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Power System Monitoring

http://www.nepower.org/
npa-on-energy-issues/transmission/

Example of PMU
http://www.macrodyneusa.com/

model_1690.htm

SCADA (supervisory control and data acquisition) System
provides power measurements every five seconds.

PMUs (Phasor Measurement Units) can provide synchronized
phasor measurements of the power system at a sampling rate of
30 samples per second or more.
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Phasor Measurement Units

After the DOE smart grid investment program starting in 2009,
2000 PMUs have been installed in the North American power
system.
Multi-channel PMUs can measure bus voltage phasors, line
current phasors, and frequency.

http://www.riteh.uniri.hr/zav_katd_
sluz/zee/nzz/klub/images/IEEE14.JPG

Current Installation of PMUs
https://www.naspi.org/documents2 / 44
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PMU Data Analysis

Applications:
I State estimation,
I Oscillation detection and electromechanical mode identification,
I Stability analysis and post-event analysis,
I Disturbance detection and location, dynamic security assessment,

Task specific methods, developed when the coverage of PMUs on
a power network was quite sparse.
Mostly exploit the spatial and the temporal correlations in the
measurements separately. Lack a common framework.
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Spatial-temporal Blocks of PMU data

As the coverage of PMUs becomes denser, one can analyze PMU
data collectively from PMUs located in electrically close regions
and distinct control regions.
Processing spatial-temporal blocks of PMU data for tasks such as
missing data recovery, data compression and storage, disturbance
triggering, and detection of cyber data attacks.

How to process the high-dimensional PMU data blocks?
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Exploiting Low-dimensional Structures in
High-dimensional Datasets

It is relatively easy to acquire, store and process high-dimensional
datasets if they have low-dimensional structures.
Examples: sparse signals, low rank matrices.
Wide existence of low-dimensional structures: images, rating
matrices, network measurements,...
Recent arts: compressed sensing theory, low rank matrix theory.
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Wide Existence of Low-dimensional Structures

Sparse signals
a vector in Rn

k nonzero coefficients under
certain basis. (k� n)
Imaging,Communication,
Biology

Low-rank matrices
rank� dimension.
Collaborative filtering (Netflix
problem)
System identification
Internet traffic analysis

http://www.inkfarm.com/Image-File-Extensions

http://www.netflix.com

	  

User ratings
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Compressed Sensing for Sparse Signals

        y                 A             x  
 

m                   =                                     n                          

 

Unknown sparse signal x, observation y, measurement matrix A.
y = Ax, m� n.

Given A, sparse x can be recovered from y!

significant reduction in the required number of measurements.
k-sparse n-dimensional signals, m = O(k log n

k ).
simple compression methods. A could be random matrices. Wide
existence of good A’s.
efficient recovery methods. e.g., `1 minimization.
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Compressed Sensing for Sparse Signals

        y                 A             x  
 

m                   =                                     n                          

 

`0-minimization

min
z
‖z‖0 s.t. Az = y,

where ‖z‖0 = number of non-zero entries of z.

bad news: computationally hard.
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Compressed Sensing for Sparse Signals
        y                 A             x  
 

m                   =                                     n                          

 

`1-minimization
`1-minimization

min
z
‖z‖1 = ∑

i
|zi| s.t. Az = y,

where ‖z‖1 = ∑i |zi|.

The sparse signal x is the solution to `1 problem!

computationally efficient.
theoretical guarantee. (Candès and Tao 2006, Donoho 2006)

9 / 44



Low-rank Matrix Completion

Netflix Problem	  

Low rank matrix completion problem.

10 / 44



Low-rank Matrix Completion

Netflix Problem	  

Low rank matrix completion problem.

10 / 44



Low-rank Matrix Completion

Low-rank Matrix with Missing Entries 

? 

? 

? 
? 

? 
? 

? 

How shall we recover the missing entries of a low-rank matrix?

min
X

Rank(X)

s.t. Xi j = Mi j,∀i ∈Ω.

Ω: locations of the observed entries.
NP hard.
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Low-rank Matrix Completion

Nuclear norm minimization (Fazel 2002, Candés & Recht 2009),
recover the missing data by solving a convex program.

min
X
‖X‖∗ = sum of the singular values of X

s.t. Xi j = Mi j,∀i ∈Ω.

Convex relaxation of Rank minimization problem.
computationally efficient. Can be solved by Semidefinite
Programming.
Theoretical guarantee. (Candés & Recht 2009)
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Low-rank Matrix Completion

Theorem (Candés & Recht 09, Gross 11, Recht 11)
All entries of a rank-r matrix L ∈ Cn1×n2 can be corrected recovered, as
long as O(rn log2 n)(n = max(n1,n2)) randomly selected entries of L are
observed.

