%-mj{ﬂ +1) " Y(-n-l--mjl[-n*iﬂ.rnj B E:a.-l—m 2
I, 1s the vector of the injected bus currents

n+1Xx,
E1©4|_ﬁ"‘(‘\;
’n—~—2Xd2

e

N
l \\

11 bm network

@4'% [Loads gre converted to

c\anst;ﬁt admittances
J ,’ — Yreduce

47 bus mxm

E)

V, .. 1s the vector of bus voltages measured from the reference node

Y, . 1s the bus admittance matrix of (n+m)x(n+m):

Y., (diagonal element) 1s the sum of admittances connected to bus i

n -1 X’ i
m @W Ybus (n+tm)x(n+m)

Y, (off-diagonal element) equals the negative of the admittance between buses 7 and j

Compared to the Y, for power flow analysis, additional m internal generator nodes are added and Y,

(i<n) is modified to include the load admittance at node i

© 2021 Kai Sun
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» To simplify the analysis, all nodes other than the generator internal nodes are eliminated as follows

[ 0 ] { Yun Yum } { Vn :| 0= Yﬂ*ﬂ‘vn T YnmEfm @ E 1@_I|L
L Yrtzm Ymm E'm L, = Y‘f‘;mvﬂ + YrmEn (b)
I
From (a): (a) = (b): E@.f. Gl A L R
V, = —Ynn_lYnmE;m L= [Ymm— Y ermleﬂm]E!m ] = |:Y;_jred:| = I:GIJ + JBIJ:|
Yred Ef B @—Im—
 The electrical power of each machine:
P, =Re(E/[I')=Re(E]Y. Y/*"E") =E’G,+Y EE Y |cos(6,-3,) S =5-65
j:1 . y 1 J

J#I

g, is the angle of ¥,
12 Bl
= E"G, +ZEE ( B,sind, +G, 0035)

» The power system model: m
2H 12 < B nli 12
iy =P —E Gl.l.—ZEl.E ( 8in o, + G, cos o, )= > —E°G, Z( C,sino, + D, 0085)
17 =
0 = o
=P, — P,
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TEF Method for a Multi-machine Power System

» Consider the simplified system model (classical-model generators without damping + constant impedance loads).

2H,
a)O

6, =P,-E’G, Z(Cysiné‘lﬁDﬁcosé‘lj):Pn;i - P,

el

]-‘Fl

 Define the center of inertia (COI) and the motion of the COI about all generators:

w 210 2O

def 5 def _m H
5 cor
cor

Aty = Feor = Z(Pn;i - P = — 5COT =2HAw,
Zn:H HZ @, i=1 @,

 Consider the motion of each generator w.r.t. the COI
B, = 6,-6,, rad

Easy to prove'

) H.
ZHia)iZPn:i _})6,1 _—ZPCOI ZH@
Bi 6;’ N H;
W, = = |[—-Aw u ' m
T oy o, cor| P 0. = w0, Z
i=1
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Defining the post-disturbance TEF

0 = angle of bus i at the postdisturbance SEP | Ei =]Z::,(C,-j sind, +D; cos )
J, = 2Ho, = per unit moment of inertia of the i™ generator ji
Assume a linear integration path %]
def b ] & m H, 6" +6/)-(6’+6))
Z J.o? + Z j —(P.—P.———P.,)do. d(6,+6,)~k-db, = S de,
2 i=1 «9S HT 6)4/ 6)1.1
1 m y m m-1 m 8;+6; l
=Y Jw;-) P..(6-6) -Y ¥ [c ;(cosB,;—cosB;;) - fD cos0,,d(0,+0)
2 i=1 i=1 i=1j=i+1 B +ﬂ
i .
| :ZI/ke,i(éi) Z pel(gi) Z magnetzcy( 1]) +Z ,SSlpatedy(trajeCtory Of@l +0])
:Vke zVpe

* Procedure of the TEF method:

1. Run time-domain simulation up to the instant of fault clearing (7)) to obtain angles and speeds of all
generators, which are used to calculate V(x)

2. Calculate the critical energy V., for the post-disturbance system (this is the most difficult step for a
large-scale systems; V,, may be defined as the maximum V), at the closest UEP or controlling UEP)

