

Flywheel energy storage systems

ECE-620 Ultra-wide-area resilient electrical energy transmission networks

Northeastern 💿 Rensselaer TUSKEGEE

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

October 19, 2016

・ロン ・回と ・ヨン ・ ヨン

Outline

- General description of energy storage systems
- Flywheel modeling
- Application of flywheels to improve power system dynamics

.∃ ▶ . ∢

э

Example of storage systems:

- Pumped hydro-power
- Flywheels
- Solid state batteries (Li-Ion, Ni-Cd, NAS)
- Flow batteries (Redox, Vanadium Redox, Zinc-Bromine)
- Compressed air energy
- Thermal (Pumped heat electrical storage, hydrogen energy storage)

Technology	Advantage	Disadvantage	P.A.	E.A.
Pumped hydro-power	High E and low cost	Special location		\oplus
Flywheels	High P	Low E	\oplus	
Electrochemical capacitors	Long lifespan	Low E	\oplus	
Lead-acid battery	Low cost	Reduce lifespan	\oplus	\odot
NAS Battery	High P and E	High cost and temp	\oplus	\oplus
Li-Ion Battery	High P and E	Cost and con- trol system	\oplus	θ
Compressed air	High E and low cost	Special location		\oplus
Feasible and reasonable	Source: Energy Storage Association			

- \ominus Feasible for this application
- Feasible but economically unattractive
- P Power
- E Energy

- P.A. Power application
- E.A. Energy application

Ξ.

Technology	Energy density (Wh/Kg)	Power density (W/Kg)	Life cycles	Time response
Pumped hydro-power	0.3-1.5	_	>25 yrs	min
Flywheels	5-70	1,000-5,000	>20,000	ms
Electrochemical capacitors	5-25	>1,000	>20,000	< ms
Lead-acid battery	20-45	25-100	200-2,000	s
NAS Battery	120-240	120-220	3,000-9,000	S
Li-Ion Battery	100-200	360	500-4,000	S
Compressed air	10-30	_	$>\!25~{ m yrs}$	min

Source: R. Cardenas, An overview of systems for the storage of electrical energy, Workshop on Storage Systems, University of Chile, 2014

э

Pumped-hydro power (for E.A.)

- Water is sent to the upper pond when the marginal cost is low
- The hydro potential is reserved for the hour when the marginal cost is high
- The pump-generation cycle has an efficiency around 70

In general...

If there exists an hour k with a high marginal cost (λ_k) and an hour i with a low marginal cost (λ_i) such that $\lambda_k > \frac{\lambda_i}{\eta}$ the use of the pumped hydro storage system is economically attractive.

< 🗇 🕨

Example: Okinawa Yanbaru Pumped-Hydro Power Plant

- First high head seawater pumped-hydro power plant
- Maximum output 30MW
- Maximum discharge of 26 $\ensuremath{\mathsf{m}}^3/\ensuremath{\mathsf{s}}$
- Upper pond is artificial, 150 m over the sea level, and 25 m deep
- Lower reservoir is the Philippine Sea

Flywheels (for P.A.)

- Store rotational kinetic energy in a rotating cylinder or disc
- The amount of stored energy depends on the flywheels mass and speed
- Increasing the rotational speed allows storing more energy, but stronger materials are needed to avoid desintegration
- To keep the energy for hours, mechanical friction needs to be reduced (flywheels with mechanical-bearing may even lose 50% of energy in a couple of hours)
- High efficiency (>80%), long lifespan ($\approx\!20$ years) and low operational and maintenance costs

Example: Stephentown Flywheel Plant, 20 MW, NY

- With 200 flywheels, began operation in January 2011
- Provides frequency regulation (pprox30% of the NYISO ACE correction)
- Flywheels perform between 3,000 to 5,000 full discharge cycles a year

Components and arrangement Source: Beacon Power LLC

3

Components and arrangement Source: Beacon Power LLC

Representative Flywheel Energy Storage Module

э

Components and arrangement Source: Beacon Power LLC

э

Beacon Power 450 XP: Specifications

Characteristic	45 XP
Grid output/supply voltage	3 phase, 600 V rms
Grid frequency	50/60 Hz
Nominal output rating	Up to 360 kVA
Overload output capability	150% of nominal real and reactive power for 10 seconds
Usable energy at full charge	36 kWh
Response time	$15\ {\rm ms}$ or less from receipt of signal to start of changing output
Ramp time	Full output in 100 ms from receipt of signal
Round trip efficiency	85%

< ∃ > <

Ξ.