Significant saving in the number of observations when r is small.

Theorem (Candés & Tao 09)
If each entry is observed with prob. p = m

n1n2
, no method whatsoever

can succeed with

m≤Cnr logn, for some fixed constant C

Near-optimal recovery via Nuclear norm minimization.
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Connection to Compressed Sensing

General setup
Rank minimization

min
X

Rank(X)

s.t. 〈Ai,X〉= Trace((Ai)T X) = bi,

∀i = 1, ...,m

Convex relaxation.

min
X
‖X‖∗

s.t. 〈Ai,X〉= Trace((Ai)T X) = bi,

∀i = 1, ...,m

Consider the special case X = diag(x),x ∈ Rn, then

Rank(X) = ‖x‖0,

‖X‖∗ = ‖x‖1.

Reduce to compressed sensing!
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Principle Component Analysis: Classical Method

widely used for dimension reduction.
convert observations to a set of
values of linearly uncorrelated
variables, called principle
components.

Stack all the data points as column vectors of a matrix M, PCA seeks
the best rank-k approximation by solving

min
L
‖M−L‖2

s.t. Rank(L)≤ k

Not rubust to even a few outliers in M.
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Robust PCA

The observation matrix is the sum of a low-rank matrix L0 (actual
data) and a sparse matrix (corruptions).

M = L0 + S0

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  =	  	  	  	   +	  
	  

low rank      sparse Measurements 

Decomposition of a low-rank matrix and a sparse matrix.
Applications in computer vision, image processing, network traffic
analysis, etc.
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Robust PCA

(Hard) Optimization problem

min
L,C

Rank(L)+λ‖C‖0

s.t. L+C = M

‖C‖0: the number of nonzero entries in C.
not tractable.

Convex relaxation

min
L,C
‖L‖∗+λ‖C‖1

s.t. L+C = M

‖C‖1 = ∑i j |Ci j|
Theoretical guarantee:
Candés & Li & Ma & Wright 11, Chandrasekaran & Sanghavi &
Parrilo & Willsky 11, Recht & Fazel & Parrilo 10.
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Does low-dimensionality exist in PMU measurements?
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Low-rank Property of PMU data

PMUs in Central NY Power
Systems
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6 PMUs measure 37 voltage/current phasors. 30 samples/second
for 20 seconds.
Singular values decay significantly. Mostly close to zero. Singular
values can be approximated by a sparse vector.
Low-dimensionality (also observed in Chen & Xie & Kumar 2013,
Dahal & King & Madani 2012)
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How could we use the low dimensionality in PMU data management
for power system monitoring?
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Missing Data Recovery

We observe partial entries
of the complex matrix
(rectangular form of voltage
and current phasors).
How shall we recover the
missing points for offline
applications like system
identification and past event
analysis?

Low-rank Matrix Completion Problem!
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Low-rank Matrix Completion

Wide applications in collaborative filtering, computer vision,
machine learning, remote sensing, and system identification.
Problem formulation: given part of the entries of a matrix, recover
the remaining entries.
the rank of the matrix is much less than its dimension.

	  

22 / 44



Low-rank Matrix Completion

Low-rank Matrix with Missing Entries 

? 

? 

? 
? 

? 
? 

? 

Nuclear norm minimization

min
X
‖X‖∗ = sum of singular values of X

s.t. X is consistent with the observed entries,

Quite a few recovery algorithms exist, e.g., singular value
thresholding (SVT) (Cai et al. 2010), information cascading matrix
completion (ICMC) (Meka et al. 2009).
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Low-rank Matrix Completion

Theorem (Candés & Recht 09, Gross 11, Recht 11)
All entries of a rank-r matrix L ∈ Cn1×n2 can be corrected recovered, as
long as O(rn log2 n)(n = max(n1,n2)) randomly selected entries of L are
observed.

Significant saving in the number of observations when r is small.
Existing analysis assumes that the locations of missing points are
selected randomly.
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Our Results

The locations of missing PMU data are usually correlated.
I temporal correlation: loss of consecutive measurements in one

PMU channel.
I channel correlation: loss of measurements in multiple PMU

channels simultaneously.

Theorem (Gao & Wang & Ghiocel & Chow 14)
Although the locations of the missing entries of a rank-r matrix are
temporally or spatially correlated, all missing entries can be correctly
recovered as long as O(n2− 1

r+1 r
1

r+1 log
1

r+1 n) entries are observed.

