

Measurement-based Voltage Stability Assessment for Load Areas

Kai Sun

University of Tennessee, Knoxville

November 2, 2016

Content

- •Background on measurement-based voltage stability assessment (VSA)
- MBVSA Methods:
 - -Using a Thevenin (1+1 buses)equivalent
 - Using an N+1 buses equivalent
- •Hybrid VSA approach and demonstrations

Simulation/model based Voltage Stability Assessment

- Strengths
 - Look-ahead capabilities in stability prediction and control for "what-if" scenarios
 - Lots of commercial software tools.
- Limitations in Online Application
 - Model-dependent: the accuracy depends on how accurate the power system models is
 - **Contingency-dependent**: only applied to selected critical contingencies
 - Requiring a steady-state powerflow solution: the state estimator may fail to converge under stressed operating conditions.
 - **Computationally intensive**: especially for dynamic simulations
- An alternative approach is Measurement-based VSA

A simple radial system

• How does V_R change as P_R increases? (example from Kundur's book)

 $P_R = P_{RMAX}$ when $Z_{LN} = Z_{LD}$

Methods on Measurement-based VSA

Using a Thevenin equivalent ^{[1]-[5]}

Thevenin (1+1-bus) equivalent based method [1]-[3]

Voltage Stability Margin Indices

In terms of active power:

$$P_{\rm margin} = P_{\rm max} - P$$

In terms of reactive power:

$$Q_{\text{margin}} = |Q_{\text{max}} - Q|$$

In terms of apparent power:

$$S_{\text{margin}} = S_{\text{max}} - |S| = \sqrt{P_{\text{max}}^2 + Q_{\text{max}}^2} - |S|$$

Methods on Measurement-based VSA

$$P_i = P_{i,j}^{\text{Max}} \text{ when } \frac{\partial P_i(|y_{11}|, \dots, |y_{NN}|)}{\partial |y_{jj}|} = 0$$

Using an N+1 buses Equivalent [6]-[10]

Derive the transfer limit of tie line i with respect to a load change near bus j as a function of all parameters of the equivalent

$$P_i = P_{i,j}^{\text{Max}} \text{ when } \frac{\partial P_i(|y_{11}|, \dots, |y_{NN}|)}{\partial |y_{jj}|} = 0$$

Offline place PMUs on boundary buses of the load area for voltage stability monitoring

Measure real-time voltage and current phasors

Estimate all parameters of the equivalent using phasor data over a sliding time window

Calculate transfer limits of all tie lines by analytical expressions on $P_{i,j}^{Max}$

Real-time limit and margin information for operators

3 (2+1) -bus system

 $P_{1,1}^{\text{Max}}$

• If
$$z_{T1} = j/b_{T1}$$
, $z_{T2} = j/b_{T2}$, $z_{12} = j/b_{12}$, $z_{11} = 1/g_{11}$, $z_{22} = 1/g_{22}$

$$=\frac{\left|E\right|^{2}b_{T1}}{2}\cdot\frac{\sqrt{\left[(b_{T2}+b_{12})^{2}+g_{22}^{2}\right]\cdot\left\{b_{T1}^{2}\left[(b_{T2}+b_{12})^{2}+g_{22}^{2}\right]+b_{T2}b_{12}(2b_{T1}b_{T2}+2b_{T1}b_{12}+b_{T2}b_{12})\right\}}{b_{T1}\left[(b_{T2}+b_{12})^{2}+g_{22}^{2}\right]+b_{12}(b_{T2}^{2}+b_{T2}b_{12}+g_{22}^{2})}$$

Consider a 4 (3+1) -bus system

For a load area fed by multiple tie lines

- •Using a Thevenin equivalent
 - Only estimates the total transfer limit of all tie lines
- •Using an N+1-bus equivalent
 - Estimates the transfer limit for each line and can better detect and control voltage instability if any line hits its limit earlier than the others
 - Gives the limits of each line with respect to different scenarios of load changes
 - More accurate in estimating the total transfer limit by considering the coupling among boundary buses

Demonstration on the NPCC 140-bus System (Case 1)

Generator 21 outage followed by load increase leading to voltage collapse

Comparison of two MB-VSA methods (Case 1)

3+1-bus equivalent

Voltage collapse caused by an N-2 contingency (Case 2)

- Trip tie line 31-30 at 110s and then tie line 6-5 at 200s
- Before the 2nd tie-line is tripped, the total power into the CLC area is 733MW (>677 MW, the limit of tie-line 73-35), so the 2nd tie-line trip causes zero margin on tie-line 73-35 and the following voltage collapse.

More performance test results

Time performances on online parameter estimation.

Comparison of different optimization time windows.

Comparison of initial values with errors.

Test on a 25k-bus Eastern Interconnection model

Application of the New MB-VSA Method in System Operations

Demonstration on CURENT Hardware Test Bed System^[9]

Closed-loop control to prevent voltage collapse

Comparison of Two VSA Approaches

Model-based VSA

Strengths

- Ability to look at N-1 and other "what if" scenarios.
- Ability for control strategy.

