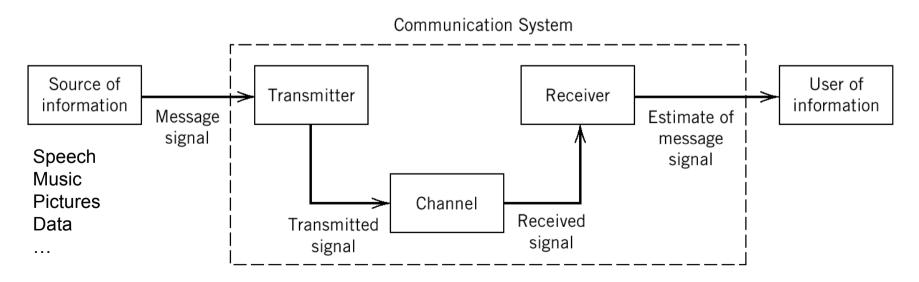
What's Communications?

- Communication involves the transfer of information from one point to another.
- Three basic elements
 - Transmitter: converts message into a form suitable for transmission
 - Channel: the physical medium, introduces distortion, noise, interference
 - Receiver: reconstruct a recognizable form of the message



Noise in Communications

- Unavoidable presence of noise in the channel
 - Noise refers to unwanted waves that disturb communications
 - Signal is contaminated by noise along the path.
- External noise: interference from nearby channels, humanmade noise, natural noise...
- Internal noise: thermal noise, random emission... in electronic devices
- Noise is one of the basic factors that set limits on communications.
- A widely used metric is the signal-to-noise (power) ratio (SNR)

 $SNR = \frac{signal power}{noise power}$

Transmitter and Receiver

- The transmitter modifies the message signal into a form suitable for transmission over the channel
- This modification often involves modulation
 - Moving the signal to a high-frequency carrier (up-conversion) and varying some parameter of the carrier wave
 - Analog: AM, FM, PM
 - Digital: ASK, FSK, PSK (SK: shift keying)
- The receiver recreates the original message by demodulation
 - Recovery is not exact due to noise/distortion
 - The resulting degradation is influenced by the type of modulation
- Design of analog communication is conceptually simple
- Digital communication is more efficient and reliable; design is more sophisticated

Objectives of System Design

- Two primary resources in communications
 - Transmitted **power** (should be green)
 - Channel **bandwidth** (very expensive in the commercial market)
- In certain scenarios, one resource may be more important than the other
 - Power limited (e.g. deep-space communication)
 - Bandwidth limited (e.g. telephone circuit)
- Objectives of a communication system design
 - The message is delivered both efficiently and reliably, subject to certain design constraints: power, bandwidth, and cost.
 - Efficiency is usually measured by the amount of messages sent in unit power, unit time and unit bandwidth.
 - **Reliability** is expressed in terms of SNR or probability of error.

Why Probability/Random Process?

- Probability is the core mathematical tool for communication theory.
- The stochastic model is widely used in the study of communication systems.
- Consider a radio communication system where the received signal is a random process in nature:
 - Message is random. No randomness, no information.
 - Interference is random.
 - Noise is a random process.
 - And many more (delay, phase, fading, ...)
- Other real-world applications of probability and random processes include
 - Stock market modelling, gambling (Brown motion as shown in the previous slide, random walk)...

Probabilistic Concepts

- What is a random variable (RV)?
 - It is a variable that takes its values from the outputs of a random experiment.
- What is a random experiment?
 - It is an experiment the outcome of which cannot be predicted precisely.
 - All possible identifiable outcomes of a random experiment constitute its *sample space* Ω .
 - An *event* is a collection of possible outcomes of the random experiment.
- Example
 - For tossing a coin, $\Omega = \{ H, T \}$
 - For rolling a die, $\Omega = \{ 1, 2, ..., 6 \}$

Probability Properties

- *P_X*(*x_i*): the *probability* of the random variable *X* taking on the value *x_i*
- The probability of an event to happen is a non-negative number, with the following properties:
 - The probability of the event that includes all possible outcomes of the experiment is 1.
 - The probability of two events that do not have any common outcome is the sum of the probabilities of the two events separately.
- Example

- Roll a die: $P_X(x = k) = 1/6$ for k = 1, 2, ..., 6

CDF and PDF

• The (cumulative) distribution function (cdf) of a random variable *X* is defined as the probability of *X* taking a value less than the argument *x*:

$$F_X(x) = P(X \le x)$$

• Properties

$$F_X(-\infty) = 0, \quad F_X(\infty) = 1$$

$$F_X(x_1) \le F_X(x_2) \quad \text{if } x_1 \le x_2$$

• The **probability density function (pdf)** is defined as the derivative of the distribution function:

$$f_{X}(x) = \frac{dF_{X}(x)}{dx}$$

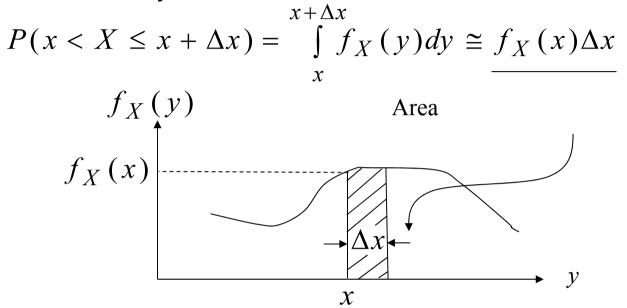
$$F_{X}(x) = \int_{-\infty}^{x} f_{X}(y)dy$$

$$P(a < X \le b) = F_{X}(b) - F_{X}(a) = \int_{a}^{b} f_{X}(y)dy$$

$$f_{X}(x) = \frac{dF_{X}(x)}{dx} \ge 0 \text{ since } F_{X}(x) \text{ is non-decreasing}$$

Mean and Variance

• If Δx is sufficiently small,



• Mean (or expected value \Leftrightarrow DC level):

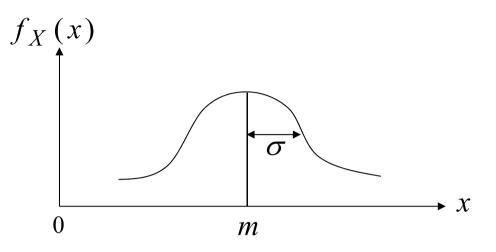
$$E[X] = \mu_X = \int_{-\infty}^{\infty} x f_X(x) dx \qquad \begin{array}{c} E[\\ \text{op} \end{array}$$

E[]: expectation operator

• Variance (\Leftrightarrow power for zero-mean signals):

$$\sigma_X^2 = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx = E[X^2] - \mu_X^2$$

Normal (Gaussian) Distribution



$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}} \text{ for } -\infty < x < \infty$$

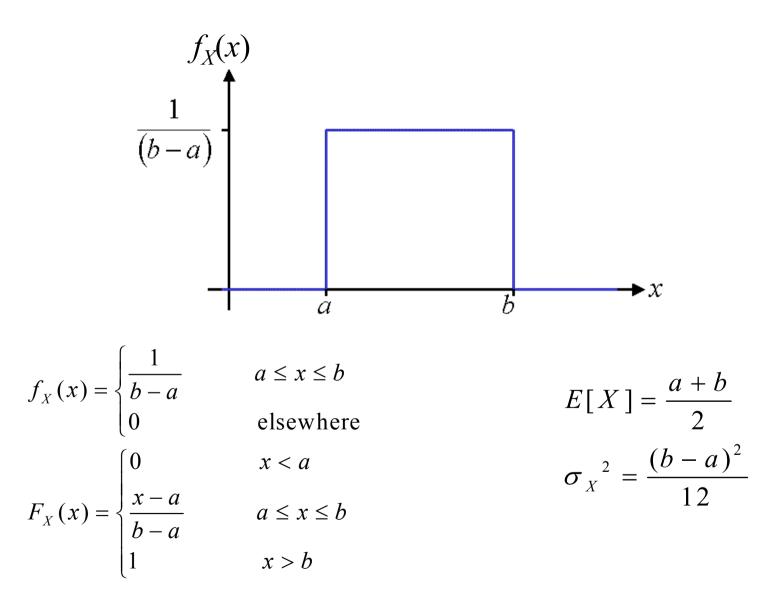
$$E[X] = m$$

$$\sigma_X^2 = \sigma^2$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(y-m)^2}{2\sigma^2}} dy$$

$$\sigma: \text{rms value}$$

Uniform Distribution



Joint Distribution

• Joint distribution function for two random variables *X* and *Y*

$$F_{XY}(x, y) = P(X \le x, Y \le y)$$

• Joint probability density function

$$f_{XY}(x, y) = \frac{\partial^2 F_{XY}(x, y)}{\partial x \partial y}$$

• Properties

1)
$$F_{XY}(\infty,\infty) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(u,v) du dv = 1$$

