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« Small-signal stability analysis methods
* Small-signal stability enhancement

References:

— EPRI Dynamic Tutorial

— Chapters 12 and 17 of Kundur’s “Power System Stability and Control”

— Chapter 3 of Anderson’s “Power System Control and Stability”

— Joe H. Chow, “Power System Coherency and Model Reduction,” Springer, 2013
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Power Oscillations

» The power system naturally enters periods of oscillation as it continually adjusts to new operating
conditions or experiences other disturbances.

 Typically, oscillations have a small amplitude and do not last long.

* When the oscillation amplitude becomes large or the oscillations are sustained, a response is required:
— A system operator may have the opportunity to respond and eliminate harmful oscillations or,
— less desirably, protective relays may activate to trip system elements.

-
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Small Signal Stability

Small signal stability (also referred to as small-disturbance stability) 1s the ability of
a power system to maintain synchronism when subjected to small disturbances

* In this context, a disturbance 1s considered to be small if the
equations that describe the resulting response of the system
may be linearized for the purpose of analysis. Po+k(5-5,)
0 0

P(5)

* It is convenient to assume that the disturbances causing the
changes already disappear and details on the disturbance are
unimportant

» The system is stable only if it returns to its original state, 1.e.
a stable equilibrium point (SEP). Thus, only the behaviors in
a small neighborhood of the SEP are concerned and can be
analyzed using the linear control theory.
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1 I
Classic-Model SMIB System P40, - P40,
‘ X
d
With all resistances neglected: E'L8 i s - E, /L0
T
dé Y - w dAS A *
e e AS=5-6, dr s
YH d K _. @,=21x60~377 rad/s
“ =7 — L2 (v, —w,)—T, Ao 2HdAwr:T —K,Aw, —T, :
W, dt W, t H 1ms
/ =AT, —K,Aw, —AT, | @ inrad/s
o .. FEE; . .
lo=F= Fusin == "sind ~AT, —K,Aw —K,A§ O inrad
| 4 K, inp.u
Linearize swing equations at 0=0,, :
oT
AT ~—=Ad= KA
06 /
E'E
K,=P_ cosd, =—=cosd,
max dA6
T — =w,Aw,
Synchronizing torque coefficient dt
2HIBY: AT K Aw — K AS
dt
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State-space representation

afas || 0“0 | [as] [o]ar,
dt |Aw | |- Ry Ky Aw. | |1]| 2H
2H  2H
NG+ K g B p 5 AT,
2H 2H

* Apply Laplace Transform:

AS— 1 y W, AT
o K, K, oH
2H 2H

* Characteristic equation:

K
Sz—i—KD s+ —9
2H 2H
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Synchronizing torque
component

Damping torque
component

K¢ = synchronizing torque coefficient in pu torque/rad
K, = damping torque coefficient in pu torque/pu speed deviation
H = inertia constant in MW-s/MVA
Ao, = speed deviation in pu = (0,-®y)/©,
Ad = rotor angle deviation in elec. rad
s = Laplace operator
®, = rated speed in elec. rad/s = 2=f,
= 377 for a 60 Hz system

Figure 12.5 Block diagram of a single-machine infinite
bus system with classical generator model



Harmonic oscillator

. , D K >, Kp Kw,
x—D- — —=0 s"+—=s54+——=0

x—D-x ST+ ; s + I, Y, Y,

¢ — Damping ratio
2 2 _ o N
ST 2CwnS tw, =(—s)s—s)=0 @, — Natural frequency
It has two conjugate complex roots and its zero-input
response 1s a damped sinusoidal oscillation:

Jey Slasz:Uijwz_cwnijwn‘\ll_gz\

(TR T — w,y1 -2 Observed oscillation
| ot : frequenc
-\, x(t) = Ae” sin(wt + ) 4/q 4
. 6 g = Ae " sin(w +/1—C’t+ @)

_Cmn E
E Damping angle 1
' - Time to decay to 1/e=36.8%: 7=—-1/0=—
S = o,
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Oscillation Frequency and Damping Ratio of an SMIB System

T 2w s+ w =0 8,5=0Fjw=—W,Ejw1-C

K, Kuw E'E,
P —Ls+——L=0 K, = cosd, = P__cos§
2H 2H (s X, ’ o)
jou Observed oscillation frequency Natural frequency

PR ¢ Im— w, 1-¢2 K2 _ / 2 2z wO _
AN w =w 1= :\/KS L TN = \/KSE

2H 16H

o, “Damping” in general Damping ratio frequency
| K —
SH ® _O-:Cwn: — C:—U:l KD =
4H w, 2 K,2Hw,

* How do w, and C change with the following?
— if H{ (lower inertia)
— if X\ (stronger transmission)
— if §,  (lower loading)
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Note the units:
A, 1s in p.u.
A 1s in rad.
K,isinp.u

K 1s in p.u/rad

w,E'E, cosé,

2HX,

XT

8w,HE'E , cos §,




2
x2 _wn / wO _2 Cwn x2

(¢) = Ax(¢) + BAu(t)

X

1
YOy =@ =

1

Xy

(Assuming the angle and speed
to be directly measured)
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Apply Laplace transform:

sX(s5) - x(0) = AX(s) + BAU(s)

AU(s) :&

S

Y(s)=X(s)=(sI-A)"'[x(0) BAU(s)]
7 A\

Zero-input Zero-state

s+20w, w,
—w’lw, s
X(s) =—5——"— 0) BAU
() s*+ 2w, s + wnz [X( ) (S)]
s+20w, w, o
AS(s) | |—w,w, s | [A80) g )
Aw,(5)| *+2ws+w? |Aw, (0) Au
LS5
1 !

