Homework #5

Questions 1-3: Problems 12.9-12.11 Saddat's "Power System Analysis" book

12.9. A generating unit has a simplified linearized AVR system as shown in Figure 12.52.

(a) Use the Routh-Hurwitz array (Appendix B.2.1) to find the range of K_A for control system stability.

(b) Use MATLAB rlocus function to obtain the root-locus plot.

(c) The amplifier gain is set to $K_A = 40$. Find the system closed-loop transfer function, and use *MATLAB* to obtain the step response.

(d) Construct the SIMULINK block diagram and obtain the step response.

FIGURE 12.52

AVR system of Problem 12.9.

- **12.10.** A rate feedback stabilizer is added to the AVR system of Problem 12.9 as shown in Figure 12.53. The stabilizer time constant is $\tau_F = 0.04$ second, and the derivative gain is adjusted to $K_F = 0.1$.
 - (a) Find the system closed-loop transfer function, and use *MATLAB* to obtain the step response.

(b) Construct the SIMULINK model, and obtain the step response.

FIGURE 12.53 AVR system with rate feedback for Problem 12.10.

12.11. A PID controller is added in the forward path of the AVR system of Problem 12.9 as shown in Figure 12.54. Construct the *SIMULINK* model. Set the proportional gain K_P to 2.0, and adjust K_I and K_D until a step response

with a minimum overshoot and a very small settling time is obtained (suggested values $K_P = 1$, $K_I = 0.15$, and $K_D = 0.17$).

FIGURE 12.54 AVR system with PID controller for Problem 12.11.

Question 4: Assume the following parameters:

 $K_1=2.0$ $K_2=1.0$ $K_3=1.0$ $K_4=2.0$ $T_3=1.0$ (s) $K_5=-0.1$ $K_6=0.3$ $T_R=0.02$ (s) $K_A=100$ H=5.0 (s) $K_D=0.0$

 $T_W=10.0$ (s) $K_{STAB}=5$

- 1) Calculate $K_{S(\Delta \psi f d)}$ and $K_{D(\Delta \psi f d)}$ without PSS for 0.4Hz oscillation frequency.
- 2) Design T_1 and T_2 for the PSS to satisfy both conditions below and prove your design by Bode plots about, e.g., $G_{PSS}(s)$ and $G_{PSS}(s) \times K_A K_2 K_3 / (1+sT_3)$
 - At least +30° phase-lead compensation for the frequency range of 0.1Hz (0.63 rad/s) to 2.0Hz (6.3 rad/s)
 - Enabling a complete phase compensation for oscillation at the frequency of 0.4Hz.

