Homework #2

Question 1: Derive the flux and voltage equations and equivalnet circuits for a round rotor machine.

For a salient pole machine, using Park's transformation

$$\mathbf{P} = \sqrt{2/3} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta + 2\pi/3) \\ -\sin\theta & -\sin(\theta - 2\pi/3) & -\sin(\theta + 2\pi/3) \end{bmatrix}$$

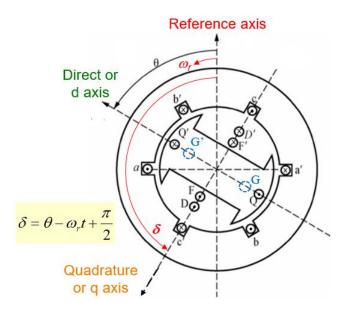
we already derived the following inductance matrices and the flux and voltage equations in class.

$$\mathbf{L}_{SS} = \begin{bmatrix} L_s + L_m \cos 2\theta & -M_s - L_m \cos 2\left(\theta + \frac{\pi}{6}\right) & -M_s - L_m \cos 2\left(\theta + \frac{5\pi}{6}\right) \\ -M_s - L_m \cos 2\left(\theta + \frac{\pi}{6}\right) & L_s + L_m \cos 2(\theta - \frac{2\pi}{3}) & -M_s - L_m \cos 2\left(\theta - \frac{\pi}{2}\right) \\ -M_s - L_m \cos 2\left(\theta + \frac{5\pi}{6}\right) & -M_s - L_m \cos 2\left(\theta - \frac{\pi}{2}\right) & L_s + L_m \cos 2(\theta - \frac{\pi}{3}) \end{bmatrix}$$

$$\mathbf{L}_{SR} = \begin{bmatrix} M_{r} \cos \theta & M_{D} \cos \theta & -M_{Q} \sin \theta \\ M_{r} \cos \left(\theta - \frac{2\pi}{3}\right) & M_{D} \cos \left(\theta - \frac{2\pi}{3}\right) & -M_{Q} \sin \left(\theta - \frac{2\pi}{3}\right) \end{bmatrix} , \quad \mathbf{L}_{RR} = \begin{bmatrix} L^F & M_R & 0 \\ M_R & L_D & 0 \\ 0 & 0 & L_Q \end{bmatrix}$$

$$\begin{bmatrix} \Psi_0 \\ \Psi_d \\ \Psi_r \\ \Psi_D \\ \Psi_r \\ \Psi_D \\ \Psi_q \\ \Psi_Q \end{bmatrix} = \begin{bmatrix} L_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & L_d & kM_F & kM_D & 0 & 0 \\ 0 & kM_D & M_R & L_D & 0 & 0 \\ 0 & 0 & 0 & 0 & L_q & kM_Q \\ 0 & 0 & 0 & 0 & 0 & L_q & kM_Q \\ 0 & 0 & 0 & 0 & 0 & kM_Q & L_Q \end{bmatrix} \begin{bmatrix} -i_0 \\ -i_d \\ -i_F \\ i_D \\ i_Q \\ i_Q \end{bmatrix} = \begin{bmatrix} R_a + 3R_n & 0 & 0 & 0 & 0 & 0 \\ 0 & R_a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & R_g & 0 & 0 \\ 0 & 0 & 0 & R_g & 0 & 0 \\ 0 & 0 & 0 & 0 & R_g & 0 \\ 0 & 0 & 0 & 0 & 0 & R_g \end{bmatrix} \begin{bmatrix} -i_0 \\ -i_d \\ i_p \\ i_Q \\ i_Q \end{bmatrix} + \begin{bmatrix} L_0 + 3L_n & 0 & 0 & 0 & 0 & 0 \\ 0 & kM_F & kM_D & 0 & 0 \\ 0 & kM_F & kM_D & 0 & 0 \\ 0 & kM_F & kM_B & 0 & 0 \\ 0 & kM_B & M_R & L_D & 0 & 0 \\ 0 & kM_B & M_R & L_D & 0 & 0 \\ 0 & kM_B & M_R & kM_D & 0 & 0 \\ 0 & kM_R & L_R & k = \sqrt{3/2} \end{bmatrix} + \begin{bmatrix} -i_0 \\ -i_0 \\ -i_0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_D & 0 \\ 0 & kM_R & kM_R & kM_Q & 0 \\ 0 & kM_R & kM_R & kM_Q & 0 \\ 0 & kM_R & kM_R & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_R & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_R & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_R & kM_Q \\ 0 & kM_R & kM_Q & kM_Q \\ 0 & kM_R & kM_R & kM$$

Now, consider a round-rotor machine as shown in the figure. We need to model a second damper winding G (in parallel with winding Q) on the q-axis of the rotor.



Then, the flux and voltage vectors become:

$$\begin{bmatrix} \Psi_{abc} \\ \Psi_{FDGQ} \end{bmatrix} = \begin{bmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \\ \Psi_F \\ \Psi_D \\ \Psi_G \\ \Psi_Q \end{bmatrix} \qquad \begin{bmatrix} \mathbf{e}_{abc} \\ \mathbf{e}_F \\ \mathbf{e}_{FDGQ} \end{bmatrix} = \begin{bmatrix} e_a \\ e_b \\ e_c \\ e_F \\ e_D \\ e_G \\ e_Q \end{bmatrix}$$

- 1) Derive the inductance matrices and the flux and voltage equations in 0dq axes after the same transformation **P**.
- 2) Adopt the L_{ad} - L_{aq} per unit system to find the per unit 7×7 inductance matrix similar to the 6×6 matrix for a salient-pole rotor generator:

 Give two equivalent circuits respectively about the d axis and q axis (similar to those on Slide #27 for a salient-pole rotor generator)

Question 2: Calculate i_d , i_q and i_0 under a balanced disturbance

The rotor speed of a synchronous machine is measured for t=0.0 to 4.0 s as given in the table below. The machine experiences a balanced disturbance to cause a swing in the rotor's speed, as shown by the figure. Because the swing is small, we still assume three phase currents to be the following, where $\omega_s=2\pi\times60$ rad/s.

$i_a = \sin \omega_s t$
$i_b = \sin(\omega_s t - 2\pi/3)$
$i_c = \sin(\omega_s t + 2\pi/3)$

If the rotor position $\theta(0)=0$ rad at t=0s, calculate values of i_d , i_q and i_0 for t=0.0 to 4.0 s, and draw their values vs. time in one plot to show how the dq0 currents change under that disturbance. If we define current phasor $\tilde{I}_t = i_d + ji_q$, draw the phasor at t=0 s, 2 s and 4 s in one plot.

<i>t</i> (s)	ω_r (rad/s)
0	376.99112
0.2	376.99112
0.4	376.99112
0.6	376.99112
0.8	376.99112
1	376.99112
1.2	374.98090
1.4	374.81084
1.6	375.52963
1.8	376.38565
2	376.99112
2.2	377.26317
2.4	377.28619
2.6	377.18891
2.8	377.07306
3	376.99112
3.2	376.95430
3.4	376.95119
3.6	376.96435
3.8	376.98003
4	376.99112