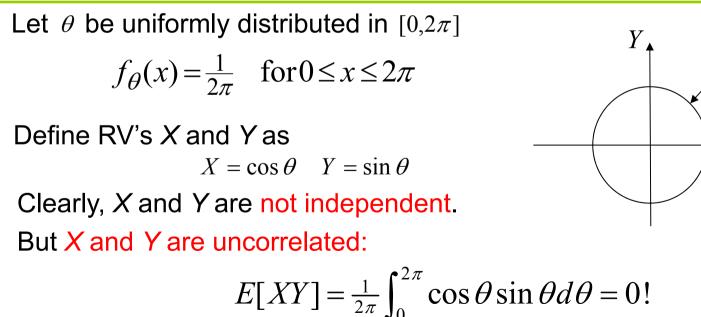
2)
$$f_{X}(x) = \int_{y=-\infty}^{\infty} f_{XY}(x,y) dy$$

3)
$$f_{Y}(x) = \int_{x=-\infty}^{\infty} f_{XY}(x,y) dx$$

- 4) X, Y are independent $\Leftrightarrow f_{XY}(x, y) = f_X(x)f_Y(y)$
- 5) X, Y are **uncorrelated** $\Leftrightarrow E[XY] = E[X]E[Y]$

Independent vs. Uncorrelated

- Independent implies Uncorrelated
- Uncorrelated does not imply Independence
- For normal RVs (jointly Gaussian), Uncorrelated implies Independent (this is the only exceptional case!)
- An example of uncorrelated but dependent RV's



Locus of

X and Y

► X

Joint Distribution of *n* RVs

• Joint cdf

$$F_{X_1X_2...X_n}(x_1, x_2, ..., x_n) \equiv P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n)$$

• Joint pdf

$$f_{X_1X_2...X_n}(x_1, x_2, ..., x_n) \equiv \frac{\partial^n F_{X_1X_2...X_n}(x_1, x_2, ..., x_n)}{\partial x_1 \partial x_2 ... \partial x_n}$$

Independent

$$F_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = F_{X_1}(x_1)F_{X_2}(x_2)...F_{X_n}(x_n)$$

$$f_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_n}(x_n)$$

- i.i.d. (independent, identically distributed)
 - The random variables are independent and have the same distribution.
 - Example: outcomes from repeatedly flipping a coin.

Central Limit Theorem

• For i.i.d. random variables,

 $z = x_1 + x_2 + \cdots + x_n$ tends to Gaussian as *n* goes to infinity.

- Extremely useful in communications.
- That's why noise is usually Gaussian. We often say
 "Gaussian noise" or
 "Gaussian channel" in communications.

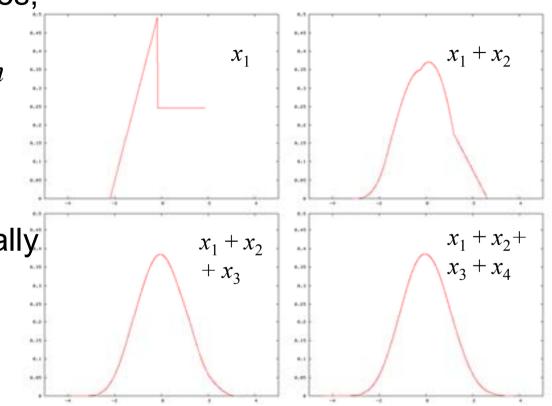
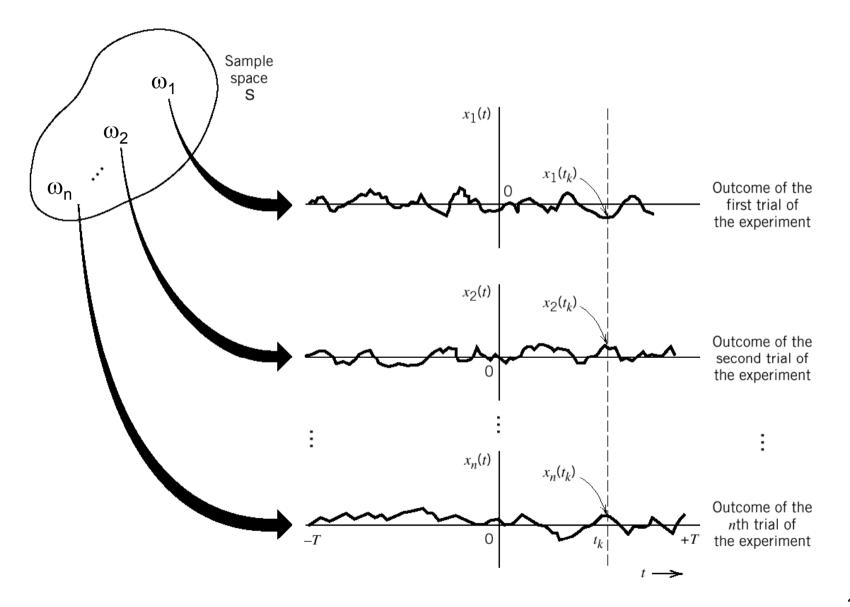


Illustration of convergence to Gaussian distribution

What is a Random Process?

- A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: *X*(*t*; ω).
- For a fixed (sample path) ω: a random process is a time varying function, e.g., a signal.
- For fixed *t*: a random process is a random variable.
- If ω scans all possible outcomes of the underlying random experiment, we shall get an **ensemble** of signals.
- Noise can often be modelled as a Gaussian random process.

An Ensemble of Signals



Statistics of a Random Process

• For fixed *t*: the random process becomes a random variable, with mean

$$\mu_X(t) = E[X(t;\omega)] = \int_{-\infty}^{\infty} x f_X(x;t) dx$$

– In general, the mean is a function of *t*.

Autocorrelation function

$$R_{X}(t_{1},t_{2}) = E[X(t_{1};\omega)X(t_{2};\omega)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X}(x,y;t_{1},t_{2})dxdy$$

– In general, the autocorrelation function is a two-variable function.

Stationary Random Processes

- A random process is (wide-sense) stationary if
 - Its mean does not depend on t

$$\mu_X(t) = \mu_X$$

- Its autocorrelation function only depends on time difference

$$R_X(t,t+\tau) = R_X(\tau)$$

• In communications, noise and message signals can often be modelled as stationary random processes.

Power Spectral Density

- Power spectral density (PSD) is a function that measures the distribution of power of a random process with frequency.
- PSD is only defined for stationary processes.
- Wiener-Khinchine relation: The PSD is equal to the Fourier transform of its autocorrelation function:

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f\tau} d\tau$$

- A similar relation exists for deterministic signals

• Then the average power can be found as

$$P = R_X(0) = \int_{-\infty}^{\infty} S_X(f) df$$

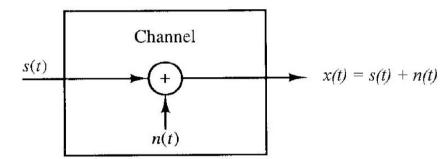
- The frequency content of a process depends on how rapidly the amplitude changes as a function of time.
 - This can be measured by the autocorrelation function.

Noise

- Noise is the unwanted and beyond our control waves that disturb the transmission of signals.
- Where does noise come from?
 - External sources: e.g., atmospheric, galactic noise, interference;
 - Internal sources: generated by communication devices themselves.
 - This type of noise represents a basic limitation on the performance of electronic communication systems.
 - Shot noise: the electrons are discrete and are not moving in a continuous steady flow, so the current is randomly fluctuating.
 - Thermal noise: caused by the rapid and random motion of electrons within a conductor due to thermal agitation.
- Both are often stationary and have a zero-mean Gaussian distribution (following from the central limit theorem).

White Noise

- The additive noise channel
 - n(t) models all types of noise
 - zero mean
- White noise

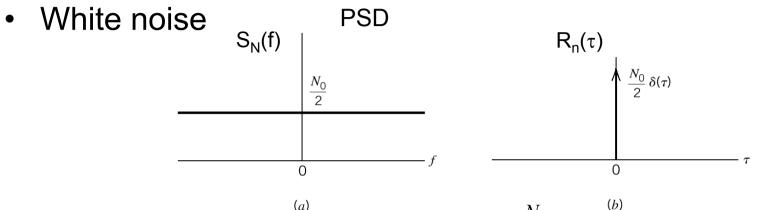


- Its power spectrum density (PSD) is constant over all frequencies, i.e., N_0

$$S_N(f) = \frac{N_0}{2}, \qquad -\infty < f < \infty$$

- Factor 1/2 is included to indicate that half the power is associated with positive frequencies and half with negative.
- The term *white* is analogous to white light which contains equal amounts of all frequencies (within the visible band of EM wave).
- It's only defined for stationary noise.
- An infinite bandwidth is a purely theoretic assumption.