Zero-input Zero-state



S, 0 A, =06 = Jwy |
A |wliiw, s | [ A8O) AO ) w, =A6/w, =(w, —w,)/w, inpu
Aw (s) s + 2w, s +w,” |Aw, (0) 24 Au = ég pu
)

Zero-input response

Zero-state response

* E.g. when the rotor is suddenly perturbed by a
small angle A3(0)#0 and assume Aw, (0)=0

* E.g. when there is a small increase in
mechanical torque AT, (= AP,, in pu)

Au
(s +2¢w,)A6(0) AS(s) = il
A6(S):Sz+2gws+w2 s(s*+28w, s+ w)
' ' Inverse Laplace Au
2 Aw (s)=
Aw (§)=— W, 80(0) /wy transform 5) s’ +2lw,s + @
' S2 +2Cwns —I_wnz \/
Ad inrad = we_cw"t sin(wt + 0) A inrad = COOAT’;‘ - L eogin (ot +6)
1-¢ Ho, -2
Aw, inrad/s = —Lé((z))e_@’”’ sin wt Aw, in rad/s = AL, e *' sin wt
V1=¢ 2Hw \J1-¢°

Damping angle: @ =cos™ £
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Saadat’s Examples 11.2 & 11.3 |
, Xe=02 | X1z = 0.3
« H=9.94s, K,=0.138pu, T, =0.6 pu with PF=0.8. = S ¢
Find the responses of the rotor angle and frequency O il
under these disturbances X, =03 1 A1p =0
(1) A5(0)=10°=0.1745 rad
FIGURE 11.7
(2) APm=O.2pu One-line diagram for Example 11.2.

Zero-input response: Ad(0)=10°

Zero-state response: AP_=0.2pu

5(0)=16.79+10=26.79°

2
(=)

30 24
2 %
kL 2
g%
f £ 20
= S
[~}
E ST
A
16
60.1
60.1
N N
= 60.05 L
E 60 E
g 5995 | ;'; 60
[ i
59.9 ,
1 ] ] ] ]
59.85 1 1 | | | 59.85
0 0.5 1 1.5 2 25 3 0
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Small-Signal Stability of a Multi-machine System

Inter-area or intra-area
modes (0.1-0.7Hz):

machines in one part of the
system swing against
machines in other parts

Inter-area model (0.1-0.3Hz):

involving all the generators in the system; the system is essentially
split into two parts, with generators in one part swinging against
machines in the other parts.

Intra-area mode (0.4-0.7Hz):
involving subgroups of generators swinging against each other.

Local modes (0.7-2Hz):

oscillations involve a small
part of the system

Local plant modes:

associated with rotor angle oscillations of a single generator or a
single plant against the rest of the system; similar to the single-
machine-infinite bus system

Inter-machine or interplant modes:
associated with oscillations between the rotors of a few generators
close to each other

Control or torsional modes
(2Hz -)

Due to inadequate tuning of the control systems, €.g. generator
excitation systems, HVDC converters and SVCs, or torsional
interaction (sub-synchronous resonance) with power system control

© 2021 Kai Sun
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« Whenever power flows, I°R losses occur. These energy losses help to reduce the amplitude of the
oscillation.

» High frequency (>1.0 HZ) oscillations are damped more rapidly than low frequency (<1.0 HZ)
oscillations.

* Power system operators do not want any oscillations. However, when oscillations occur, it is better
to have high frequency oscillations than low frequency oscillations.

* The power system can naturally dampen high frequency oscillations.
, which may exist for a long time, become sustained
(undamped) oscillations, and even trigger protective relays to trip elements

© 2021 Kai Sun 13



Oscillation Modes of a Multi-machine System in the Classic Model

2H. d’5, _p P i=1,2,-.n (Ignoring damping)

a)o dt mi el

P, =E!G, +ZP = E°G, +ZE’E' Y.T”ed|cos(6’ij—é‘lj):El.’zGﬁ+Zn:El.’E]’.(Bij sin g, + G, cos 5, )

J=1
];tl ];tz J#I

— red red . .
0y =0,=0;, Y7 =Y;" | L 6;= G+ B,

Linearization at &, 248 ddam + Zn: K, 6,,=0 i=12n PN
51] 51]0+5ijA a)o ! §¢}
51115 ~SIno,, +0,, COSO. n
ij0 ijA ij0 2H d 5A
. E'E' (B, cosd,, G sin o o.. =0
COS O, ~ COS Oy — O, SIN T, w, dt’ JZ“I ( ! 70 ”0) ve
JED

Synchronizing power coefficient

6}3] rr/ /
= = EiEj (BIJ CoS 51.1.0 — G sin 5110) compared to K, =

71850

£ cos,
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2H, d’ 5 ” Note: There are only (n—1) independent equations because Zé‘ij:O

o Z 59gs = =1,2,-,n 55 we need to formulate the (n—1) independent relative rotor angle
0 ];tl equations with one reference machine, e.g., the n™ machine.
2 2 n-1
do, do, 0 X Wy _
By DN K O~ K, 6,,=0, i=1---,n-1
dt dt 2H, 5 2H 5
J#I

Consider each 0,,,=0,,-0,

n

as,. | o, W ’“( 0 0 j
A K, +——K_ |0, .+ K, ——K_ .0, =0 i=1--,n-1
dt’ 2HZJZ' " 2H : d 0