Ξ.

Assumptions: Surface permanent magnetic machine (SPMM), field oriented control, and a simplified representation for converters are considered.

Mathematical representation of the FPAE:

$$\frac{1}{\omega_b} L_d \frac{di_d}{dt} = v_d - r_s i_d + \omega_r L_q i_q$$

$$\frac{1}{\omega_b} L_q \frac{di_q}{dt} = v_q - r_s i_q - \omega_r (L_d i_d + \Phi_f)$$

$$2H \frac{d\omega_r}{dt} = T_m - \underbrace{\Phi_f i_q}_{T_e}$$

$$C_{eq} \frac{dv_c}{dt} = \frac{\omega_r T_e}{v_c} - i_g$$

$$P_g = v_c i_g$$

Open-loop fundamental FPAE model:

$$\begin{array}{ll} 2H\frac{d\omega_r}{dt} = -\Phi_f i_q & & v_d = -\omega_r L_q i_q \\ C_{eq}\frac{dv_c}{dt} = \frac{\omega_r \Phi_f i_q}{v_c} - i_g & \text{where} & \\ P_g = v_c i_g & & v_q = \omega_r \Phi_f \end{array}$$

э

Validation using PLECS:

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

æ

Model and controllers:

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

16/33

Model and controllers:

3. Application of flywheels to improve power system dynamics

Northern Chile Interconnected System (NCIS) Installed capacity 4,150 MW Total demand 2.400 MW Mining companies 90% of total demand H-constant inertia 3.86 s based on installed power Renewable energy Solar (high potential) Storage systems BESS, 12MW and 20 MW **Operational issues** Frequency excursions (isolated) Oscillations (interconnected)

ECE-620 Flywheel energy storage systems

3. Application of flywheels

Base case (high demand scenario)

Inter-area oscillation:

$$\begin{array}{l} \lambda = -0.012 + j2.297 \\ f_{osc} = 0.37 \ [\text{Hz}] \\ \sigma = 0.53\% \end{array}$$

All other modes have damping ratios above 10%.

BES plants have marginal effects on the inter-area mode damping due to limitations imposed by dead-bands.

Flywheel's location analysis

$$\begin{array}{c} \dot{x}_1 = A_1 x_1 + B_1 u_1 \\ y_1 = C_1 x_1 \end{array} \right\} \text{Open-loop system} \\ \dot{x}_2 = A_2 x_2 + B_2 u_2 \\ y_2 = C_2 x_2 \end{array} \right\} \text{Controller}$$

Closing the loop: $u_1 = y_2$ $y_1 = u_2$

$$H(s) = C_2 M(s) B_2$$
$$M(s) = (sI - A_2)^{-1}$$

For a flywheel in bus ℓ : y_1 : Bus frequency u_1 : Flywheel active power

Flywheel's location analysis (eigenvalue and eigenvectors) If λ is the inter-area eigenvalue of interest, then right and left eigenvectors of the open loop system are given by:

$$A_1 v = \lambda v \qquad A_1^T w = \lambda w$$

In the closed-loop system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} A_1 & B_1^{\ell}C_2 \\ B_2C_1^{\ell} & A_2 \end{bmatrix}}_{A_{cl}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow A_{cl} \begin{bmatrix} v_{cl,1} \\ v_{cl,2} \end{bmatrix} = \lambda \begin{bmatrix} v_{cl,1} \\ v_{cl,2} \end{bmatrix}$$
$$\begin{bmatrix} w_{cl,1}^T & w_{cl,2}^T \end{bmatrix} A_{cl} = \lambda \begin{bmatrix} w_{cl,1}^T & w_{cl,2}^T \end{bmatrix}$$

By forcing $v_{cl,1}=v$ and $w_{cl,1}=w$ (open-loop eigenvectors), then $v_{cl,2}=M(\lambda)B_2C_1^\ell v$ and $w_{cl,2}^T=w^TB_1^\ell C_2M(\lambda)$

