Homework \#3: Generator and Load Modeling

(120 Points)
Question 1 (10 points): Prove these two formulas respectively on $L^{\prime}{ }_{d}$ and $L^{\prime}{ }^{\prime}{ }_{d}$ on Slide \#51 (Table 4.1 in Kundur's book)

$$
L_{d} \times\left(T_{4} / T_{1}\right)=L_{l}+L_{a d} / / L_{f d} \quad L_{d} \times\left(T_{4} T_{6}\right) /\left(T_{1} T_{3}\right)=L_{l}+L_{a d} / / L_{f d} / / L_{1 d}
$$

Question 2 (10 points): Prove the differential equation on $E^{\prime}{ }_{d}$ in the 2-axis (1.1) generator model from the voltage and flux equations. Verify that this equation can be obtained from the 2.2 generator model (Slide \#66) with $T^{\prime \prime}{ }_{d 0}=T,{ }_{q 0}=0$.

$$
T_{q 0}^{\prime} \frac{d}{d t} E_{d}^{\prime}=-E_{d}^{\prime}+\left(X_{q}-X_{q}^{\prime}\right) \cdot i_{q} \quad \text { where } \quad E_{d}^{\prime}=-\omega_{r} L_{a q} \psi_{1 q} / L_{Q}
$$

Question 3 ($\mathbf{3 0}$ points): Consider the synchronous generator in Example 8.2. A three-phase short circuit is applied at the instant when the rotor direct axis position is at $\theta=30^{\circ}$. Use ode45 to simulate equation (8.36) in Saadat's book (or the equation on Slide \#44). Alternatively, you can directly revise the MATLAB code "chp8ex2.m" in POWR_ToolBox. Obtain and plot the transient waveforms for the stator currents $i_{a}, i_{b}, i_{c}, i_{d}, i_{q}$, the field current i_{F} and damper winding currents i_{Q} and i_{D}.

Question 4 (70 points): Consider the following equivalent circuits for a $384 \mathrm{MVA}, 24 \mathrm{kV}, 0.85$ power factor, $60 \mathrm{~Hz}, 3$ phase, 2 pole synchronous generator.

(a) d-axis equivalent circuit

(b) q-axis equivalent circuit

It has the following parameters:

$L_{l}=$	0.183 pu	$R_{a}=$	0.0014 pu
$L_{a d}=$	1.5949 pu	$L_{a q}=$	1.5749 pu
$L_{f d}=$	0.7017 pu	$R_{f d}=$	0.0012 pu

$L_{1 d}=$	0.0845 pu	$R_{1 d}=$	0.0222 pu
$L_{1 q}=$	0.401 pu	$R_{1 q}=$	0.00523 pu
$L_{2 \mathrm{q}}=$	0.0641 pu	$R_{2 q}=$	0.01431 pu

Stored energy at rated speed $=1006.5 \mathrm{MW} \cdot \mathrm{s}$
Damping coefficient $K_{D}=0$

1. Ignoring saturation, calculate transient and subtransient reactance parameters in per unit values and opencircuit time constants using the formulas in Slide \#48

$$
X^{\prime}{ }_{d}, X^{\prime \prime}{ }_{d}, X^{\prime}{ }_{q}, X^{\prime \prime}{ }_{q}, T^{\prime}{ }_{d 0}, T^{\prime \prime \prime}{ }_{d 0}, T_{q 0}^{\prime}, T^{\prime \prime}{ }_{q 0}
$$

2. Assuming the following open-circuit saturation curve for both d - and q-axis saturation characteristics, Draw the saturation curve (refer to Kundur's Figure 3.30 or Slide \#36)

$$
\begin{array}{lll}
A_{\text {sal }}=0.03125 & B_{\text {sat }}=6.931 & \\
\psi_{\mathrm{T} 1}=0.8 \mathrm{pu} & \psi_{\mathrm{T} 2}=1.0 \mathrm{pu} & L_{\text {ratio }}=1.5
\end{array}
$$

3. With the armature terminal voltage at rated value, consider two operating conditions with the following steady-state generator outputs

$$
\begin{array}{lll}
\text { Output 1: } & P_{t}=307 \mathrm{MW} & Q_{i}=115 \mathrm{MVAr} \\
\text { Output 2: } & P_{i}=345 \mathrm{MW} & Q_{i}=-154 \mathrm{MVAr}
\end{array}
$$

For each of the two conditions,

i) Compute factor $K_{s d}$, (assuming $K_{\mathrm{sq}}=K_{s d}$), internal rotor angle δ_{i}, and per unit values of $\Psi_{a t}, E_{q}, e_{d}, e_{q}, i_{d}, i_{q}, i_{1 d}, i_{1 q}, i_{2 q}, i_{f d}, e_{f d}, \Psi_{f d}, \psi_{1 d}, \Psi_{1 q}, \psi_{2 q}$,
ii) Calculated the phasors of terminal voltage E_{t}, terminal current I_{t}, sub-transient voltage E " and transient voltage E '. Draw the phasor diagram about those phasors and voltages on $R_{a}, X_{d}, X_{q}, X^{\prime}{ }_{d}$, $X^{\prime}{ }_{q}, X^{\prime \prime}{ }_{d}, X{ }^{\prime \prime}{ }_{q}$. Are the heads of phasors E_{q}, E ' and $E "$ on the same straight line and why?
iii) Calculate steady-state air-gap torque T_{e} in per unit and $\mathrm{N} \cdot \mathrm{m}$. How much is T_{m} in per unit?
iv) Consider the classic model for the generator and assume that it is connected to a load through reactance $X_{t}=\mathrm{j} 0.1 \mathrm{pu}$ as shown by the figure. Calculate the per unit voltage magnitude V_{t}, real power P and reactive power Q of the load.

If the load of the bus under the current condition can be described by the following frequency dependent exponential load model, where $V_{t 0}, P_{0}$ and Q_{0} take the values of V_{t}, P and Q calculated above and $f_{0}=60 \mathrm{~Hz}$

$$
\begin{aligned}
& P=P_{0}\left(V_{t} / V_{t 0}\right)^{0.9} \times\left[1+1.2 \times\left(f-f_{0}\right) / f_{0}\right] \\
& Q=Q_{0}\left(V_{t} / V_{t 0}\right)^{2.1} \times\left[1-1.5 \times\left(f-f_{0}\right) / f_{0}\right]
\end{aligned}
$$

If at two time points t_{1} and t_{2}, actual measurements of f and V_{t} are

at t_{1}	$f=59.75 \mathrm{~Hz}$	$V_{l}=0.99 \mathrm{pu}$
at t_{2}	$f=60.05 \mathrm{~Hz}$	$V_{l}=0.96 \mathrm{pu}$

Assume T_{m} to be constant. Calculate $d \Delta \omega_{r} / d t$ in $\mathrm{rad} / \mathrm{s}^{2}$ at t_{1} and t_{2}.