The first theoretical guarantee of low-rank matrix completion when
the locations of missing entries are correlated.

25 / 44



Our Results

The locations of missing PMU data are usually correlated.
I temporal correlation: loss of consecutive measurements in one

PMU channel.
I channel correlation: loss of measurements in multiple PMU

channels simultaneously.

Theorem (Gao & Wang & Ghiocel & Chow 14)
Although the locations of the missing entries of a rank-r matrix are
temporally or spatially correlated, all missing entries can be correctly
recovered as long as O(n2− 1

r+1 r
1

r+1 log
1

r+1 n) entries are observed.

The first theoretical guarantee of low-rank matrix completion when
the locations of missing entries are correlated.

25 / 44



Our Results

The locations of missing PMU data are usually correlated.
I temporal correlation: loss of consecutive measurements in one

PMU channel.
I channel correlation: loss of measurements in multiple PMU

channels simultaneously.

Theorem (Gao & Wang & Ghiocel & Chow 14)
Although the locations of the missing entries of a rank-r matrix are
temporally or spatially correlated, all missing entries can be correctly
recovered as long as O(n2− 1

r+1 r
1

r+1 log
1

r+1 n) entries are observed.

The first theoretical guarantee of low-rank matrix completion when
the locations of missing entries are correlated.

25 / 44



Simulation

6 PMUs measuring 37 bus
voltage phasors and line
current phasors.
30 samples per second.
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Simulation Results

Recover missing data points that are temporally correlated.
I the first 5-second PMU data of dataset #1.
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Simulation Results

Recover missing data points that are spatially correlated.
I the first second PMU data of dataset #1.
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Online Missing Data Recovery

We also develop an online missing data recovery algorithm that
could fill in the missing data instantaneously and detect system
disturbance.

Table : Relative recovery error of OLAP on
four datasets

pavg Dataset #1 Dataset #2 Dataset #3 Dataset #4
0.05 0.0082 0.0026 0.0006 0.0186
0.10 0.0089 0.0039 0.0009 0.0235
0.15 0.0119 0.0053 0.0011 0.0442
0.20 0.0145 0.0060 0.0013 0.0494
0.25 0.0153 0.0066 0.0014 0.0726
0.30 0.0191 0.0075 0.0017 0.0779
0.35 0.0204 0.0082 0.0018 0.1137
0.40 0.0227 0.0091 0.0019 0.1189
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Missing data recovery by
OLAP algorithm

Gao, Wang, Ghiocel, Chow, IEEE Trans. Power Systems 2016.
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Example of Cyber Data Attacks
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Cyber Data Attacks

The worst interacting bad data. (Liu & Ning & Reiter 11).

An intruder with the system topology information can
simultaneously manipulate multiple measurements so that these
attacks cannot be detected by any bad data detector.
Cyber data attacks can potentially lead to significant errors to the
outcome of state estimation.
Also termed as “unobservable attacks”, because the removal of
affected measurements would make the system unobservable.
(Kosut & Jia & Thomas & Tong 10).

31 / 44



Cyber Data Attacks

The worst interacting bad data. (Liu & Ning & Reiter 11).
An intruder with the system topology information can
simultaneously manipulate multiple measurements so that these
attacks cannot be detected by any bad data detector.
Cyber data attacks can potentially lead to significant errors to the
outcome of state estimation.

Also termed as “unobservable attacks”, because the removal of
affected measurements would make the system unobservable.
(Kosut & Jia & Thomas & Tong 10).

31 / 44



Cyber Data Attacks

The worst interacting bad data. (Liu & Ning & Reiter 11).
An intruder with the system topology information can
simultaneously manipulate multiple measurements so that these
attacks cannot be detected by any bad data detector.
Cyber data attacks can potentially lead to significant errors to the
outcome of state estimation.
Also termed as “unobservable attacks”, because the removal of
affected measurements would make the system unobservable.
(Kosut & Jia & Thomas & Tong 10).

31 / 44



Existing Approaches

Cyber attacks in SCADA system. A protection perspective.
Usually protect key PMUs to avoid these attacks.(Kosut & Jia &
Thomas & Tong 10, Kim & Poor 11, Bobba et al. 10, Dán &
Sandberg 10)

Sedghi & Jonckheere 13: Detection of cyber data attacks in
SCADA system. Assume the measurements at different time
instants are i.i.d. distributed.
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Our Contributions

A new detection method of cyber data attacks in PMU measurements.
no other assumptions expect for the low-rankness of the PMU
data.
The detection method can identify the attacks even when the
system is under disturbance.
The PMU channels under attack can be identified by solving a
convex optimization problem.
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System Model

π model of a transmission line.

