Homework \#7

1. ($\mathbf{5 0}$ points) The circuit model below represents the steady-state operating condition of a single-machine-infinite-bus system. $E_{F}=E_{B}=1.0 \mathrm{pu}$. The generator is represented by the classical model with $H=10$ (MWs/MVA) and $K_{D}=3$ (pu torque/pu speed deviation). Consider a small disturbance ended at $t=0 \mathrm{~s}$.
a. Write the linearized state equations of the system. Determine the undamped natural frequency $\left(\omega_{n}\right)$ of oscillation in both rad/s and Hz , damping ratio (ζ), and damped frequency $\left(\omega_{d}\right)$ in both rad/s and Hz .
b. Consider a small disturbance of $\Delta \delta=10^{\circ}$ and $\Delta \omega=0 \mathrm{rad} / \mathrm{s}$ at $t=0 \mathrm{~s}$. Determine the equations of δ and ω on the zero-input response of the generator, and plot δ (degree) and $\omega(\mathrm{rad} / \mathrm{s})$ for $t=0 \sim 10 \mathrm{~s}$.
c. If the input power of the generator is increased by 10% at $t=0 \mathrm{~s}$ with $\Delta \delta=0^{\circ}$ and $\Delta \omega=0 \mathrm{rad} / \mathrm{s}$, determine the equations of δ and ω on the zerostate response of the generator, and plot δ (degree) and $\omega(\mathrm{rad} / \mathrm{s})$ for $t=0$

2. (50 points) Small-signal stability analysis for a 3-machine system:

$$
\frac{2 H_{i}}{\omega_{0}} \ddot{\delta}_{i}=P_{m i}-E_{i}^{\prime 2} G_{i i}-D_{i} \frac{\dot{\delta}_{i}}{\omega_{0}}-\sum_{\substack{j=1 \\ j \neq i}}^{n} E_{i}^{\prime} E_{j}^{\prime}\left(B_{i j} \sin \delta_{i j}+G_{i j} \cos \delta_{i j}\right)
$$

where $B_{i j}$ and $G_{i j}$ in pu are respectively elements of the susceptance and conductance matrices:

$$
\mathbf{B}=\left[\begin{array}{ccc}
-2.7 & 1.5 & 1.2 \\
1.5 & -2.5 & 1.0 \\
1.2 & 1.0 & -2.2
\end{array}\right], \quad \mathbf{G}=\mathbf{0}
$$

The other parameters and data are given in the table:

Parameters	Machine 1	Machine 2	Machine 3
$2 H_{i}(\mathrm{~s})$	50	10	10
$D_{i}(\mathrm{pu})$	50	10	10
$P_{m i}(\mathrm{pu})$	-1.0	0.5	0.5
$E_{i}^{\prime}(\mathrm{pu})$	1.0	1.0	1.0
Steady-state rotor angle $\delta_{i 0}(\mathrm{deg})$	0.90	21.76	23.73

Define $\delta_{i \Delta}=\delta_{i}-\delta_{i 0}, \delta_{i j \Delta}=\delta_{i \Delta}-\delta_{j \Delta}$. Then, the linearization of the system is obtained as follows:

$$
\left\{\begin{array}{l}
\dot{\delta}_{i \Delta}=\omega_{r i \Delta} \\
\frac{2 H_{i}}{\omega_{0}} \dot{\omega}_{r i \Delta}=-\frac{D_{i}}{\omega_{0}} \omega_{r i \Delta}-\sum_{\substack{j=1 \\
j \neq i}}^{3} K_{s i j}\left(\delta_{i \Delta}-\delta_{j \Delta}\right)=0 \quad i=1,2,3 \text { where } K_{s i j}=E_{i}^{\prime} E_{j}^{\prime}\left(B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right)
\end{array}\right.
$$

The matrix representation $\dot{\mathbf{X}}=\mathbf{A X}$ of these equations is

Matrix \mathbf{A} as two oscillatory modes (i.e. two pairs of complex eigenvalues) with frequencies in $0.1-3 \mathrm{~Hz}$. and two non-oscillatory modes (i.e. real eigenvalues).
a) Find the natural frequency and damping ratio of each oscillatory mode.
b) For the first three state variables $\delta_{1 \Delta}, \delta_{2 \Delta}, \delta_{3 \Delta}$ on rotor angles, calculate the mode shape $\phi_{k i}$, mode composition $\psi_{i k}$ and participation factor $p_{k i}=\psi_{i k} \phi_{k i}(k=1,2,3)$ for each oscillatory mode i. The magnitudes of $\phi_{k i}, \psi_{i k}$ and $p_{k i}$ with each mode i should be normalized on the basis of the magnitude of the largest one, i.e.

$$
\begin{aligned}
& \bar{\phi}_{k i}=\frac{\phi_{k i}}{\max \left\{\left|\phi_{1 i}\right|,\left|\phi_{2 i}\right|,\left|\phi_{3 i}\right|\right\}}, 0 \leq\left|\bar{\phi}_{k i}\right| \leq 1 \\
& \bar{\psi}_{i k}=\frac{\psi_{i k}}{\max \left\{\left|\psi_{i 1}\right|,\left|\psi_{i 2}\right|,\left|\psi_{i 3}\right|\right\}}, 0 \leq\left|\bar{\psi}_{i k}\right| \leq 1 \\
& \bar{p}_{k i}=\frac{p_{k i}}{\max \left\{\left|p_{1 i}\right|,\left|p_{2 i}\right|,\left|p_{3 i}\right|\right\}}, 0 \leq\left|\bar{p}_{k i}\right| \leq 1
\end{aligned}
$$

c) For each mode, in a polar coordinates charts, draw $\phi_{1 i}, \phi_{2 i}, \phi_{3 i}$ on $\delta_{1 \Delta}, \delta_{2 \Delta}, \delta_{3 \Delta}$ to show the mode shape similar to the charts in Slide \#25. Do the same also for $\psi_{i k}$ and for $p_{k i}$ to show the charts respectively on the mode composition and participation factors with $\delta_{1 \Delta}, \delta_{2 \Delta}, \delta_{3 \Delta}$. This requires plots of $3 \times 2=6$ charts which each show phasors corresponding to $\delta_{1 \Delta}, \delta_{2 \Delta}, \delta_{3 \Delta}$,

Hints: In Matlab, eigenvalues and eigenvectors can be solved by eig(A). Each mode has two eigenvalues $\sigma \pm \mathrm{j} \omega$. Find the right and left eigenvectors of $\sigma+\mathrm{j} \omega$, whose first three elements respectively give the mode shape and composition regarding $\delta_{1 \Delta}, \delta_{2 \Delta}, \delta_{3 \Delta}$ for that mode. A polar coordinates chart can be drawn by polar() or polarplot() in Matlab.

