Forced Oscillations Causes, Issues, and Mitigation

Sep. 2024 IEEE Forced Oscillation Task Force Dan Trudnowski

Primary reference: IEEE/PES, "Forced Oscillations in Power Systems," PES-TR110, 2023.

Dynamic Response Types

Background Electromechanical Dynamics

Mode Shape

Mode	Frequency (Hz)	Damping (%)
1	0.51	7.80
2	1.19	3.40
3	1.22	3.30

	Angle $(u_{i,k})$	Amplitude	
Gen	(degrees)	$ u _{i,k}$	
3	-180	1.00	
4	-180	0.84	
1	0	0.42	
2	0	0.31	

Mode Shape

Damping

Forced Oscillation An Overview

Dynamic Response Types

Forced Oscillations

- Response of system to an apparatus in a limit cycle
 - e.g. generator controller
- NOT A TRADITIONAL SYSTEM INSTABILITY
- Often contain multiple non-stationary frequencies.
- Some oscillations are difficult to categorize as a pure FO.
- Very common
 - WI = 16 events in 2008/9 operating season in WECC.
 - WI: 2005 [1], 2015 [2]
 - EI: 2016 [2], 2019 [3]
- Can be very severe if near a natural mode (resonance):
 - WI: 2005 [1].
- Inverter Based Resources (IBRs) can be significant
 - Often control based
 - Often higher frequency (well above 1 Hz)
- Real-power FOs tend to "propagate" more than reactive-power FOs.

[2] NERC, "Interconnection oscillation analysis," Tech. report, NERC, 2019.

^[1] S. Sarmadi, et. al. "Analysis of November 29, 2005 western American oscillation event," *IEEE Trans Power Syst.*, vol. 31, no. 1, pp. 5210-5211, 2016.

^[3] NERC, "Eastern interconnection oscillation disturbance," Tech. report, NERC, 2019.

Why Care about FOs?

 Catastrophic event of rotor's vibration at Sayano–Shushenskaya hydro power station in 2009*

Before the accident

After the accident

- https://en.wikipedia.org/wiki/2009_Sayano%E2%80%93Shushenskaya_power_station_accident
- S. Maslennikov, IEEE PES GM 2017, Panel session on "Industry Experiences in Dynamic-System Operational Monitoring and Control using PMUs"

FOs often contain harmonics

Resonance – the FO is near a natural mode

Resonance – the FO shape follows the mode's shape

- At non-resonance, the largest observed oscillation amplitude is often indicative of its location.
- At resonance, the FOs shape follows the mode's shape [1].
- This makes locating an resonance FO source very difficult!

Gen #	0.37-H Shi	z Mode ape	0.37-Hz I for source	O shape at Gen 34
	Mag	Angle (deg)	Mag	Angle (deg)
2	1.07	4	1.07	4
7	1	0	1	0
14	1.01	-12	1	-12
15	0.73	0	0.73	0
23	0.61	-164	0.62	-164
29	0.22	-141	0.22	-141
33	0.18	-31	0.18	-32
34	0.95	139	0.94	138

Mode-Meter FO Biasing

- A MM is an automated real-time tool to track a given natural mode's frequency and damping
- Enables system safely to operate closer to stability edges
- LOTS of research over the past 20 years has provided successful algorithms
- But, an FO causes MM to bias
- This issue has prevented the full adoption of MMs by industry
- Potential solutions exist (e.g. [1, 2]). But, these are much more difficult to automate

^[1] U. Agrawal, J. Follum, J. Pierre, and D. Duan, "Electromechanical Mode Estimation in the Presence of Periodic Forced Oscillations," *IEEE Trans. Power Syst.*, vol. 34, no. 2, pp. 1579-1588, Mar. 2019.

^[2] L. Dosiek, "The Effects of Forced Oscillation Frequency Estimation Error on the LS-ARMA+S Mode Meter," *IEEE Trans. Power Syst.*, vol. 35, no. 2, pp. 1650-1652, Mar. 2020.

On-Line Oscillation Monitoring Goals

- Detect any sustained oscillations
 - Is it a FO or an un-damped transient?
 - General frequency band
 - Amplitude and locations of oscillations
 - Identify FO source
- Control Actions
 - Forced oscillations
 - remove the driving source
 - Low damped modes
 - Solutions require significant studies (e.g., reduced loading on key corridors, PSS unit adjustment, etc.)