]il

i jnA
j=1
n
o Wy Z @y @y . @y
ii 2Hl = Sij 2H sni ij 2Hn snj ZH Sij
J#i
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X0 = OpunsOgpns™ s 5(n—l)nA

v 1 0 01 » 7
1 1
1
X, 0 0 0 X,
i 0 0 - 1|, X, {0 I}
n-1 _ n—1 . =
X, | o -a,, S AT X, X, A 0
3.5,1“ Ay, —0>, _aZ(n—l) 0 Xyt
| X202 Ty T T T ) L 202 ]

e Its characteristic equation |A°I-A|=0 has 2(n-1) imaginary
roots, which occur 1n (n-1) complex conjugate pairs

* An n-machine system has (n-1) modes

Read Anderson’s Examples 3.2 and 3.3 on linearization and eigen-analysis of the IEEE 9-bus system.

© 2021 Kai Sun
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 Such state equations for all the dynamic devices in the system

 The linearized model of each dynamic device: . :
may be combined into the form:

X. = A.X; + B.Av

X =A Xx+BjAv
Ai, =Cx, — Y. Av

Al =C x—-Y,Av

— Perturbed values of state variables . .
x is the vector of state variables of the complete system

X.

1

i — Current injection into network from device 1 . .
A and C, are block diagonal matrices composed of A, and

Av — Vector of network bus voltages C. associated with the individual devices

* Node equation of the transmission network:
B. and Y. have non-zero element corresponding only to .
1 .1 . Al - YNAV
the terminal voltage of the device and any remote bus

voltages used to control the device * The overall system state equation:

x=A.x+B, (Y, +Y,)" C,x =Ax
A=A, +B, (Y, +Y,) " C,

* Read Kundur’s sec. 12.7 for other related information, e.g.
load model linearization and selection of a reference rotor angle

Ai. and Av both have real and imaginary components

© 2021 Kai Sun 17



Modal analysis (eigen-analysis) on an n-dimensional nonlinear system

A power system can be described by

x=f(x,u)

X, = (X0 X XUy Uy )

X =

U, fi

“lopo| /2

u, | |
i=12,....n

Equilibrium x,, (with u,):
X, =f(x,,u,)=0
X=X, +Ax

u=u,+Au

X=X, +Ax =f((x, +Ax),(u, + Au))

Linearization at the equilibrium x,: consider a perturbation at x, and u,

Ax = AAX + BAu
A is the Jacobin matrix of f

EA
ox,

o
ox,

© 2021 Kai Sun

a9

Ox,

(58

Ox

n

A
ou,

%,

ou,

af,
Ou

r

Y.
Ou

r

> sAX(s)-AX(0)= AAX (s)+BAU(s)

AX(s)=(sI-A)"| AX(0)+BAU(s)

Zero flnpur Ze rarS.!are
adj(sI-A)
= AX(0)+ BAU
dot 1= A) X (0)+BAU(s)]
Characteristic equation of A
det(A-AI)=0
Poles of AX(s)

— Eigenvalues of A, 1.e. A=A, "1,

18



Eigenvalues: /=0t jw

» Each real eigenvalue (@=0) corresponds to one non-oscillatory mode:
a decaying mode has o <0; a mode with o>0 has aperiodic instability.

» Each conjugate pair of complex eigenvalues (w#0) corresponds to one oscillatory mode:

— Frequency of oscillation in Hz: /= w/2=n
— Damping ratio (rate of decay) of the oscillation amplitude

—O0

- Jo? + o?

1_f(0

Eigenvalues (L=0c+w)

Ae

e

| J©

A

Trajectory

'

'

<

)

N

Zy

Z]
Z

Z]
2

Z]

Type of singularity

Stable node

Unstable node

Saddle

e

Eigenvalues (L=c+m)

Ya

Lo

Iq

| jO

e

Trajectory

Type of singularity

Stable focus

Unstable focus

Vortex

© 2021 Kai Sun
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Eigen-vectors

e For any /4, a column vector ¢, satisfying A¢ = A¢. 1s called a right eigenvector of A associated with /..
e Similarly, a row vector y, satisfying w. A = Ay, 1s called a left eigenvector of A associated with /..

e If A has distinct eigenvalues (true for a system with no resonance), it has n right eigenvectors and » left eigenvectors:

Modal matrix ® =[¢,¢,,---, 9, |
AD®=DA A =diag(A,A, -, 1)
@ 'A®=A ic. A is diagonalized by ®

Vi
DefineW=|: |. Thereis yA =Awy

v, | or WAy ' =A ie. A is diagonalized by y '

e Obviously, row vectors of @' are left eigenvectors of A, or in other words, ¥ = C @!
where C is a diagonal matrix or simply equal to I if normalized.

e The left and right eigenvectors corresponding to different eigenvalues are orthogonal:

Yo=1 < wy¢=0ifizj, or vy =1

© 2021 Kai Sun 20



Free (zero-input) response and stability

Ax = AAx (Linearized power system without external forcing)

* Consider a new state vector z (defining a mode) that eliminates cross-coupling between state variables:

z. =1z, >z (t) =z (O)eﬂ‘f’

1

- — ! _Zl (t)_
Z=Az =0 Adz (0 )
Z .
< Pz=Adz = AX()=®z())=[¢, ¢ - ¢,] 2: =Z¢l-2-(0)e””
- i=1
(1))
z(t) = (I)_le(t) = ‘I‘Ax(t) Q
Zi(o):WiAX(O) Ax (t): Z (I)i\ViAX(O)eﬂit = Z (I)Z-Zl-(O)eﬂ"t
This is the magnitude of the ;:1 i=1
excitation on the i mode Ax, (1) = Z 6.z (0)e* =¢ 2z (0)e™ +..+¢ z (0)e™
i=1

Free response is a linear combination of #» modes.
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Mode Shape and Mode Composition

Variables Ax,, Ax,, ..