White vs. Gaussian Noise

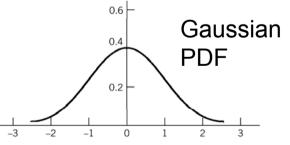


- Autocorrelation function of
$$n(t): R_n(\tau) = \frac{N_0}{2}\delta(\tau)$$

- Samples at different time instants are uncorrelated.
- Gaussian noise: the distribution at any time instant is Gaussian
 - Gaussian noise can be colored
- White noise ≠ Gaussian noise

•

– White noise can be non-Gaussian

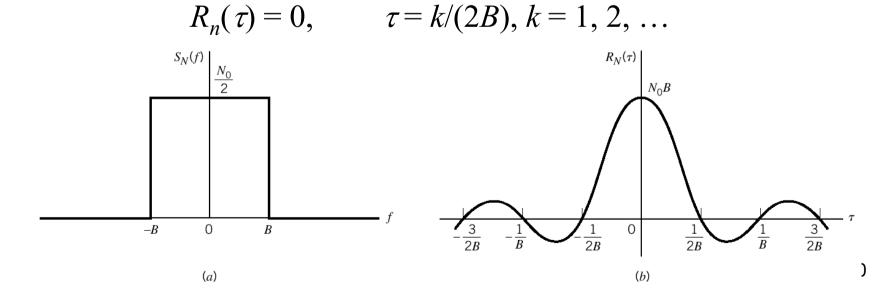


Ideal Low-Pass White Noise

• Suppose white noise is applied to an ideal low-pass filter of bandwidth *B* such that

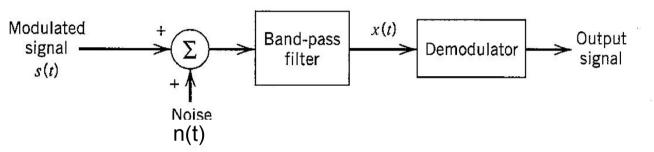
$$S_N(f) = \begin{cases} \frac{N_0}{2}, & |f| \le B\\ 0, & \text{otherwise} \end{cases}$$

- By Wiener-Khinchine relation, autocorrelation function $R_n(\tau) = E[n(t)n(t+\tau)] = N_0 B \operatorname{sinc}(2B\tau)$ (3.1) where $\operatorname{sinc}(x) = \sin(\pi x)/\pi x$.
- Samples at Nyquist frequency 2B are uncorrelated

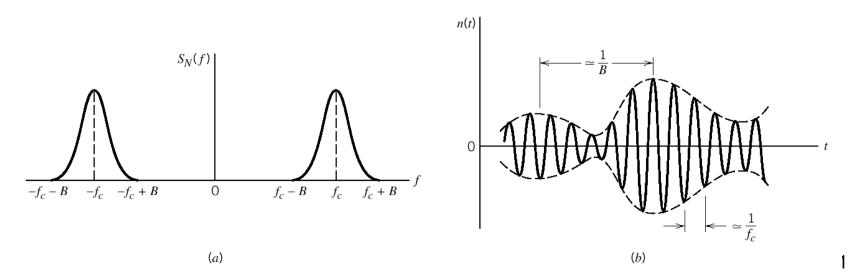


Bandpass Noise

• Any communication system that uses carrier modulation will typically have a bandpass filter of bandwidth B at the front-end of the receiver.



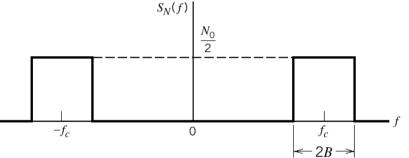
• Any noise that enters the receiver will therefore be bandpass in nature: its spectral magnitude is non-zero only for some band concentrated around the carrier frequency f_c (sometimes called **narrowband noise**).



Example

• If white noise with PSD of $N_0/2$ is passed through an ideal bandpass filter, then the PSD of the noise that enters the receiver is given by

$$S_N(f) = \begin{cases} \frac{N_0}{2}, & |f - f_C| \le B\\ 0, & \text{otherwise} \end{cases}$$



Autocorrelation function

$$R_n(\tau) = 2N_0 B \operatorname{sinc}(2B\tau) \cos(2\pi f_c \tau)$$

 which follows from (3.1) by applying the frequency-shift property of the Fourier transform

$$g(t) \Leftrightarrow G(\omega)$$
$$g(t) \cdot 2\cos \omega_0 t \Leftrightarrow [G(\omega - \omega_0) + G(\omega + \omega_0)]$$

• Samples taken at frequency 2B are still uncorrelated.

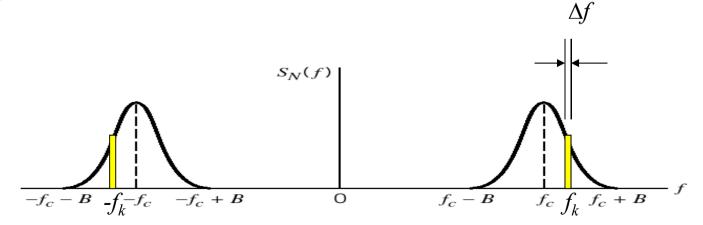
$$R_n(\tau) = 0, \quad \tau = k/(2B), \, k = 1, \, 2, \, \dots$$

Decomposition of Bandpass Noise

- Consider bandpass noise within $|f f_c| \le B$ with any PSD (i.e., not necessarily white as in the previous example)
- Consider a frequency slice Δf at frequencies f_k and $-f_k$.
- For Δf small:

$$n_k(t) = a_k \cos(2\pi f_k t + \theta_k)$$

- θ_k : a random phase assumed independent and uniformly distributed in the range [0, 2π)
- $-a_k$: a random amplitude.



Representation of Bandpass Noise

 The complete bandpass noise waveform n(t) can be constructed by summing up such sinusoids over the entire band, i.e.,

$$n(t) = \sum_{k} n_k(t) = \sum_{k} a_k \cos(2\pi f_k t + \theta_k) \qquad f_k = f_c + k\Delta f \qquad (3.2)$$

• Now, let $f_k = (f_k - f_c) + f_c$, and using $\cos(A + B) = \cos A \cos B - \sin A \sin B$ we obtain the **canonical form of bandpass noise**

$$n(t) = n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$$

where

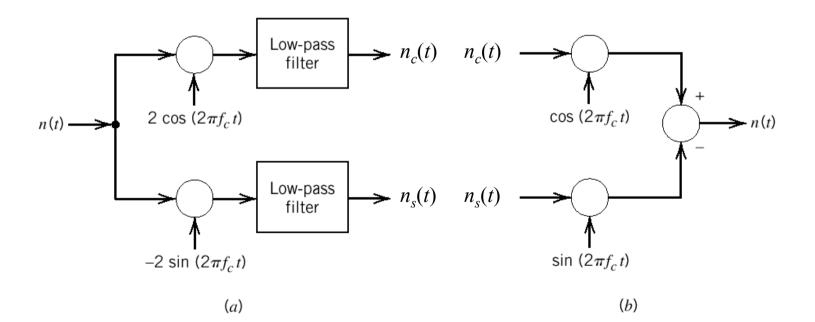
$$n_c(t) = \sum_k a_k \cos(2\pi (f_k - f_c)t + \theta_k)$$

$$n_s(t) = \sum_k a_k \sin(2\pi (f_k - f_c)t + \theta_k)$$
(3.3)

 $- n_c(t)$ and $n_s(t)$ are **baseband** signals, termed the in-phase and quadrature component, respectively.

Extraction and Generation

- $n_c(t)$ and $n_s(t)$ are fully representative of bandpass noise.
 - (a) Given bandpass noise, one may extract its in-phase and quadrature components (using LPF of bandwith *B*). This is extremely useful in analysis of noise in communication receivers.
 - (b) Given the two components, one may generate bandpass noise.
 This is useful in computer simulation.



Properties of Lowpass Noise

- If the noise n(t) has zero mean, then $n_c(t)$ and $n_s(t)$ have zero mean.
- If the noise n(t) is Gaussian, then $n_c(t)$ and $n_s(t)$ are Gaussian.
- If the noise *n*(*t*) is stationary, then *n_c*(*t*) and *n_s*(*t*) are stationary.
- If the noise n(t) is Gaussian and its power spectral density
 S(f) is symmetric with respect to the central frequency f_c,
 then n_c(t) and n_s(t) are statistical independent.
- The components n_c(t) and n_s(t) have the same variance (= power) as n(t).