Limitations

- Model dependent.
- Computationally intensive.
- Convergence problems under stressed conditions.

Measurement-based VSA

• Strengths

- Not dependent on model.
- Reflects real time system data and scenario.
- Light computation burden.

Limitations

- Inability or inaccuracy for assessing N-1 security.
- Inaccuracy for non-radial load areas (Thevenin equivalent).

A hybrid approach integrating the two approaches may have the advantages of both.

Hybrid Voltage Stability Assessment and Control

• A hybrid approach: measurement-based + model-based

A Framework for Hybrid Voltage Stability Assessment and Control ^{[11]-[13]}

Illustrative Example on a Hybrid VSA Scheme [12]

• Focus on the ISO-NE Connecticut Load Center

Stage 1

P (x100 MW)

26

Time (sec)

518.1

468.0

494.0

Stage 3

(x100 MW)

Remedial Action

Visualization of Hybrid VSA Results on e-terravision [13]

References

- 1. K. Vu, M.M. Begovic, D. Novosel, M.M. Saha, "Use of local measurements to estimate voltage-stability margin", *IEEE Trans Power Syst.*, vol. 14, no. 3, Aug, 1999
- P Zhang, L Min, N Zhang, "Method for voltage instability load shedding using local measurements," US Patent 7,603,203, 2009
- 3. P. Zhang, L. Min, J. Chen, Measurement-based voltage stability monitoring and control, US Patent 8,126,667, 2012
- 4. K. Sun, F. Hu, N. Bhatt, A New Approach for Real-Time Voltage Stability Monitoring Using PMUs, 2014 IEEE ISGT Asia, Kuala Lumpur, Malaysia
- 5. M. Nakmali, D. Osipov, K. Sun, A New Hybrid Approach to Thevenin Equivalent Estimation for Voltage Stability Monitoring, 2015 IEEE PES General Meeting
- 6. F. Hu, K. Sun, A. D. Rosso, E. Farantatos, N. Bhatt, "An Adaptive Three-bus Power System Equivalent for Estimating Voltage Stability Margin from Synchronized Phasor Measurements", 2014 IEEE PES General Meeting, National Harbor, MD
- 7. D. Osipov, F. Hu, K. Sun, "Voltage Stability Margin Estimation for a Load Area Using a Three-Bus Equivalent," IEEE PES General Meeting, July 17-21, 2016, Boston, MA
- 8. F. Hu, K. Sun, A. Del Rosso, E. Farantatos, N. Bhatt, "Measurement-Based Real-Time Voltage Stability Monitoring for Load Areas," *IEEE Trans. Power Systems*, 2016 (DOI: 10.1109/TPWRS.2015.2477080)
- F. Hu, et al, "Measurement-based Voltage Stability Assessment and Control on CURENT Hardware Test Bed System," 2016 IEEE PES General Meeting in Boston, MA
- 10. F Hu, "Real-time Voltage Stability Monitoring and Control for Load Areas: A Hybrid Approach," PhD Dissertation, University of Tennessee, Knoxville, July 2016
- 11. K. Sun, F. Hu, N. Bhatt, E. Farantatos, A. Del Rosso (PM), Hybrid Voltage Stability Assessment (HVSA): Integration of Simulation-Based and Measurement-Based Approaches in Real-Time Operation, EPRI Product ID: 3002001313, 2013.
- 12. E. Farantatos, A. Del Rosso, N. Bhatt, K. Sun, Y. Liu, L. Min, C. Jing, J. Ning, M. Parashar, A Hybrid Framework for Online Dynamic Security Assessment Combining High Performance Computing and Synchrophasor Measurements, 2015 IEEE PES General Meeting
- 13. A. Del Rosso, "High-Performance Hybrid Simulation/Measurement-Based Tools For Proactive Operator Decision Support", Presentation on June 17, 2014 at DOE Advanced Grid Modeling 2014 Peer Review Meeting, available at http://www.energy.gov/sites/prod/files/2014/07/f17/1-2014-AGM-Review-DelRosso_3.pdf

Final Exam Problem

- Let E_S be 1.2 (pu), $Z_{LN}=0.2$ (pu), $\theta=84.3^{\circ}$, $\phi=18.2^{\circ}$.
- Create data for a period of 50 sec:
 - 1) initially, let Z_{LD} be 0.6 (pu);
 - 2) decrease Z_{LD} by 0.01 pu / sec until $Z_{LD} = 0.1$ (pu).
- Calculate phasors of V_R and I over the above 50 sec period and use those data to estimate the Thevenin equivalent, i.e. Z_{LN} , θ and E_S by the least squares method.
- Plot Z_{LD} and the estimated Z_{LN} vs. Time

 Z_{LN}/Z_{LD}