Variables z,, z,,

~ are transformed

sy Ly

are representations of the modes.

., Ax, are deviations of original state variables x, away from the SEP.

[ 2,(1) ] [z, (1) | A
AX(f)Z(I)Z(t):[d)I o, ¢n] Zzs(t) Zzz(t) = Z(f)ZTAX(f) = :\Ifz AX(Z‘)
" L2 (). |z, (1) v,
Ax, (1) = Z D2, (t) z,(1) = ZWikAxk(t)
A [4, 4, 6 1z EGINITR 2 || Ax ()
Ao | | by by 6, || z,(t) | _ ¥ Y Vo || A, (2)
Ax, ()] |, b b || 2, () 1z, W Va Vo ] AX, (2) ]

state variables each associated with only one mode, or on other words,

A right eigenvector ¢, gives the mode shape of the i
mode, 1.e. relative activities of original state variables
when the /" mode is excited: ¢,,, the k& element of ¢,,
measures the activity of x, in the i mode.

A left eigenvector y; gives the mode composition of the i
mode, 1.e. contributions of original state variables to the
mode: y;, the k" element of y; , weights the contribution
of x,’s activity to the /" mode

© 2021 Kai Sun 22



Participation factor

* Mode shape ¢ measures the activity of x, in the /" mode
* Mode composition i, weights the contribution of the activity of x, to the /» mode

* Participation factor p, = v, ¢ measures the bi-directional participation of the k"
state variable x, in the /" mode.

* p;; 1s dimensionless and hence invariant under changes of scale on the variables

P
max{| pli |9”'9|pni |}

Normalized participation factor based on the largest one

Yo = I_) ‘P(I) Zl//zk¢kz Zn:pkal Py = S‘l_jki <
k=1

Question: considering ¥=®-!, can we obtain mode compositions and participation
factors from mode shapes in practice?

© 2021 Kai Sun Learn Kundur’s Example 12.2 on an SMIB system 23



2H

_ Linearization at o,,:
H.5_p _£7G, ZE’E’( /sin, +G, coss,) On =0 %00 =0 =0 i
@, ij ij ij ij
];tl
. 2H .. D .
é‘ — —161A +_151A +(Ks12 +K 13)51A _Kslzé‘ZA K5135 =0
iA a)riA @, 0
2H, . D, .
3 2H . . —252A +_2§2A _Ks215m +(K521 +K 23)52A K523§ =0
la)riA___a) ZKWJ( jA):O l:1929'”9n @, @,
@, 2H, . D, .
L J¢l 75% +;§3A s315 Ks3252A (Ks31 +Ks32)53A =0
0 0
an 2 nl
K, =— =E.E.(B..cos§.0—G s1n50)
T 85 i\ ij ij
sy,
. _51A_ [ 1 0 0 __51A_
fiA = D 5, 0 o 1 0 |8,
W, =B, Zay W i=123 d |0 |_ 00 1 |6,
y dt| m, a4, —dp a; —p 0 0 W5
3
o, =N YK, a,=- % K L= b Oy | |0 —On Gy 0 =f 0 o,
ii Sij ij sij i
2H, ;2 2H, 2H, @y, | |y oy, —oy; 0 0 —fs || @34
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Modal Analysis on the IEEE 9-Bus System

* Linearized classic generator model: 6 state variables:
(Aw,,AS,,Aw,,,AS,,A®,;,AS,)

* Two loading conditions:
= Light load (LL)
= Heavy load (HL)

e Two fault scenarios:

= N-0

= N-I (line 5-7 1s tripped)

* (Cases summary

Case 1
Case 2

Case 3
Case 4

© 2021 Kai Sun

LL N-0
LL N-1
HL N-0
HL N-1

Bus8 j1poMmw

ISMVAR

Bus 2 Bus 7 - Bus 9 Bus 3
I 3 0.0085+j0.072 0.0119+j0.1008 3 1
2 N 3 B/2=]0.0745 B/2=j0.1045 3 [@
j0.065 j0.0586
163MW  1a/230 230/13.8 85MW
1.025p.u. 0.032+0.161 0.039+j0.170 1.025p.u.
B/2=j0.153 B/2j0.179
e BLIS 5 — Bus b
125MW | ‘
SOMW
=UDAVAR 0.010+j0.085  0.017+j0.092 30MVAR
B/2=j0.088 B/2=/0.079
Bus 4
j0.0576
16.5/230
Bus 1
1.04p.u.
o
Fig.1. IEEE 9-bus system
TABLE . PARAMETERS AND INITIAL CONDITIONS FOR THE SYSTEM THE
CLASSICAL MODEL
Generator 1 Generator 2 Generator 3
H 23.64 6.40 3.01
D 23.64 6.40 3.01
R, 0 0 0
X'y 0.0608 0.1198 0.1813
25