3. Check V_-V(x,)

© 2021 Kai Sun [4] J.N. Qiang, Clarifications on the Integration Path of Transient Energy Function, IEEE Trans Power Systems, May 2005 33



Time-domain transient stability simulation
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Simulating a Multi-Machine System in a Simplified Model

* Solve the initial power flow and determine the initial bus 7 _ S i P — 70

-,

voltage phasors V.. Yo 7%

» Terminal currents /; of m generators prior to disturbance E =V, +iX\IL i=1.9 m
: : i = Yi T JAgi Py
are calculated by their terminal voltages V', and power
outputs S, and then used to calculate £,

 All loads are converted to equivalent admittances: Yio = iz Vi

* To include voltages behind X, add m internal generator n+1lx,
buses to the n-bus power system network to form an n+m £ 1@4—”‘*“—\
bus network (ground as the reference for voltages): \‘\\\

n+ 2 X5 11 _bus setwork

2H. < . AI_W\_\ ¢ <
~—t5 =P ,-E’G,-Y EE (B.. sin .. + G, cos 5..) @ Loads gre converted to

o, i i “ i~ ij ij ij ij c\anstgﬁt admittances
A V4
i 17z
7

n-+mx’ reduce
E’m ®4|_f‘v\fd\m_/ Ybus nxn Ybus mxm_:
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 For transient stability simulation of a bulk power system, its phasor model
is usually adopted, which includes a set of
validated by industry using event data.

x =1(x, V)
Ix,V)=Y,V

e Simulation solves its

(explicit or implicit methods)

(PSS/E or PSLF) takes 1-5 min to simulate the 70K-
node Eastern Interconnection model (e.g. NERC MMWG model) for each
wall-clock second (it can be speeded up to 4-5 sec/sec on a supercomputer
with 512 processors by a parallel-in-time algorithm [3))

[5] D. Osipov, N. Duan, S. Allu, S. Simunovic, A. Dimitrovski, K. Sun, “Distributed Parareal in Time with Adaptive Coarse
Solver for Large Scale Power System Simulations,” 2019 IEEE PES General Meeting in Atlanta, GA

© 2021 Kai Sun

on contingencies using

simulate 1-3K critical
contingencies every 10-15 min on a reduced model (~10K nodes & 2K
generators), while most of power companies run off-line simulations.

VOLTAGE PERFORMANCE PARAMETERS

INITIAL POST TRANSIENT
VOLTAGE r VOLTAGE
DEVIATION
u N
o |
=
'—
z av,
G} FROM POST
b TRANSIENT
= Povg;nnﬁ}ow
w \ ’ TIME DURATION
OF VOLTAGE DIP
g EXCEEDING 20%
H 20%
o VOLTAGE
DIP AV
> MAXIMUM TRANSIENT _ 1 X 100%
VOLTAGE DIP (%) INITIAL VOLTAGE
€D MAXIMUM
2 TRANSIENT
m ﬂ VOLTAGE
—— FAUL biP
CLEARED 3 9
0 10 * . 1t0 3
o
SECONDS SECONDS MINUTES

TIME

Eastern Interconnection
70,000 nodes,
5,000-10,000 generators,

100,000+ state variables,
100,000+ other variables.

=Rre
L . ; | v i
-y Tt i - r .~ .
= T E g
Y '

T - [T
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 The differential equations to be solved for transient stability analysis are nonlinear
ordinary differential equations with known initial values x=x,, and =¢,

dx
7: f(X,f) — AX= f(X,f)Af
t
where x is the state vector of n dependent variables and 7 is the independent variable (time). The
objective 1s to solve x as a function of ¢

— computing the value of x at any time ¢ using the values of x from
, €.g. Euler and R-K methods

(Forward) Euler method: X, =X, +f(x,,7,)A¢

— Using interpolation functions for the expression under the
integral, e.g. the Backward Euler and Trapezoidal Rule methods

Backward Euler method: X, =X + f(x,,,t, )At

© 2021 Kai Sun
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B _ rnp)

 The Euler method is equivalent to dt
about x around the point (x,, #,), referred to as a first-order method
(whose error is on the order of A7)

