Homework #3: Generator and Load Modeling (120 Points)

Question 1 (10 points): Prove these two formulas respectively on L'_d and L''_d on Slide #51 (Table 4.1 in Kundur's book)

 $L_d \times (T_4/T_1) = L_l + L_{ad} / / L_{fd} \qquad \qquad L_d \times (T_4T_6) / (T_1T_3) = L_l + L_{ad} / / L_{fd} / / L_{1d}$

Question 2 (10 points): Prove the differential equation on E'_d in the 2-axis (1.1) generator model from the voltage and flux equations. Verify that this equation can be obtained from the 2.2 generator model (Slide #66) with $T''_{d0}=T''_{q0}=0$.

$$T'_{q0}\frac{d}{dt}E'_{d} = -E'_{d} + (X_{q} - X'_{q}) \cdot i_{q} \qquad \text{where} \quad E'_{d} = -\omega_{r}L_{aq}\psi_{1q} / L_{Q}$$

Question 3 (30 points): Consider the synchronous generator in Example 8.2. A three-phase short circuit is applied at the instant when the rotor direct axis position is at θ =30°. Use **ode45** to simulate equation (8.36) in Saadat's book (or the equation on Slide #44). Alternatively, you can directly revise the MATLAB code "chp8ex2.m" in POWR_ToolBox. Obtain and plot the transient waveforms for the stator currents i_a , i_b , i_c , i_d , i_q , the field current i_F and damper winding currents i_Q and i_D .

Question 4 (70 points): Consider the following equivalent circuits for a 384 MVA, 24kV, 0.85 power factor, 60Hz, 3 phase, 2 pole synchronous generator.

(b) q-axis equivalent circuit

It has the following parameters:

$L_l =$	0.183 pu	$R_a =$	0.0014 pu
$L_{ad} =$	1.5949 pu	$L_{aq}=$	1.5749 pu
$L_{fd} =$	0.7017 pu	$R_{fd} =$	0.0012 pu

 L_{1d} 0.0845 pu
 R_{1d} 0.0222 pu

 L_{1q} 0.401 pu
 R_{1q} 0.00523 pu

 L_{2q} 0.0641 pu
 R_{2q} 0.01431 pu

 Stored energy at rated speed = 1006.5 MW·s
 Damping coefficient K_D =0

- Ignoring saturation, calculate transient and subtransient reactance parameters in per unit values and opencircuit time constants using the formulas in Slide #48 X'_d, X"_d, X'_q, X'_q, T'_{d0}, T"_{d0}, T"_{q0}, T"_{q0}
- 2. Assuming the following open-circuit saturation curve for both d- and q-axis saturation characteristics, Draw the saturation curve (refer to Kundur's Figure 3.30 or Slide #36)

 $A_{sat} = 0.03125$ $B_{sat} = 6.931$
 $\psi_{T1} = 0.8 \text{ pu}$ $\psi_{T2} = 1.0 \text{ pu}$ $L_{ratio} = 1.5$

3. With the armature terminal voltage at rated value, consider two operating conditions with the following steady-state generator outputs

 Output 1:
 $P_t = 307 \text{ MW}$ $Q_t = 115 \text{ MVAr}$

 Output 2:
 $P_t = 345 \text{ MW}$ $Q_t = -154 \text{ MVAr}$

For each of the two conditions,

- i) Compute factor K_{sd} , (assuming $K_{sq}=K_{sd}$), internal rotor angle δ_i , and per unit values of ψ_{at} , E_q , e_d , e_q , i_d , i_1 , i_{1q} , i_{2q} , i_{fd} , e_{fd} , ψ_{fd} , ψ_{1d} , ψ_{1q} , ψ_{2q} ,
- ii) Calculated the phasors of terminal voltage E_t , terminal current I_t , sub-transient voltage E'' and transient voltage E'. Draw the phasor diagram about those phasors and voltages on R_a , X_d , X_q , X'_d , X'_q , X''_d , X''_q . Are the heads of phasors E_q , E' and E'' on the same straight line and why?
- iii) Calculate steady-state air-gap torque T_e in per unit and N·m. How much is T_m in per unit?
- iv) Consider the *classic model* for the generator and assume that it is connected to a load through reactance $X_t = j0.1$ pu as shown by the figure. Calculate the per unit voltage magnitude V_t , real power P and reactive power Q of the load.

If the load of the bus under the current condition can be described by the following frequency dependent exponential load model, where V_{t0} , P_0 and Q_0 take the values of V_t , P and Q calculated above and $f_0=60$ Hz

$$P = P_0(V_t/V_{t0})^{0.9} \times [1 + 1.2 \times (f - f_0)/f_0]$$

$$Q = Q_0(V_t/V_{t0})^{2.1} \times [1 - 1.5 \times (f - f_0)/f_0]$$

If at two time points t_1 and t_2 , actual measurements of f and V_t are

at t_1	<i>f</i> =59.75Hz	<i>V_t</i> =0.99 pu
at t_2	<i>f</i> =60.05Hz	<i>V</i> _t =0.96 pu

Assume T_m to be constant. Calculate $d\Delta \omega_r/dt$ in rad/s² at t_1 and t_2 .