Case 1: Light-load, N-0

* Mode 1: A ,=ctjo=-0.2500 £j8.7969

Damp. ratio (§)= 2.84 %, Freq. (w/2m)=1.4001 Hz

State Mode shape Mode Comp. Part. Factor
Lot Ly W yATMY Pl 4

. 0326 180.00 1.261 180.00 0.411 0.00
A9, 0.037 88.37 11.094 -91.63 0.411 -3.26
A 1.000 0.00 1.000 0.00 1.000 0.00
0.114 -91.63 8.800 88.37 1.000 -3.26

A 0.556 0.00 0.261 0.00 0.145 0.00
0.063 -91.63 2.294 8837 0.145 -3.26

© 2021 Kai Sun

* Mode 2: 2, ;=ctjo=-0.2500 13.3564

Mode shapes

100MW

(¢4 and ¢, on rotor angles)

180

240

Damp. ratio ()= 1.87 %, Freq. (w/2n)=2.1257 Hz

%0 015

270

State Mode shape Mode Comp. Part. Factor
Loy Ly, Wl yA™ [Pl £Dy

0.042 180.00 0335 -180.00 0014  0.00

0.003 8893 4476 -91.07 0014 -2.14

Ml 0313 000 0665 180.00 0208  0.00
0.023 _88.93  8.883 -91.07 0208 _ -2.14
IV 1.000 0.00 1.000 0.00 1.000 0.0
B 0075 9107 13359 8893 1.000 -2.14

1
Bus 2 Bus 7 1 3SMVAR Bus 9 Bus 3
2 M ] |  0.0085+j0.072 010119+j0.1008 | 3 H 3
3 B/2=j0.0745 B/3=j0.1045 3. |
j0.065 \\ j0.0586
163MW 18230 ~e 230/13.8 85MW
1.025p.u. 0.032+j0.161 0.039+j0.178L, _ 1.025p.u
B/2=j0.153 B/250.179 | ~~~~a_
~~~~~
— Bus 5 - Bus 6 S
125MW | | i
SOMVAR 0.010+j0.085  0.017+j0.092 30MVAR
B/2=j0.088 _ - — - -B2=j0:029. _|
~~~~~~~
— G1 - 4” Bu51~~~
L d
22 Jitag j0.0576
3 .~ M 16.5/230
=t Bus1
1.04p.u.
$ 15"
2.4. IEEE 9-bus system
%0 0.08 G1
120 ‘ 60 G2
0.06 G3
150 . 0.04/ 30
2 \> B
180 oL AT oo 0
210 330
240 300
26
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Case 2: Light-load, N-1

* Mode 1: A ,=ctjo=-0.251)6.4294
Damp. ratio (§)= 3.89%, Freq. (w/2mn)=1.0233 Hz

Mode shape Mode Comp. Part. Factor

Ol Loy Wl Lwye el Loy
0.277 -180.00 1243 -175.55 0.344  4.45
0043 87.77 7.999 -87.77 0344  0.00

1.000 0.00 1.000 4.45 1.000 4.45
MOISS 9223 6434 9223 1.000 0.00
D 0533 0.00 0243 445 0130 4.45
B 0.083 -92.23 1565 9223 0.130  0.00

* Mode 2: 1, ;=ctjo=-0.254)13.3026

Damp. ratio ()= 1.88%, Freq. (w/2n)=2.1172 Hz

Mode shapes
(04 and o, on rotor angles)

Bus &

— 1
— G2
—G3

90 0-2
| 60

|
015
TT=~ 0

S
- ~ /

330

270

State Mode shape Mode Comp. Part. Factor
Dol Lo Wl Lwy bl Ly
0.042 180.00 0.335 180.00 0.014 0.00
0.003 &88.93 4476 -91.07 0.014 -2.14 .
0.313 180.00 0.665 180.00 0.208 0.00
A62 0.023 &88.93 8.883 -91.07 0.208 -2.14
A 1.000 0.00 1.000 0.00 1.000 0.00
© 2021 Kai Sun A5 0.075 -91.07 13.359 88.93 1.000 -2.14

! 100MW
Bus 2 Bus 7 b BMVAR  puso Bus 3
2 3 0.0085+j0.072 | (3,0119+j0.1008 3 3
D B/2=j0.0745 B/azj0.1045 3
j0.065 <. 1 joosss
163MW  18/230 S<do 230/13.8 85MW
1.025p.u. 0.032+j0.161 0.039+j0.170| ~~~~a___ 1.025p.u.
~M&:jcusa B/250.179 | T TT==elll
\
= Bus 5 — Bus 6
125MW
SOMVAR iy
0.010+j0.085 __ _ 0.017+i0.092 2J0MVAR
B/2:j0.088"  B/2=j0.079 |-~ __
’,/ Bus 4
-~ j0.0576
16.5/230
Bus1
1.04p.u.
0°
Fig.1. IEEE 9-bus system
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Case 3: Heavy-load, N-0

* Mode 1: 1, ,=ctjo=-0.254j8.5816
Damp. ratio ()= 2.91 %, Freq. (w/2m)=1.3658 Hz

Mode shape Mode Comp. Part. Factor

Ol Loy Wl Lwye Iy Py
DO 0313 180.00 1.244 -180.00 0.389  0.00
N 0.037 88.33 10.676  -91.67 0.389  -3.34
Moyl 1.000 0.00 1.000 0.00 1.000 0.00
R 0.117 91.67 8585 8833 1.000 -3.34
W 0522 0.00 0244 000 0.127  0.00
B 0.061 -91.67 2.091 8833 0.127 -3.34