Power Spectral Density

Further, each baseband noise waveform will have the same PSD:

$$S_c(f) = S_s(f) = \begin{cases} S_N(f - f_c) + S_N(f + f_c), & |f| \le B \\ 0, & \text{otherwise} \end{cases}$$
(3.4)

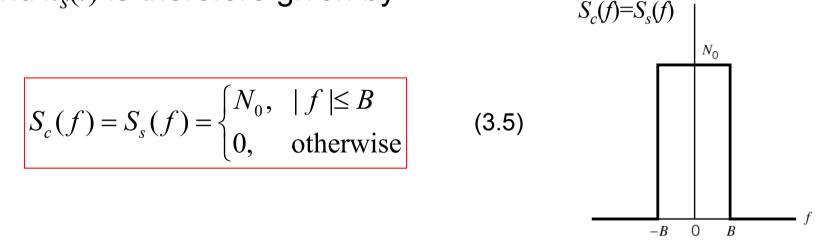
• This is analogous to

$$g(t) \Leftrightarrow G(\omega)$$
$$g(t) \bullet 2\cos \omega_0 t \Leftrightarrow [G(\omega - \omega_0) + G(\omega + \omega_0)]$$

- A rigorous proof can be found in A. Papoulis, *Probability, Random Variables, and Stochastic Processes,* McGraw-Hill.
- The PSD can also be seen from the expressions (3.2) and (3.3) where each of $n_c(t)$ and $n_s(t)$ consists of a sum of closely spaced base-band sinusoids.

Noise Power

• For ideally filtered narrowband noise, the PSD of $n_c(t)$ and $n_s(t)$ is therefore given by



- Corollary: The average power in *each* of the baseband waveforms n_c(t) and n_s(t) is *identical* to the average power in the bandpass noise waveform n(t).
- For ideally filtered narrowband noise, the variance of $n_c(t)$ and $n_s(t)$ is $2N_0B$ each.

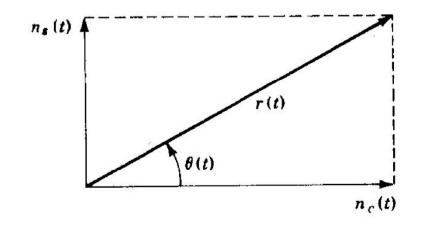
Phasor Representation

• We may write bandpass noise in the alternative form: $n(t) = n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$ $= r(t)\cos[2\pi f_c t + \phi(t)]$

- $r(t) = \sqrt{n_c(t)^2 + n_s(t)^2}$: the envelop of the noise

$$- \phi(t) = \tan^{-1}\left(\frac{n_s(t)}{n_c(t)}\right)$$

: the phase of the noise



$$\theta(t) \equiv 2\pi f_c t + \phi(t)$$

Distribution of Envelop and Phase

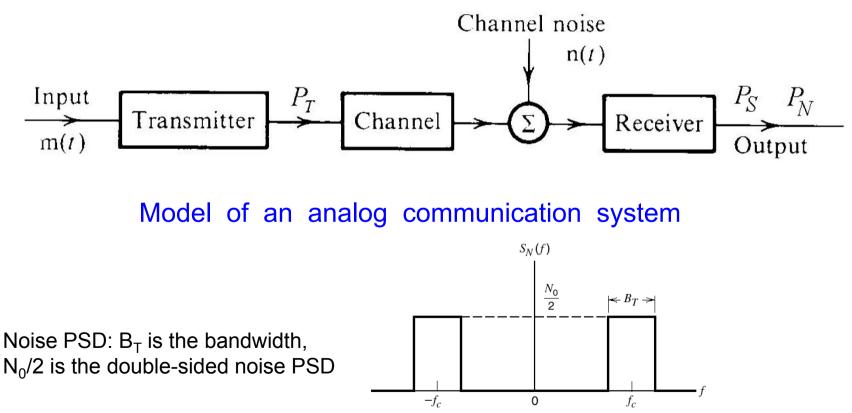
- It can be shown that if $n_c(t)$ and $n_s(t)$ are Gaussiandistributed, then the magnitude r(t) has a **Rayleigh** distribution, and the phase $\phi(t)$ is **uniformly** distributed.
- What if a sinusoid $A\cos(2\pi f_c t)$ is mixed with noise?
- Then the magnitude will have a **Rice** distribution.

Summary

- White noise: PSD is constant over an infinite bandwidth.
- Gaussian noise: PDF is Gaussian.
- Bandpass noise
 - In-phase and quadrature components $n_c(t)$ and $n_s(t)$ are low-pass random processes.
 - $n_c(t)$ and $n_s(t)$ have the same PSD.
 - $n_c(t)$ and $n_s(t)$ have the same variance as the band-pass noise n(t).
 - Such properties will be pivotal to the performance analysis of bandpass communication systems.
- The in-phase/quadrature representation and phasor representation are not only basic to the characterization of bandpass noise itself, but also to the analysis of bandpass communication systems.

Noise in Analog Communication Systems

- How do various analog modulation schemes perform in the presence of noise?
- Which scheme performs best?
- How can we measure its performance?



SNR

- We must find a way to quantify (= to measure) the performance of a modulation scheme.
- We use the signal-to-noise ratio (SNR) at the output of the receiver:

 $SNR_{o} = \frac{\text{average power of message signal at the receiver output}}{\text{average power of noise at the receiver output}} = \frac{P_{S}}{P_{N}}$

- Normally expressed in decibels (dB)
- SNR (dB) = 10 log₁₀(SNR)
- This is to manage the wide range of power levels in communication systems
- In honour of Alexander Bell
- Example:
 - ratio of 2 \rightarrow 3 dB; 4 \rightarrow 6 dB; 10 \rightarrow 10dB

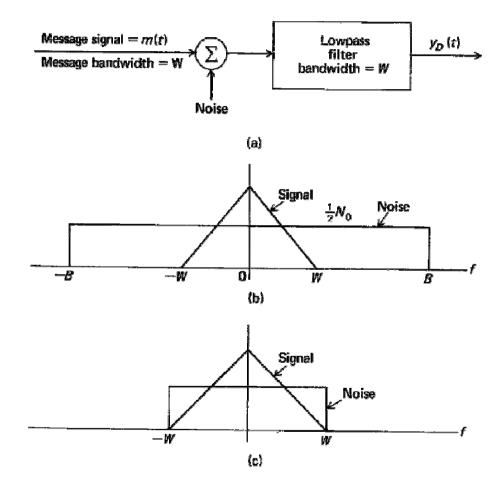
dBIf x is power, X (dB) = 10 log₁₀(x) If x is amplitude, X (dB) = 20 log₁₀(x)

Transmitted Power

- P_T : The transmitted power
- Limited by: equipment capability, battery life, cost, government restrictions, interference with other channels, green communications etc
- The higher it is, the more the received power (P_S) , the higher the SNR
- For a fair comparison between different modulation schemes:
 - $-P_T$ should be the same for all
- We use the **baseband** signal to noise ratio SNR_{baseband} to calibrate the SNR values we obtain

A Baseband Communication System

- It does not use modulation
- It is suitable for transmission over wires
- The power it transmits is identical to the message power: $P_T = P$
- No attenuation: $P_S = P_T = P$
- The results can be extended to band-pass systems



Output SNR

- Average signal (= message) power
 P = the area under the triangular curve
- Assume: Additive, white noise with power spectral density $PSD = N_0/2$
- Average noise power at the receiver P_N = area under the straight line = $2W \times N_0/2 = WN_0$
- SNR at the receiver output:

$$SNR_{\text{baseband}} = \frac{P_T}{N_0 W}$$

- Note: Assume no propagation loss
- Improve the SNR by:
 - increasing the transmitted power $(P_T \uparrow)$,
 - restricting the message bandwidth ($W \downarrow$),
 - making the channel/receiver less noisy $(N_0 \downarrow)$.

Revision: AM

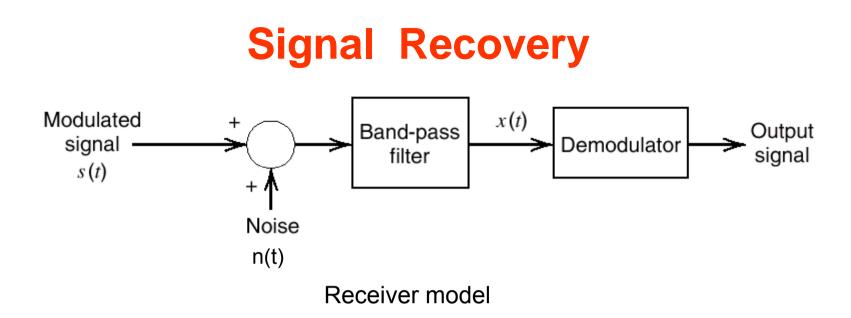
• General form of an AM signal:

 $s(t)_{AM} = [A + m(t)]\cos(2\pi f_c t)$

- A: the amplitude of the carrier
- f_c : the carrier frequency
- -m(t): the message signal
- Modulation index:

$$\mu = \frac{m_p}{A}$$

- m_p : the peak amplitude of m(t), i.e., $m_p = \max |m(t)|$



1) $\mu \le 1 \Rightarrow A \ge m_p$: use an envelope detector. This is the case in almost all commercial AM radio receivers.