— Approximate the curve at x=x, and =¢, by its tangent

dx

dt

dx
:f(xo:to) Ax =~ —
% dt

At

X0

dx
X, =X, +Ax=x,+—

= At =x,+ f(x,,1,)At

X0

>— B2

— At step i+1:
X =X+ f(x;, 1) At

« It is explicit compared to the Backward Euler Method (implicit)

X =X+ f(xi+19 ti+1)At -

» The forward Euler method results in inaccuracy and a propagation of the
truncation error because it uses the derivative only from the beginning of
each interval throughout the entire interval. |

I
1
|
I
I
I
I
I
|
|
|
I
|

I
— At —w— At —— At —
! I
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Modified Euler (ME) Method

» Modified Euler method consists of two steps:

Predictor step:
(a) Predictor step , Jx
X5 =x,+—

1 y At =x,+ f(x,,1,)At

X0

Slope at the beginning of At

The derivative at the end of the Af 1s estimated using x,” ‘ ‘
dx » .
E =f (xl ,4,)  Estimated slope at the end of At
(b) Corrector step: i
dx|  dx
dt|,, dtls ’ Fx,t)+ f(xP 8,
X, x X, 0 )+ (X ,1 c _ P27 i+1%7i+
XIC:XO-F 2 lAt:XO-l-f(O 0)2f(1 I)Af xi+l_xi+ 2 1 1 Af

« It is a second-order method (error is on the order of A7)

* Step size Af must be small enough to obtain a reasonably accurate solution, but at the same time, large enough
to avoid the numerical instability with the computer.
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dx
== J(x,2)
 General formula of the 2" order R-K method (RK2):
(error is on the order of A#)

k, = f(xoato)
k, = f(x,+ak,,t, + PAt)
x, = x, +(ak, +a,k,)At

At Step i+1:
k= 1(x;,1) When a,=a,=1/2, o==1, the RK2 method becomes
k2 = f ( X, + akl 1+ ,BAt) the ME method (i.e. a special case of RK2)

X, =x +(ak +a,k,)At

 General formula of the 4™ order R-K method: ko= f(x;,t)
(error is on the order of Ar) k, = f(x + k o+ % )
k At
k. +2k, +2k, +k _ i, A
X, =x +-1 2 3 7R Ay ks f(xl+2at,+2)

k,=f(x, +k,,t +At)
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» Numerical stability is related to the of the set of differential equations
representing the system.

* The 1s measured by the ratio of the largest to smallest time constant, or
more precisely by of the linearized system.

1n a transient stability simulation increases with more details (more
smaller time constants) being modeled.

« Explicit integration methods have weak stability numerically; with stiff systems,
the solution “blows up” unless a small step size is used. Even after the fast modes
die out, small time steps continue to be required to maintain numerical stability.

© 2021 Kai Sun
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dx

f(x,1)

 Implicit methods use interpolation functions for the expression under the
integral. “Interpolation” implies the function must pass through the yet x(t))
unknown points at #,.

» A widely used implicit integration method i1s
. It uses linear interpolation.

 The stiffness of the system being analyzed affects accuracy but not

numerical stability. With larger time steps, high frequency modes and ) ‘
fast transients are filtered out, and the solutions for the slower modes is

still accurate. For example, for the Trapezoidal rule, only dynamic

modes faster than f(x,.,¢,) and f(x, .t ) are neglected.

4
5 =%t [ [ (vt =xgt | AL+ Bl xyr | 4] "t e [ e
0 m
At T
X :xo+7[f(xo’to)+f(x1’tl):| /
At
‘xn+1 :xn+7|:f(xn’tn)+f(xn+1’tn+1):|

Compared to ME method:

X =x0+%[f(xo,to)+f<xlp,tlﬂ fo h

1
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Comparison of Explicit and Implicit Methods

x=f(x,t) = A_ X

Euler Method (explicit)

X, =X_,+ f(xi—lati—l)At

XX, + A x At

max ~"i—1

=x,_ (1+4__ At)

.

x, =x,(1+ A At)

The method is numerically stabile if

1+4_ Atl<1

= A« has a negative real part and

At <

| A

max |

© 2021 Kai Sun

Backward Euler Method (implicit)

x, =x_,+f(x,t)At

~x_ +A XAt

max - 1

1
X =X T
1-A_ At

¥

1 i
1-A_ At

At can be arbitrarily large as long as
A has a negative real part

max

(this method has A-Stability)
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Simulating a General Multi-Machine System

 Overall system equations are expressed in the * Schemes for the solution of DE and AE are
general form comprising a set of 1st-order DEs characterized by these factors
(dynamic devices) and a set of algebraic — The integration method used to solve the DE,
equations (devices and network) either an implicit method or an explicit method.