π model of a transmission line

Current Ii j from bus i to bus j is related to bus voltage V i and V j by

Ii j =
V i−V j

Zi j +V iY
i j

2
.

Voltage and current phasor measurements can be represented by
linear functions of state variables.
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Attack Model

The intruder can only attack a small number of PMUs
continuously.
The intruder injects an unobservable attack at each time instant.
An unobservable attack is a linear combination of errors in state
variables.
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Mathematical Formulation

t: total number of sampling time instants.
p: total number of PMU channels.
n: total number of buses. n < p
L̄ ∈ Ct×p: the actual voltage and current phasors in t instants.
D̄ ∈ Ct×n: the additive error in state variables.
N ∈ Ct×p: the noise.
M ∈ Ct×p: the obtained measurements that are under attack.
W ∈ Ct×p: relates state variables with phasors.

M = L̄+C̄W T +N
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Assumptions

	  =	   + ×	  	  	  	  	  	  	   +

low rank column sparse 

Measurements 

channel 

time 
Noise Actual phasors Errors in

bus voltages 

Measurements under attack

L̄: low-rank. From correlations in measurements.
C̄: column sparse. The intruder has limited access to the system.
N: ‖N‖F ≤ ε.

Given M and W , how could we identify L̄ and C̄?
Decomposition of a low-rank matrix and a transformed column-sparse

matrix.
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Matrix Decomposition

Measurements	  

=	  	   +	  	   +	  	  

Noise	  Low Rank	   Sparse	  

Decomposition of a low-rank matrix and a sparse matrix.
Through convex optimization.

min
L∈Ct×p,C∈Ct×n

‖L‖∗+λ ∑
i, j
|Ci j| s.t. ‖L+C−M‖F ≤ ε (1)

Theoretical guarantee:
Candés & Li & Ma & Wright 11, Chandrasekaran & Sanghavi &
Parrilo & Willsky 11, Recht & Fazel & Parrilo 10.
Applications: Internet traffic analysis, image processing, medical
imaging, etc.
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Connection to Related Work

Xu & Caramanis & Sanghavi 12: Decomposition of a low-rank
matrix and a column-sparse matrix.

Measurements	  

=	  	   +	  	   +	  	  

Noise	  Low Rank	   Column Sparse	  

Our methods and proofs are built upon those in Xu & Caramanis &
Sanghavi 12. Extension to general cases.
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Connection to Related Work

Mardani & Mateos & Giannakis 13: Decomposition of a low-rank
matrix plus a compressed sparse matrix. Internet traffic anomaly
detection.

Measurements	  

=	  	   x	  +	  	   +	  	  

Noise	  WT	  Low Rank	   Sparse	  

Our focus: column-sparse matrices, W is arbitrary.
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Our Approach

Find (L∗, C∗), the optimum solution to the following optimization
problem

min
L∈Ct×p,C∈Ct×n

‖L‖∗+λ‖C‖1,2 s.t. ‖L+CW T −M‖F ≤ ε (2)

Compute the SVD of L∗ =U∗Σ∗V ∗†.
Find column support of D∗ =C∗W T , denoted by I ∗.
Return L∗I ∗c , U∗ and I ∗.

(2) is convex and can be solved efficiently.
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Theoretical Guarantee

Theorem (Noiseless measurements, N = 0)
With a properly chosen λ , the solution returned by our method

1 identifies the PMU channels under attack.
2 identifies the measurements that are not attacked.
3 recovers the correct subspace spanned by actual phasors.

Theorem (Noisy measurements, N 6= 0)
With a properly chosen λ , the solution returned by our method is
sufficiently close (with distance depending on the noise level) to a
solution such that 1-3 hold.
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Numerical Results

Simulate the case that the
intruder alters the PMU
channels that measure I12, I52,
I13 and I43.
The voltage phasor estimates
of Buses 2 and 3 are corrupted
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Gao, Wang, Chow, Ghiocel, Fardanesh, Stefopoulos, and Razanousky, to appear in IEEE Trans.
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Conclusion

Leverage the low-dimensional structures in high-dimensional data
to address the challenges in data acquisition, storage, and
information extraction.
Connection of low-rank methods with power system monitoring.
Analysis of spatial-temporal blocks of PMU measurements.
Missing data recovery: theoretical guarantee of successful
recovery when the locations of the missing points are correlated.
Detection of cyber data attacks: decompostion of a low-rank and
transferred column-sparse matrix.
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