Simple circuit to make radio receivers cheap.

2) Otherwise: use synchronous detection = product detection = coherent detection

The terms detection and demodulation are used interchangeably.

Synchronous Detection

• Multiply the waveform at the receiver with a local carrier of the same frequency (and phase) as the carrier used at the transmitter:

$$2\cos(2\pi f_c t)s(t)_{AM} = [A + m(t)]2\cos^2(2\pi f_c t)$$

= [A + m(t)][1 + cos(4\pi f_c t)]
= A + m(t) + \dots

- Use a LPF to recover A + m(t) and finally m(t)
- Remark: At the receiver you need a signal perfectly synchronized with the transmitted carrier

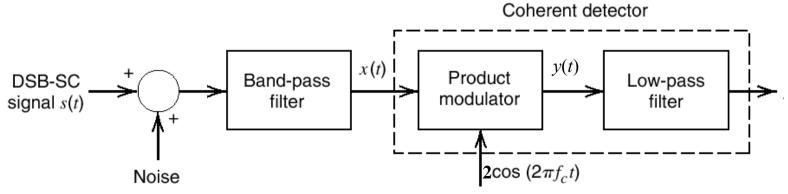
DSB-SC

Double-sideband suppressed carrier (DSB-SC)

 $s(t)_{DSB-SC} = Am(t)\cos(2\pi f_c t)$

- Signal recovery: with synchronous detection only
- The received noisy signal is

$$\begin{aligned} x(t) &= s(t) + n(t) \\ &= s(t) + n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t) \\ &= Am(t)\cos(2\pi f_c t) + n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t) \\ &= [Am(t) + n_c(t)]\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t) \end{aligned}$$



Synchronous Detection

• Multiply with $2\cos(2f_c t)$:

$$y(t) = 2\cos(2\pi f_c t)x(t)$$

= $Am(t)2\cos^2(2\pi f_c t) + n_c(t)2\cos^2(2\pi f_c t) - n_s(t)\sin(4\pi f_c t)$
= $Am(t)[1 + \cos(4\pi f_c t)] + n_c(t)[1 + \cos(4\pi f_c t)] - n_s(t)\sin(4\pi f_c t)$

• Use a LPF to keep

 $\widetilde{y} = Am(t) + n_c(t)$

• Signal power at the receiver output:

$$P_{S} = E\{A^{2}m^{2}(t)\} = A^{2}E\{m^{2}(t)\} = A^{2}P$$

• Power of the noise $n_c(t)$ (recall (3.5)):

$$P_N = \int_{-W}^{W} N_0 df = 2N_0 W$$

Comparison

• SNR at the receiver output:

$$SNR_{\rm o} = \frac{A^2 P}{2N_0 W}$$

- To which **transmitted** power does this correspond? $P_T = E\{A^2m(t)^2\cos^2(2\pi f_c t)\} = \frac{A^2P}{2}$
- So

$$SNR_{o} = \frac{P_T}{N_0 W} = SNR_{DSB-SC}$$

• Comparison with

$$SNR_{baseband} = \frac{P_T}{N_0 W} \implies SNR_{DSB-SC} = SNR_{baseband}$$

Conclusion: DSB-SC system has the same SNR performance as a baseband system.

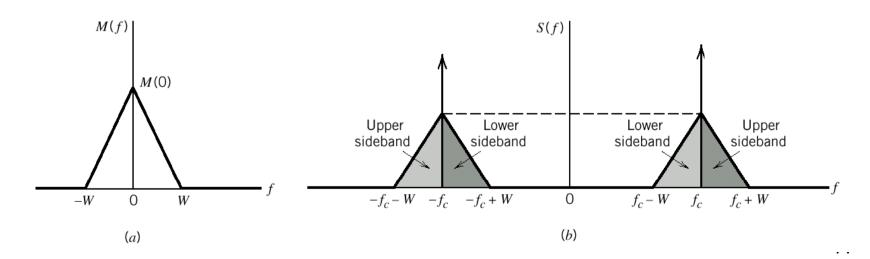
SSB Modulation

• Consider single (lower) sideband AM:

$$s(t)_{SSB} = \frac{A}{2}m(t)\cos 2\pi f_c t + \frac{A}{2}\hat{m}(t)\sin 2\pi f_c t$$

where $\hat{m}(t)$ is the Hilbert transform of m(t).

- $\hat{m}(t)$ is obtained by passing m(t) through a linear filter with transfer function $-j \operatorname{sgn}(f)$.
- $\hat{m}(t)$ and m(t) have the same power P.
- The average power is $A^2P/4$.



Noise in SSB

- Receiver signal x(t) = s(t) + n(t).
- Apply a band-pass filter on the lower sideband.
- Still denote by $n_c(t)$ the lower-sideband noise (different from the double-sideband noise in DSB).
- Using coherent detection:

$$y(t) = x(t) \times 2\cos(2\pi f_c t)$$

$$= \left(\frac{A}{2}m(t) + n_c(t)\right) + \left(\frac{A}{2}m(t) + n_c(t)\right)\cos(4\pi f_c t)$$

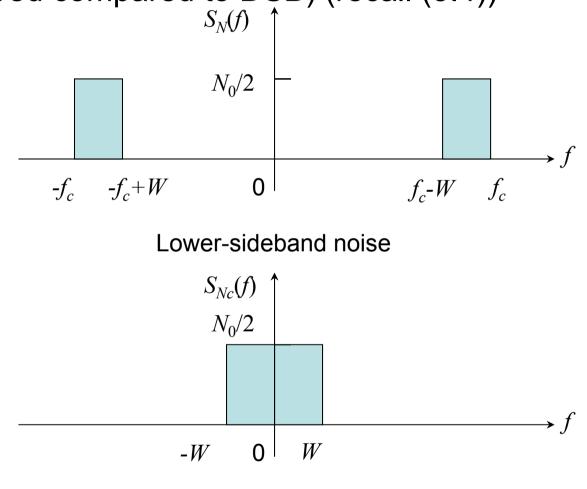
$$+ \left(\frac{A}{2}\hat{m}(t) - n_s(t)\right)\sin(4\pi f_c t)$$

• After low-pass filtering,

$$y(t) = \left(\frac{A}{2}m(t) + n_c(t)\right)$$

Noise Power

• Noise power for $n_c(t)$ = that for band-pass noise = $N_0 W$ (halved compared to DSB) (recall (3.4))



Output SNR

- Signal power $A^2P/4$
- SNR at output

$$SNR_{SSB} = \frac{A^2 P}{4N_0 W}$$

• For a baseband system with the same transmitted power $A^2P/4$

$$SNR_{baseband} = \frac{A^2 P}{4N_0 W}$$

 Conclusion: SSB achieves the same SNR performance as DSB-SC (and the baseband model) but only requires half the band-width.

Standard AM: Synchronous Detection

• Pre-detection signal:

$$x(t) = [A + m(t)]\cos(2\pi f_c t) + n(t)$$

= [A + m(t)]\cos(2\pi f_c t) + n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)
= [A + m(t) + n_c(t)]\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)

• Multiply with $2\cos(2\pi f_c t)$:

$$y(t) = [A + m(t) + n_c(t)][1 + \cos(4\pi f_c t)] - n_s(t)\sin(4\pi f_c t)$$

• LPF

$$\widetilde{y} = A + m(t) + n_c(t)$$

Output SNR

• Signal power at the receiver output:

$$P_S = E\{m^2(t)\} = P$$

• Noise power:

$$P_N = 2N_0W$$

• SNR at the receiver output:

$$SNR_o = \frac{P}{2N_0W} = SNR_{AM}$$

• Transmitted power

$$P_T = \frac{A^2}{2} + \frac{P}{2} = \frac{A^2 + P}{2}$$

Comparison

• SNR of a baseband signal with the same transmitted power: $A^2 + P$

$$SNR_{baseband} = \frac{A^2 + P}{2N_0W}$$

• Thus:

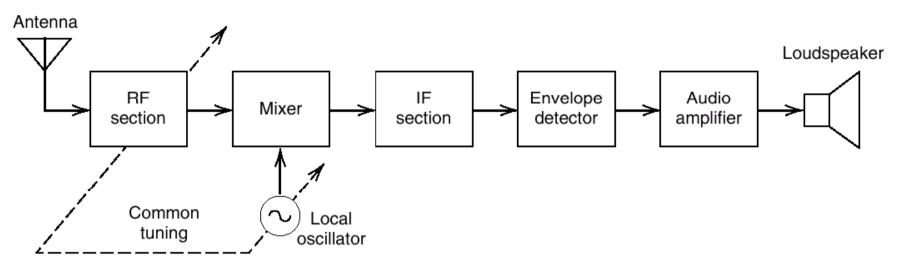
$$SNR_{AM} = \frac{P}{A^2 + P} SNR_{baseband}$$

• Note:

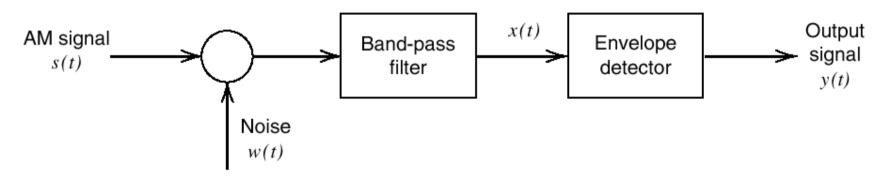
$$\frac{P}{A^2 + P} < 1$$

 Conclusion: the performance of standard AM with synchronous recovery is worse than that of a baseband system.