* Mode 2: ), =ctjo=-0.254j13.3185
Damp. ratio (§)=1.88 %, Freq. (w/2n)=2.1197 Hz

1
1
1
1
1
1
\

Bus8 joomw
35MVAR
Bus 2 Bus 7 3 Bus 9 Bus 3
0.0085+/0.072 0.0119+j0.1008
=1 2=i0,1045
Mode shapes 0.065 \ e 0.0586
163MW mfzsn B 230/13.8 BMW
(¢k1 and ¢k2 on rotor angles) 1.025p.u. uuazﬁqzaz 0.039+j0.170 1.025p.u.
B/2=j0.15% B/2=j0.179
90 SSel
S0 60 G1 Bus§  TS~<l_ = Bus 6
! 125MW ~~
| \\ G2 mmwﬂl _______ ~sony__
A G3 0.010+/0.085~ ™~ 0.017+/0097] ~ I 3oMVAR =~~~
el  B/270.088 B2:0.079 | 00 T~<L TN
150 4 S~o
: % Bus 4 S~

180

210

240

\ | 7/
\\ /L‘(\)./Qs

~ Fig.1. IEEE 9-bus system
330

|
270

180

State Mode shape = Mode Comp. Part. Factor
0ol L, Wyl Lwy 10 Ly
0.045 180.00 0.364 180.00 0.016 0.00
AVE 0.003 8892 4847 -91.08 0.016 -2.15
A(Drz 0.300 180.00 0.636 180.00 0.191 0.00
0.023 88.92 8474 -91.08 0.191 -2.15
1.000 0.00 1.000 0.00 1.000 0.00
© 2021 Kai Sun m 0.075 -91.08 13.321 8892 1.000 -2.15

270

j0.0576
16.5/230

Bus 1

1.04p.u.
o
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Case 4: Heavy-load, N-1

* Mode 1: A, ,=ctjo=-0.254j5.5509
Damp. ratio ({)=4.50%, Freq. (w/2m)= 0.8835 Hz

Mode shape = Mode Comp. Part. Factor
Ol Loy vl Ly pad ZPyy
N0 0.226 180.00 1235 -174.84 0279  5.16
0041 87.42  6.863 -87.42 0279  0.00
1.000 0.00 1.000 5.6 1.000 5.16
m0180 -92.58 5557 92.58 1.000  0.00
0.531 0.00 0235 516 0.125 5.16
m0096 29258 1305 92.58 0.125  0.00

© 2021 Kai Sun

* Mode 2: ), ;=ctjo=-0.254j13.1477

150

210

Mode shapes
(¢4 and ¢, on rotor angles)