イロト イポト イヨト イヨト

Flywheel's location analysis (eigenvalue and eigenvectors) We can show that, in closed-loop, the sensitivity of the eigenvalue with respect to a parameter of the controller becomes:

$$\lambda' = w_{cl}^T A_{cl}' v_{cl}$$

$$= w^T \begin{bmatrix} I & B_1^{\ell} C_2 M(\lambda) \end{bmatrix} \begin{bmatrix} 0 & B_1^{\ell} C_2' \\ B_2' C_1^{\ell} & A_2' \end{bmatrix} \begin{bmatrix} I \\ M(\lambda) B_2 C_1^{\ell} \end{bmatrix} v$$

$$= w^T B_1^{\ell} \Big(C_2' M(\lambda) B_2 + C_2 M(\lambda) A_2' M(\lambda) B_2 + C_2 M(\lambda) B_2' \Big) C_1^{\ell} v$$

$$= \underbrace{w^T B_1^{\ell}}_{MC^{\ell}} H(\lambda)' \underbrace{C_1^{\ell} v}_{MO^{\ell}}$$

$$(4)$$

MC: Mode controllability MO: Mode observability

Flywheel's location analysis: Controllability index

$$\lambda' = \underbrace{w^T B_1^{\ell}}_{MC^{\ell}} H(\lambda)' \underbrace{C_1^{\ell} v}_{MO^{\ell}}$$

Observations:

- $H(\lambda)$ does not depend on the location
- $MO^\ell \approx MO^m$ for any buses ℓ and m
- λ' can be fairly considered to be proportional to MC^{ℓ} .

Thus, for location purposes, we define the controllability index as:

$$CI^{\ell} = \frac{|MC^{\ell}|}{\max_{k}|MC^{k}|} = \frac{|w^{T}B_{1}^{\ell}|}{\max_{k}|MC^{k}|}$$

The bus ℓ with the highest controllability index would the most attractive place to install a flywheel.

All 220 kV buses are considered as prospective locations of a flywheel plant.

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

э

All 220 kV buses are considered as prospective locations of a flywheel plant.

108 scenarios are considered based on load profiles and generation dispatch:

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

25 / 33

When a flywheel plant is connected to the buses, actual inter-area eigenvalue shows high agreement with respect to CI:

Location	Eigenvalue	f [Hz]	σ [%]
No FES	-0.012 + i2.297	0.37	0.53
Parinacota	-0.243 + i2.448	0.39	9.9
P. Almonte	-0.303 + i2.324	0.37	12.0
Tarapaca	-0.303 + i2.289	0.36	13.1
Collahuasi	-0.293 + i2.293	0.36	12.7
Lagunas	-0.295 + i2.282	0.36	12.8
N. Victoria	-0.294 + i2.284	0.36	12.8
El Abra	-0.283 + i2.319	0.37	12.1
Tocopilla	-0.294 + i2.228	0.35	13.1
Andes	-0.139 + i2.294	0.37	6.0

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

26 / 33

E එ.C

Generators speed when flywheel plant is installed in two locations:

э

Flywheel power for the aforementioned locations:

3

æ

Conclusions

- Comprehensive electro-mechanical model for a flywheel plant has been derived.
- When applied to the NCIS, at the optimal location, the damping ratio of the inter-area mode is increased from 0.55% to 12.7%.
- The proposed controllability index does not strongly depends on operational conditions.

Homework

In page 23,

- a. Derive equation (1)
- b. Show that equations (3) and (4) are equals.

< ∃ > <

э.

References

- 1. H. Silva, H. Pulgar-Painemal, J. Mauricio, "Flywheel energy storage model, control and location for improving stability: The Chilean case," submitted to the IEEE Transactions on Power Systems, April 2016 (under review)
- F. Pagola, I. Pérez-Arriaga, G. Verghese, "On sensitivities, residues and participations: Applications to oscillatory stability analysis and control," IEEE Transactions on Power Systems, Vol. 4, No. 1, Feb 1989.
- J. Chow, J. Sánchez-Gasca, H. Ren, and S. Wang, "Power system damping controller design using multiple input signals," IEEE Control Systems, Vol. 20, No. 4, pp. 82-90, Aug 2000.
- M. Aboul-Ela, A. Sallam, J. McCalley, and A. Fouad, "Damping controller design for power system oscillations using global signals," IEEE Transactions on Power Systems, Vol. 11, No. 2, pp. 767-773, May 1996.

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 1509114. This work also made use of Engineering Research Center shared facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award No. EEC-1041877 and the CURENT Industry Partnership Program. ECE-620 Flywheel energy storage systems

Knoxville, TN, October 19 2016

Thanks for your attention

Questions?

Dr. Héctor A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

33 / 33

э