Model of AM Radio Receiver



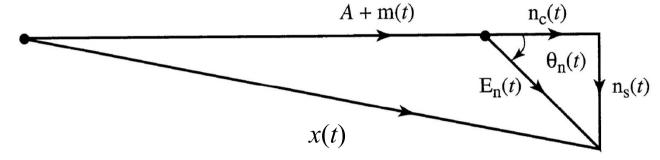
AM radio receiver of the superheterodyne type



Model of AM envelope detector

Envelope Detection for Standard AM

Phasor diagram of the signals present at an AM receiver



• Envelope

$$y(t)$$
 = envelope of $x(t)$

$$= \sqrt{[A + m(t) + n_c(t)]^2 + n_s(t)^2}$$

- · Equation is too complicated
- Must use limiting cases to put it in a form where noise and message are added

Small Noise Case

• 1st Approximation: (a) Small Noise Case

n(t) << [A + m(t)]

• Then

$$n_s(t) << [A + m(t) + n_c(t)]$$

• Then

 $y(t) \approx [A + m(t) + n_c(t)]$

Identical to the postdetection signal in the case of synchronous detection!

• Thus

$$SNR_{o} = \frac{P}{2N_{0}W} \approx SNR_{env}$$

• And in terms of baseband SNR:

$$SNR_{env} \approx \frac{P}{A^2 + P} SNR_{baseband}$$

Valid for small noise only!

Large Noise Case

- 2nd Approximation: (b) Large Noise Case n(t) >> [A + m(t)]
- Isolate the small quantity:

$$y^{2}(t) = [A + m(t) + n_{c}(t)]^{2} + n_{s}^{2}(t)$$

$$= (A + m(t))^{2} + n_{c}^{2}(t) + 2(A + m(t))n_{c}(t) + n_{s}^{2}(t)$$

$$= [n_{c}^{2}(t) + n_{s}^{2}(t)] \left\{ 1 + \frac{(A + m(t))^{2}}{n_{c}^{2}(t) + n_{s}^{2}(t)^{2}} + \frac{2(A + m(t))n_{c}(t)}{n_{c}^{2}(t) + n_{s}^{2}(t)} \right\}$$

$$y^{2}(t) \approx [n_{c}^{2}(t) + n_{s}^{2}(t)] \left(1 + \frac{2[A + m(t)]n_{c}(t)}{n_{c}^{2}(t) + n_{s}^{2}(t)} \right)$$

$$= E_{n}^{2}(t) \left(1 + \frac{2[A + m(t)]n_{c}(t)}{E_{n}^{2}(t)} \right)$$

$$E_{n}(t) \equiv \sqrt{n_{c}^{2}(t) + n_{s}^{2}(t)}$$

Large Noise Case: Threshold Effect

- From the phasor diagram: $n_c(t) = E_n(t) \cos\theta_n(t)$
- Then:

$$y(t) \approx E_n(t) \sqrt{1 + \frac{2[A + m(t)]\cos\theta_n(t)}{E_n(t)}}$$

• Use $\sqrt{1 + x} \approx 1 + \frac{x}{2}$ for $x \ll 1$
 $y(t) \approx E_n(t) \left(1 + \frac{[A + m(t)]\cos\theta_n(t)}{E_n(t)}\right)$
 $= E_n(t) + [A + m(t)]\cos\theta_n(t)$

- Noise is multiplicative here!
- No term proportional to the message!
- Result: a **threshold effect**, as below some carrier power level (very low *A*), the performance of the detector deteriorates very rapidly.

Summary

(De-) Modulation Format	Output SNR	Transmitted Power	Baseband Reference SNR	Figure of Merit (= Output SNR / Reference SNR)
AM Coherent Detection	$\frac{P}{2N_0W}$	$\frac{A^2 + P}{2}$	$\frac{A^2 + P}{2N_0W}$	$\frac{P}{A^2 + P} < 1$
DSB-SC Coherent Detection	$\frac{A^2P}{2N_0W}$	$\frac{A^2P}{2}$	$\frac{A^2P}{2N_0W}$	1
SSB Coherent Detection	$\frac{A^2P}{4N_0W}$	$\frac{A^2P}{4}$	$\frac{A^2P}{4N_0W}$	1
AM Envelope Detection (Small Noise)	$\frac{P}{2N_0W}$	$\frac{A^2 + P}{2}$	$\frac{A^2 + P}{2N_0W}$	$\frac{P}{A^2 + P} < 1$
AM Envelope Detection (Large Noise)	Poor	$\frac{A^2 + P}{2}$	$\frac{A^2 + P}{2N_0W}$	Poor

A: carrier amplitude, *P*: power of message signal, N_0 : single-sided PSD of noise, *W*: message bandwidth.

Frequency Modulation

- Fundamental difference between AM and FM:
- AM: message information contained in the signal amplitude ⇒ Additive noise: corrupts directly the modulated signal.
- FM: message information contained in the signal frequency ⇒ the effect of noise on an FM signal is determined by the extent to which it changes the frequency of the modulated signal.
- Consequently, FM signals is less affected by noise than AM signals

Revision: FM

• A carrier waveform

 $s(t) = A \cos[\theta_i(t)]$

- where $\theta_i(t)$: the instantaneous phase angle.
- When

$$s(t) = A \cos(2\pi f t) \Rightarrow \theta_i(t) = 2\pi f t$$

we may say that

$$\frac{d\theta}{dt} = 2\pi f \Longrightarrow f = \frac{1}{2\pi} \frac{d\theta}{dt}$$

• Generalisation: instantaneous frequency:

$$f_i(t) \triangleq \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

FM

• In FM: the instantaneous frequency of the carrier varies linearly with the message:

$$f_i(t) = f_c + k_f m(t)$$

- where k_f is the **frequency sensitivity** of the modulator.

• Hence (assuming $\theta_i(0)=0$):

$$\theta_i(t) = 2\pi \int_0^t f_i(\tau) d\tau = 2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau$$

• Modulated signal:

$$s(t) = A\cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right]$$

- Note:
 - (a) The envelope is constant
 - (b) Signal s(t) is a non-linear function of the message signal m(t).

Bandwidth of FM

- $m_p = \max|m(t)|$: peak message amplitude.
- $f_c k_f m_p$ < instantaneous frequency < $f_c + k_f m_p$
- Define: **frequency deviation** = the deviation of the instantaneous frequency from the carrier frequency:

$$\Delta f = k_f m_p$$

• Define: deviation ratio:

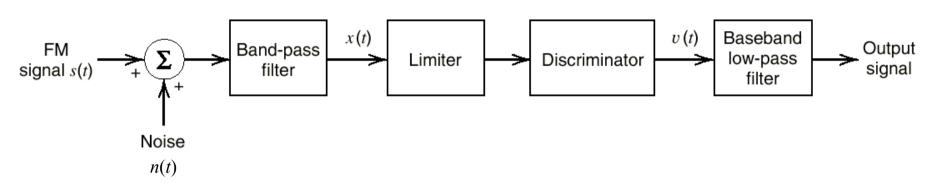
$$\beta = \Delta f / W$$

- W: the message bandwidth.
- Small β : FM bandwidth \approx 2x message bandwidth (**narrow-band FM**)
- Large β : FM bandwidth >> 2x message bandwidth (**wide-band FM**)
- Carson's rule of thumb:

$$B_T = 2W(\beta + 1) = 2(\Delta f + W)$$

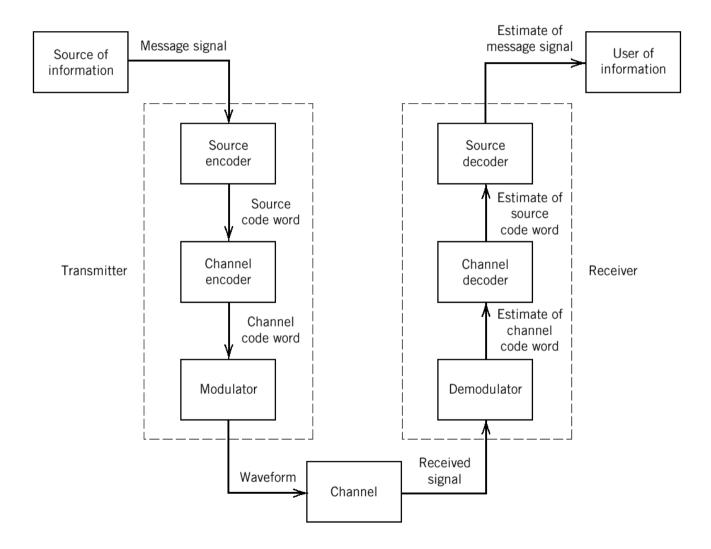
- $-\beta \ll 1 \Rightarrow B_T \approx 2W$ (as in AM)
- $-\beta >>1 \Rightarrow B_T \approx 2\Delta f$

FM Receiver



- **Bandpass filter**: removes any signals outside the bandwidth of *fc* $\pm B_T/2 \Rightarrow$ the predetection noise at the receiver is bandpass with a bandwidth of B_T .
- FM signal has a constant envelope ⇒ use a limiter to remove any amplitude variations
- **Discriminator**: a device with output proportional to the deviation in the instantaneous frequency ⇒ it recovers the message signal
- Final baseband low-pass filter: has a bandwidth of $W \Rightarrow$ it passes the message signal and removes out-of-band noise.