240

Damp. ratio ()= 1.90%, Freq. (w/2m)=2.0925 Hz

Siafs Mode shape = Mode Comp. Part. Factor

Dol Lo Wl Lwye Py P

0.044 180.00 0.382 180.00 0.017  0.00

AGIEN 0.003 88.91 5.024 -91.09 0.017 -2.18

AYoPSl 0.289 180.00 0.618 180.00 0.179  0.00

0.022 88.91 8.120 -91.09 0.179  -2.18
AR 1.000 0.00 1.000 0.00 1.000 0.00

0.076 -91.09 13.150 88.91 1.000 -2.18

N g2

270

——
-
-

G1
— G2
— G3

330

90 908

Bus8 joomw
35MVAR
Bus 2 Bus 7 ‘ . Bus9 Bus 3
3 I D.NSSﬂ;-GH 0.0118+j0.1008 | : 3
] =007 B/2:i0.1045 L
j0.065 \\ j0.0586
18/230 230/13.8 85MW
&D?-Z*}OJGT\ 0.039+j0.170 1.025p.u.
Nj:qu.lss R B/25j0.179
\NN
= Bus 5 LIS _ Bus 6
125MwW ~1~
_______ BOTW
REMAR 0.010+0.08%  0.01707092 - ¥ _30MvAR ~=~~_
_--[Bl2=j0.088 Bfzsi0079 | 0 T~~o_ S
~~~~~
el Bus 4 RS
e 0.0576
- 16.5/230
Bus1
1.04p.u.
o
Fig.1. IEEE 9-bus system
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* The problem of small-signal stability is usually associated with insufficient damping of
system oscillations.

— The use of to control generator excitation systems 1s
the , whose 1dea 1s to modulate the generator excitation so
as to develop a component of electrical torque with rotor speed deviation, 1.€.

a positive damping torque component.

— Additionally, supplemental stabilizing signals may be used to modulate
converters and devices, e.g. SVCs, to enhance damping.

* The controls used for small-signal stability enhancement should
. Therefore, while the controls are designed using
linear system techniques, their overall performance should be assessed by

* Read Kundur’s chapter 17.2 “Small- Signal Stability Enhancement”
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* Generate the mode-decoupled normal form (z modes, » inputs and m outputs) on z:

Ax =A,Ax+B Au /o z =@®'A ®z+®'B,_Au =A,_z+B' Au
X=wz
Ay=C _Ax+D_ Au Ay=C ®z+D_ _Au =C z+D__Au

mxn mxr mxn

Mode controllability matrix (~ mode compositions): B == ®'B,_=¥B,
— If i-th row of B' is zero, inputs in Au have no effect on z; (mode 7)
Mode observability matrix (~ mode shapes): c =C @

— If i-th column of C" 1s zero, z; (mode i) 1s unobservable from Ay

 Transfer function (single input-single output)

Z = Az+YDbAu G(S) Ay(S) —c (I)[SI A] Yh = Z i
Ay =c Dz Au(s) o S—A

Residual: R = CT(I)Z.\|I b

Observability  Controllability

© 2021 Kai Sun
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1. Delta-omega PSS (Shaft speed) 3. Frequency based PSS:

* Successful on hydraulic units since the mid-1960s; it needs « Either directly uses or derives
to minimize the (not rotating from terminal voltage and current
exactly in line with the axis); « Frequency signal is more sensitive to inter-area

* For thermal units, and has to be oscillations, so it helps damp an inter-area mode better
customized for each type of generators against oscillations than the speed input signal.

or instability of torsional modes (typically, >10Hz).

» Shortcomings include
2. Delta-P-omega PSS

— During a rapid transient, the terminal frequency signal will

AP AP AP (s AP (s undergo a sudden phase shift and may
Ao, (s)=2tnl8)_ALG)_ G(s)[—( ) +Aw(s)}——( )
o M Ms Ms Ms . .
N . With torsional modes — The frequency signal often contains
o torsional ) )
modes L Y J caused by large industrial loads such as furnaces.
No torsional modes since it has the same basic
® limitation as the delta-omega PSS
Ao (=) Gs) ()% [ pgs |y 5
'.Torsional filter .
— 4. Digital PSS:
1 : .. o
Me™us  Software program in the digital excitation control system.

®, = base frequency, rad/s
M = inertia coefficient = 2H
s =dldt

Figure 17.10 Block diagram realization of delta-P-omega stabilizer
© 2021 Kai Sun 32



« An SVC can contribute to the enhancement of the power system dynamic performance by rapidly
controlling the voltage and reactive power:

— Normally, to improve voltage stability and
transient stability.

depending on
the location, input signals and controller design.

» Placement of an SVC for small-signal stability enhancement:

— Usually, an SVC may be placed on the dominant oscillation path near the center of oscillation (at
the middle of the interconnection between two areas, where voltage swings are the greatest).

— For a large complex system, the SVC should be placed
(with the highest voltage participation factor).

© 2021 Kai Sun
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Dominant Oscillation Path and Center of an Inter-area Mode

« About a specific inter-area mode at o, the path
and center of oscillation are important for
monitoring and control purposes

— Dominant oscillation path: the path where
changes of line current magnitudes are the
largest about the mode in terms of power
spectral densities (PSDs).

— Center of oscillation: the bus on the dominant
oscillation path that has the largest change in
voltage magnitude and the smallest change in
voltage angle about the mode.

For x(¢) (¢€[0, T]) with Fourier transform X(w)

1 :
PSD: (@) = lim ?E[X (@)X (o)

© 2021 Kai Sun

1 4 3 5 2
G, ‘ L% G,
@) 711777777 2e®  PYSEEEEEER
0.8 - LA PYVY YV S R
CIREHERRPE Y 22224 dARRARARARAL IS T j
02t g®¥ T Il
1 4 3 5 2
{b}l—,m* T T T T T T T T T T T T T T T T T T 1T
os| T 9eegg :
Se 0 h‘...'.“llllllll
_(i_j_llllIIIIIIIIIIIIIIIIII'I.."’#:"EI‘:‘I'__.
1 4 3 5 2
(C}D,é:l’—;:*.llllllllllllllllllllll**’ll
061 11 |’==: zg!:. Pt
1ol o4liiiiii]198g ' LAREREEE
M ERRERERERRE ] | ?'...... 1]
'DIIIIIIIIIIII”L.Q,|||||||||||
1 4 3 5 2
(d)
100 |~
LSpldeg.] 0009000000000 080 | @ (CascA:lI0MW
_lm_||||||||||||||||'.'CQSEB:%DMW

1 4 3 5 2

Fig. 10.15 Voltage magnitude and angle modeshapes of the dominant path in the two-area sys-
tem. a Voltage magnitude modeshape, b Voltage angle modeshape, ¢ Magnitude of voltage angle