— The method used to solve the AE (power flow

x =1(x, V) DE analysis), e.g. the Newton-Raphson method.
Ix,V)=YV AE — The interfacing between the DE and AE: either a
partitioned approach or a simultaneous approach
where may be used
X state vector of the system * Most commercialized power system simulation

programs provide the Modified Euler, 2" order R-K,

bus voltage vector 4t order R-K and Trapezoidal Rule methods
current injection vector

< = <

Ny  nhode admittance matrix. It 1s constant
except for changes introduced by
network-switching operations; it 1s
symmetrical except for the dissymmetry
introduced by phase-shifting transformers.
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x =1(x, V)
IxV)=Y,V

DE
AE

e At each time step ¢,

I(x,,V )=-Y,\V, =0

X Alternating V

n n

x =f(x,,V )

e To solve V, x may not be known accurately.

 Similarly, to solve x, V may be only approximately
available.

» This can lead to interface errors, the elimination of
which would require (ie. V=V I
V =2 .)or of the solution process at each
time step until

'V, -V, ke

© 2021 Kai Sun

» Partitioned approach with explicit integration:

.

11.

At =07, the system is in the steady state, initial values of x,
V and I are known, and f(x,, V,,)=0.

Following a disturbance (e.g. a fault), x cannot change
instantly. Solve AE for V and I, the corresponding power
flows and other non-state variables of interest at ~=0". Then,
compute f(x, V), i.e. dx/dt.

Perform explicit integration by, e.g., the RK2 method to
solve DE for each time step of Az: (say step 7,.)

Compute k,=f(x,, V,)At and k,=f(x,+k,, V,)At at ¢,.
Compute x, . ,=x,+(k,*k,)/2

Using x,,, solve AE by, e.g. N-R method, to give V, ., and
I ,. Thus all values for ¢,,, can be obtained. If the system
has a switching operation, the network variables change
instantly but not the state variables

Programming flexibility, simplicity, reliability

and robustness. Since the solution of DE requires values
only from the previous step, the DE associated with each
device may be solved independently

: Susceptibility to numerical instability. For a

stiff system, a small time step 1s required throughout the
solution period.
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Partitioned scheme with current-injection models for all devices

I(Xn’Vn ) - YNVn — O

Alternating

x =f(x,,V,)

© 2021 Kai Sun
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n

I

1

| Generator ‘
Generator DEs: V. l.
ds @—I—»— Network AEs:
—=Aw, -
. Vil
2H dA A / /
= E,—F K, “ @4—V
w, dt @,
Dynamic device g N
Generator AEs: I = i ‘*]Q’ = ZY.V
— i (5-712 l 4 j=1 o
E =e /7y IVka
E =E'-(R,+ jX)I, ol
« i Constant
P, =Re(E 1) i current/power
J = ej(é—;z'/2)] Y load
i t —
A Vi |
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Simultaneous Solution with Implicit Integration

x=f(x,V) Kt = %yt S g, V) 5, V)]
Trapezoidal rule

O — I(X9 V) o YNV I(xu+l’vn+l) - YNVnH 1

F(x,.,, V) = % X o [, Vo) H®&, V)] = 0
2

G(xml’vnd-l) - YNle_I(xnﬂ’vml) =0
k+1 k /IJ
Solved by N-R method: T . . A¥n
k+ k k
N L vn+: 1":,-11+1 E‘le
k
“F(X,,1,V5.1) AXpg ) _
k k =J k oF iF.‘_
~G(xp.15 Vi) AV, 9x aVv A, B,
J = -
9G 9G Cp (Yy+Yp)
9x V|
47
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