Block Diagram of Digital Communication



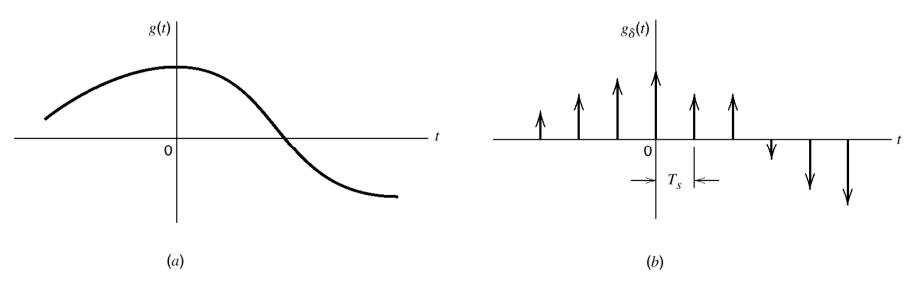
Why Digital?

• Advantages:

- Digital signals are more immune to channel noise by using channel coding (perfect decoding is possible!)
- Repeaters along the transmission path can detect a digital signal and retransmit a new noise-free signal
- Digital signals derived from all types of analog sources can be represented using a uniform format
- Digital signals are easier to process by using microprocessors and VLSI (e.g., digital signal processors, FPGA)
- Digital systems are flexible and allow for implementation of sophisticated functions and control
- More and more things are digital...
- For digital communication: analog signals are converted to digital.

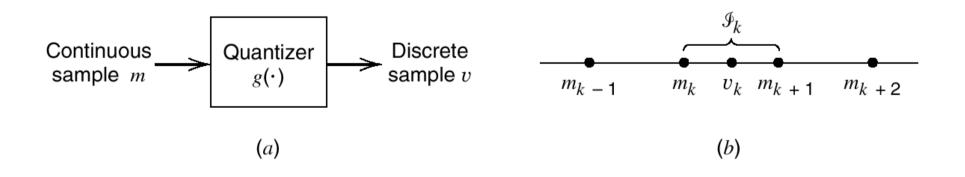
Sampling

- How densely should we sample an analog signal so that we can reproduce its form accurately?
- A signal the spectrum of which is band-limited to W Hz, can be reconstructed exactly from its samples, if they are taken uniformly at a rate of $R \ge 2W$ Hz.
- Nyquist frequency: $f_s = 2W$ Hz



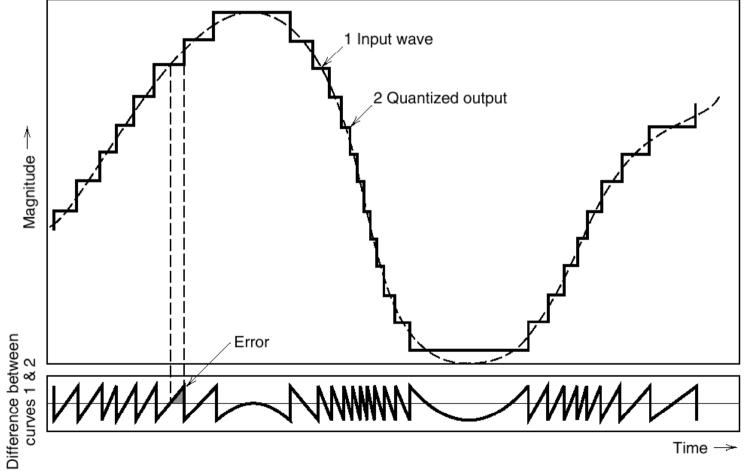
Quantization

- Quantization is the process of transforming the sample amplitude into a discrete amplitude taken from a finite set of possible amplitudes.
- The more levels, the better approximation.
- Don't need too many levels (human sense can only detect finite differences).
- Quantizers can be of a uniform or nonuniform type.



Quantization Noise

 Quantization noise: the error between the input signal and the output signal



Variance of Quantization Noise

- Δ : gap between quantizing levels (of a uniform quantizer)
- *q*: Quantization error = a random variable in the range

$$-\frac{\Delta}{2} \le q \le \frac{\Delta}{2}$$

• Assume that it is **uniformly distributed** over this range:

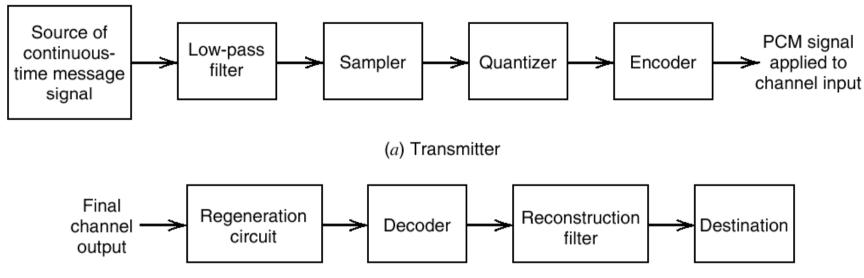
$$f_{\mathcal{Q}}(q) = \begin{cases} \frac{1}{\Delta}, & -\frac{\Delta}{2} \le q \le \frac{\Delta}{2} \\ 0, & \text{otherwise} \end{cases}$$

Noise variance

$$P_{N} = E\{e^{2}\} = \int_{-\infty}^{\infty} q^{2} f_{Q}(q) dq$$

= $\frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^{2} dq = \frac{1}{\Delta} \cdot \frac{q^{3}}{3} \Big|_{-\Delta/2}^{\Delta/2} = \frac{1}{\Delta} \left[\frac{\Delta^{3}}{24} - \frac{(-\Delta)^{3}}{24} \right]$
= $\frac{\Delta^{2}}{12}$

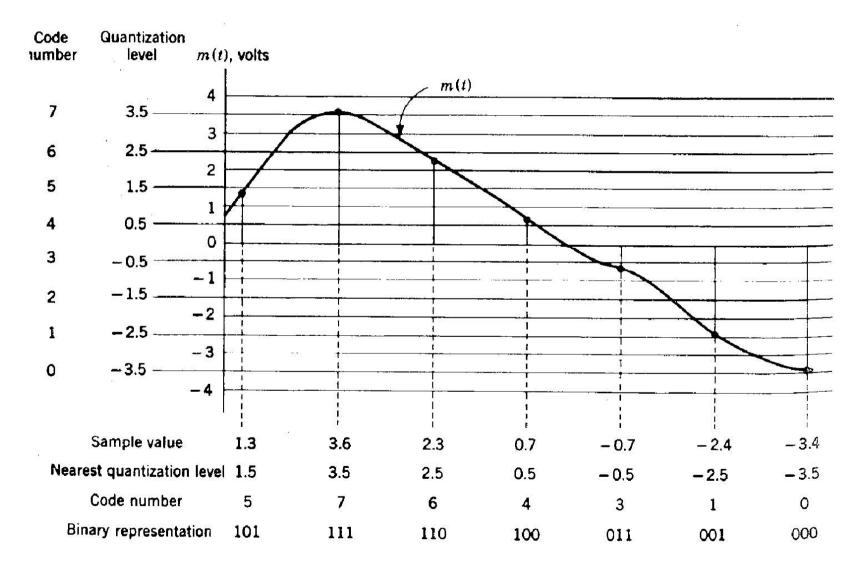
Pulse-Coded Modulation (PCM)



(c) Receiver

- Sample the message signal above the Nyquist frequency
- Quantize the amplitude of each sample
- Encode the discrete amplitudes into a binary codeword
- Caution: PCM isn't modulation in the usual sense; it's a type of Analog-to-Digital Conversion.