modeshape. d Phase of voltage angle modeshape

For details, see Chapter 10 (by Vanfretti, Chompoobutrgool and Chow) of Chow’s book
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Example on the WECC System

* Identify the oscillation path and center on

the 0.25Hz mode

|Sv|

© 2021 Kai Sun
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Effect of SVC on an Inter-area mode

Regulator TCR
Vg Lo /1_ 0 400 MW
+/£ 1+0.65s /_ 1 Gl 1 5 6 7110 km® 110 km 10 11 3 G3
Veve \E/Vu 10.0 T302s ‘/ 170,02+ @_‘_@st km | 10 km p A0 km |25 km| @_‘_@
] | F‘ 1 |
0.0 5 + r % 5 q
L = L
Fixed capacitor Bsyc (pu) 9 ! SVC ) ) 4
1
Lo 2 G2 G4
) R o
o : Oc = 200 MVAT Area | Area 2
0, =200 MVAr

Figure 17.15 A simple two-area system
Figure 17.17 Block diagram of SVC and voltage regulator

Table 17.6 Effect of SVC on interarea mode (frequency and damping ratio)

. No SVC With SVC
System Condition
Frequency C Frequency C
Prefault 0.540 Hz 0.0064 0.547 Hz 0.0096
Postfault 0.417 Hz -0.0228 0.476 Hz 0.0154

© 2021 Kai Sun
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Selecting the supplementary control signal

Ay(S) C
V. (8)

G(s)=

DX

i=1

c¢\|1b
S/l ZZI:

Gl

T

* SVC (providing Au of the system to eliminate V,,,) should be
placed at the bus with good mode controllability, 1.e. having a
large value of y;b

* Its supplementary control signal (i.e. Ay of the system) should

have good mode observability, i.e. having a large value of ¢’¢,
Table 17.7 Residues and observability factors

© 2021 Kai Sun

1
|
|

Arca 1

Signal Prefault Postfault
Residue Observability Residue Observability
Ao of Gl -0.2680-/0.1156 0.8738 -0.9522-j0.3651 0.5471
Ao of G2 -0.2121-/0.1004 0.7025 -0.7733 -50.3347 0.4510
Ao of G3 0.4588+0.1121 1.4140 2.6200+70.2945 1.4140
Ao of G4 0.4064 +j0.0947 1.2510 2.4380+0.2469 1.3140
AP, line 6-7 -0.2286 +j0.4914 1.6230 -0.6551+j1.5160 0.8861
AP, line 10-9 | 0.2122-/0.8560 2.6400 0.5305-j4.3570 2.3550
AQ, line 6-7 [ -0.0310+70.2107 0.6375 0.1289+1.2020 0.6847
AQ, line 10-9 | -0.0400+;0.2346 0.7126 -0.0924 +71.6290 0.8752
Al line 6-7 -0.3157+j0.8618 2.7980 -0.8919 +/3.4640 1.9120
Al line 10-9 0.2615-j0.8732 2.7290 0.6484 -3.8810 1110 I

5
!
!

G2

6 7110km8110m 13 G3
@ 25 km | 10 km \ F 10 k 25kmi@| @

oL

___________

Figure 17.15 A simple two-area system
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T , ; |
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Frequency in Hz
1
-
L 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Frequency response of the transfer function between the SVC
input and the current in line between buses 9 and 10
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Designing the supplementary control

Power system

Ve —&—1 W Al

——  H(s)
G (s) = Al _ G(s)
V,. 1+G(s)H (s)
Design A, =0+ jo
1 1
H(A,) = Z£180°—arg(G(4,))

TG4 |G(A)]

Table 17.8 The desired location of the eigenvalues and
the value of the system transfer function

Prefault System Postfault System

New Eigenvalue
Location

Vatue of Transfer
Function

New Eigenvalue
Location

Value of Transfer
Function

-0.1274/3.544

4.262/137.8°

~0.576+/3.498

4.177£132.3°

H(A")=0.235./42.2°

© 2021 Kai Sun

H(A)=0.239./47.7°

0.1 Vref
/_
5 _
7 10s 0.1 1+0.49s (3 v
1+10s 1+0.245 k[/
_/
-0.1 Vsve

I = magnitude of current in line between buses 9 and 10

Figure 17.20 Supplementary control block diagram
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100

3 Prefault: f=0.564 Hz £=0.036
5 80 F
P i Postfault: £=0.557 Hz £=0.163
&)
=
o & 60f
Eg:
S a0f
[ =BT
= o 2
— o
S | y ';
0 1 1 1 1 i —g
0 5 10 15 20 25 30 =
=14]
Time in seconds g
Q
800 &
§ E
[~ =]
5 01510 15 20 25 30
2. 700t Time in seconds
QL
& SVC without SVC with
© 650 & supplementary control supplementary control
)

600 L i : : : ) Figure 17.21 System response to a severe disturbance with and
0 > 10 15 20 25 30 without supplementary control of an SVC at bus 8

Time in seconds
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Model-based methods vs. Measurement-based methods

 Model-based methods: * Measurement-based methods
Linearized model (e.g. Prony analysis):

Input: AX(t) = AAX(?)
y(t) = CAX(¢)

Measurements on y(t)

Signal processing and
decomposition to find
Eigen-analysis a number of damped
to find A=0c 1w, sinusoids of o;, »; and
B s Wi s D ¢; whose weighted
\/ sum matches y(¢)
Output: y (1) = CiAX (f) A=oHjo;, B;=|B;| <o,
< ot - N it
=> ¢ ,z,(0)e™ DoIB, L sinwi+) ~ ¥ (D=2, Be
i=1 i i=
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* Given the data of y(7) at the j-th location over a time window 7 sampled at intervals of 7.=7/N: y[0], y[2], ..., V[N-1].

p p
 Consider p modes: y(t) = ZBieiit = ZBieait sin(wt + ;)
i=1 i=1

P
:: > k | |
Wk1=D Bz' wherez' =" and z, = ¢*"
i1

 The problem is to find the estimates for all complex numbers B, and z,. Since the number of equations 1s N and the number of

real unknowns is 4p, so N>4p should be guaranteed.

— Step 1: Solve modes z,,..., z, by constructing a p-th order polynomial equation based on Autoregressive model AR(p):

z? —alzp_1 ——a,z—a, =0 <::
iiz(lnzl.)/TS

— Step 2: Solve B, ..., B,

4
y[k] = ZBiZik =Bz +B,z, +- -szpk =
i=1

Ax (0 =Y ¢ (1)

- pl ]
p+1]

VN =11

y[0]
y[1]

p-1]
ypl

V[N —1]

| VN =2]

yp-2]
p-1]

AN-3] -

y[0]
V1]

VN =-p-1]]

y=Tx=
x=(T'T) T'y

Using Matlab pseudo-
inverse function:

X = pinv(T)*y

— Step 3: Repeat Steps 1-2 at data from multiple locations. Values of B; at these locations give the mode shape of mode i.

Ref: Hauer, J.F.; et al, "Initial results in Prony analysis of power system response signals," /IEEE Transactions on Power Systems,
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vol.5, no.1, pp.80-89, Feb 1990
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