The PCM Process



Problem With Uniform Quantization

- Problem: the output SNR is adversely affected by peak to average power ratio.
- Companding is the corresponding to pre-emphasis and de-emphasis scheme used for FM.
- Predistort a message signal in order to achieve better performance in the presence of noise, and then remove the distortion at the receiver.
- Typically small signal amplitudes occur more often than large signal amplitudes.
 - The signal does not use the entire range of quantization levels available with equal probabilities.
 - Small amplitudes are not represented as well as large amplitudes, as they are more susceptible to quantization noise.

Companding

- Solution: Nonuniform quantization that uses quantization levels of variable spacing, denser at small signal amplitudes, broader at large amplitudes.
- A practical solution to nonuniform quantization:
 - Compress the signal first
 - Quantize it
 - Transmit it
 - Expand it

Companding = Compressing + Expanding

- The exact SNR gain obtained with companding depends on the exact form of the compression used.
- With proper companding, the output SNR can be made insensitive to peak to average power ratio.

Summary

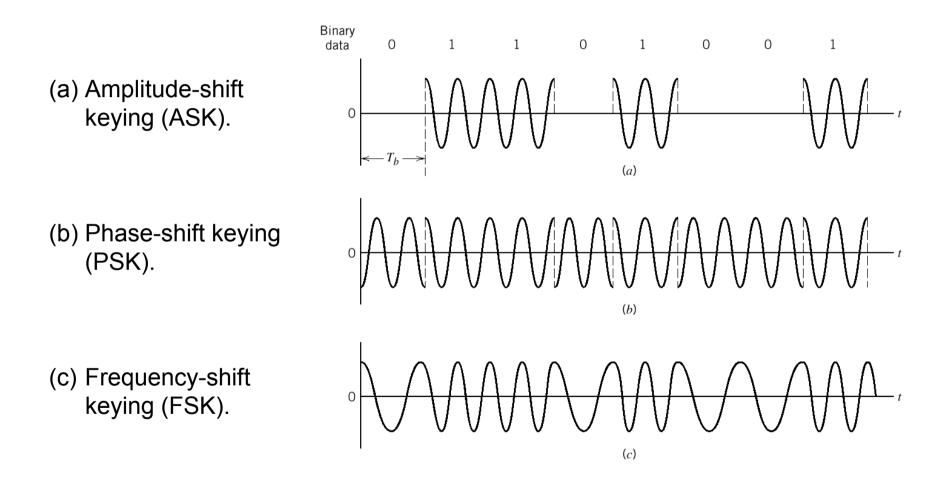
- Digitization of signals requires
 - Sampling: a signal of bandwidth W is sampled at the Nyquist frequency 2W.
 - Quantization: the link between analog waveforms and digital representation.
 - SNR

$$SNR_o(dB) = 6n + 10\log_{10}\left(\frac{3P}{m_p^2}\right)$$
 (dB)

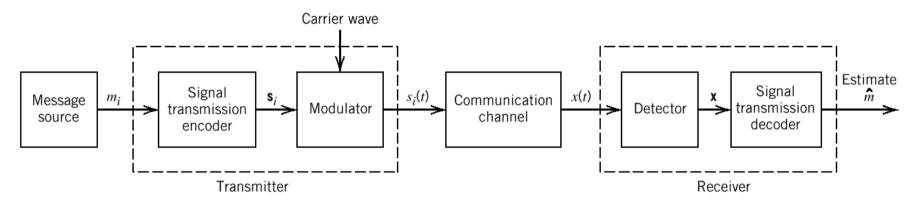
- Companding can improve SNR.
- PCM is a common method of representing audio signals.
 - In a strict sense, "pulse coded modulation" is in fact a (crude) source coding technique (i.e, method of digitally representing analog information).
 - There are more advanced source coding (compression) techniques in information theory.

Digital Modulation

• Three Basic Forms of Signaling Binary Information



Demodulation



- Coherent (synchronous) demodulation/detection
 - Use a BPF to reject out-of-band noise
 - Multiply the incoming waveform with a cosine of the carrier frequency
 - Use a LPF
 - Requires carrier regeneration (both frequency and phase synchronization by using a phase-lock loop)
- Noncoherent demodulation (envelope detection etc.)
 - Makes no explicit efforts to estimate the phase

ASK

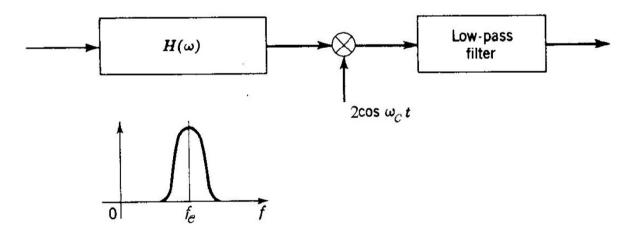
• Amplitude shift keying (ASK) = on-off keying (OOK)

or

$$s_0(t) = 0$$

 $s_1(t) = A \cos(2\pi f_c t)$
 $s(t) = A(t) \cos(2\pi f_c t), \quad A(t) \in \{0, A\}$

Coherent detection



Assume an ideal band-pass filter with unit gain on [f_c-W, f_c +W]. For a practical band-pass filter, 2W should be interpreted as the equivalent bandwidth.

PSK

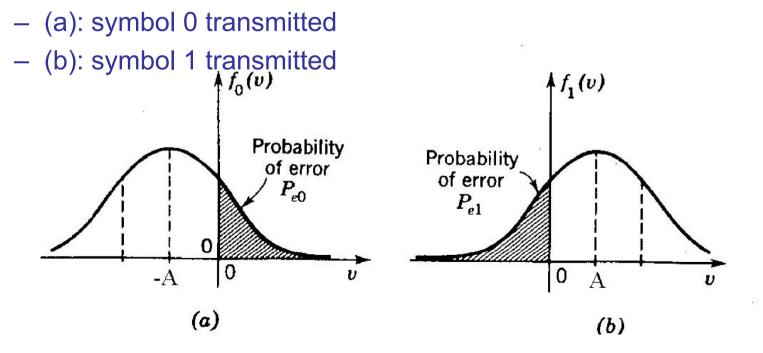
• Phase shift keying (PSK)

 $s(t) = A(t) \cos(2\pi f_c t), \qquad A(t) \in \{-A, A\}$

• Use coherent detection again, to eventually get the detection signal:

$$\tilde{y}(t) = A(t) + n_c(t)$$

 Probability density functions for PSK for equiprobable 0s and 1s in noise (use threshold 0 for detection):



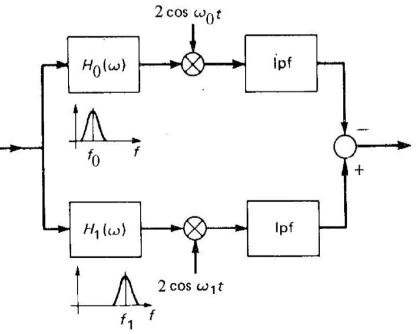
FSK

• Frequency Shift Keying (FSK)

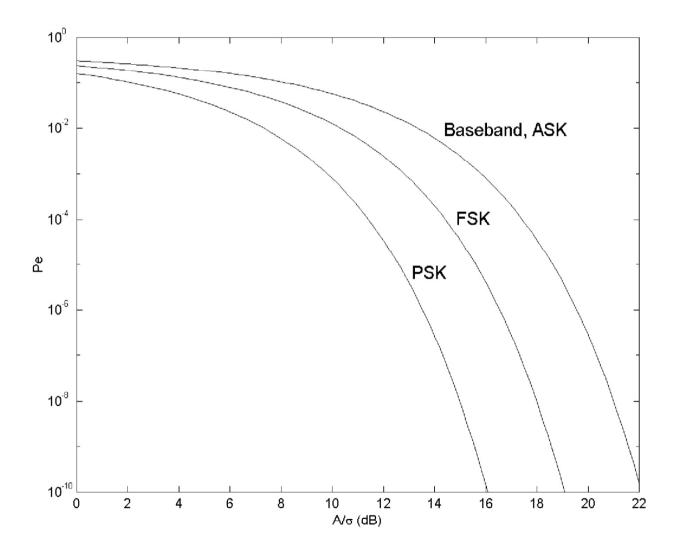
 $s_0(t) = A \cos(2\pi f_0 t)$, if symbol 0 is transmitted $s_1(t) = A \cos(2\pi f_1 t)$, if symbol 1 is transmitted

- Symbol recovery:
 - Use two sets of coherent detectors, one operating at a frequency f_0 and the other at f_1 .

Coherent FSK demodulation. The two BPF's are non-overlapping in frequency spectrum



Comparison of Three Schemes



169

1. Show that if $n_c(t)$ and $n_s(t)$ are Gaussian distributed, then the magnitude r(t) has a **Rayleigh** distribution, and the phase $\varphi(t)$ is **uniformly** distributed.