Detecting Oscillations

Automated Detection Approaches

- Spectral (FFT) based
 - Quantifies FO amplitude at each location
 - Easy to implement
 - Struggles with stationarity
 - May be to de detailed for online operator applications
- Wide-band RMS energy detection
 - Quantifies FO amplitude at each location
 - Easy to implement
 - Compatible with operator goals (not too granule)
 - Has been (and is being) implemented in many control centers

Oscillation Detection (OD) Analytic

RMS Energy Filter

M. Donnelly, D. Trudnowski, J. Colwell, J. Pierre, and L. Dosiek, "RMS-energy filter design for real-time oscillation detection," 2015 PESGM.

WECC FO

WECC FO

Distinguishing Between FOs and Natural Oscillations

Distinguishing FOs from Natural Modes Approaches

- [1] Provides details on distinguishing approaches
 - Initial oscillation start-up characteristics
 - Phase of power oscillations
 - Harmonic detection
 - Cross-spectrum index
 - Statistics and periodogram methods
- Still a research topic
- Priority?

Locating the FO Source

Distinguishing FOs from Natural Modes Approaches

- Non-resonance FO typically sources from the location with the largest FO amplitude
 - E.g., BPA has successfully used RMS energy as the locating indicator
- For resonance FOs
 - Many approaches researched
 - Emerging methods utilize the phase angle between the real-power and the frequency (e.g., Dissipating Energy Flow)
- Still a research topic, but DEF has been implemented in some control centers.
- High priority

Energy Flow - Time Domain

$$W_m = \int \left[P_{em}(t) d(\theta_m(t)) + Q_{em}(t) d(V_m(t)) \right] = \text{Energy F}$$

 $P_{em}(t) =$ Real power flow

 $Q_{em}(t) =$ Reactive power flow

 $\omega_m(t) =$ Generator speed (frequency)

 $V_m(t) = \ln\{U_m(t)\} = \log of voltage$

$$W_m = \int \left[\Delta P_{em}(t) \Delta \omega_m(t) dt + \Delta Q_{em}(t) \dot{V}_m(t) dt \right]$$

If W_m is increasing in time, the FO is sourced from the device.

Comments:

- Measure of phasing between $P_{em} \& \omega_m$, and $Q_{em} \& \dot{V}_m$
- Requires single-frequency oscillation which necessitates significant preprocessing.
- Difficult to automate (detection of increasing W_m)

[•] L. Chen, Y. Min, and W. Hu, "An energy-based method for location of power system oscillation source," IEEE Trans. Power Syst., vol. 28, no. 2, pp. 828-836, May 2013.

[•] S. Maslennikov, Bin Wang, Eugene Litvinov "Dissipating Energy Flow Method for Locating the Source of Sustained Oscillations", International Journal of Electrical Power and Energy Systems, Issue 88, 2017, pp.55-62.

Energy Flow - Freq Domain

Parceval's theorem

$$\int x_1(t)x_2(t)dt = \int X_1(f)X_2^*(f)df = 2\int \operatorname{Re}\{S_{x_1(t)x_2(t)}(f)\}df$$

 $S_{x_1(t)x_2(t)}(f) =$ Cross spectrum between x_1 and x_2 .

Now apply Parceval's theorem to Energy Flow

$$W_m = \int \left[\Delta P_{em}(t) \Delta \omega_m(t) dt + \Delta Q_{em}(t) \dot{V}_m(t) dt \right] = 2 \int \widehat{W}_m(f) df$$

$$\widehat{W}_{m}(f) = \operatorname{Re}\left\{S_{\Delta P_{em}(t)\Delta\omega_{m}(t)}(f) + S_{\Delta Q_{em}(t)\dot{V}_{m}(t)}(f)\right\} = \operatorname{Energy-Flow} \operatorname{Spectra}$$

If $\widehat{W}_m(f)$ is positive, the FO is sourced from the device <u>at frequency f</u>.

Comments:

- Works with multi-frequency oscillation.
- Requires less data preprocessing and less data than time domain calculation.
- Easy to automate.
- EPG-MAS uses $S_{\Delta P_{em}(t)\Delta\omega_m(t)}(f)$ only

Swing Equation Decomposition

 $\Delta \tilde{P}_f = \Delta \tilde{P}_e - R(f_o) \Delta \tilde{\omega} = \text{Estimated FO power}$ $f_0 = \text{frequency of FO}$ $\Delta \tilde{P}_e = \text{Fourier component of } P_e(t) \text{ at frequency } f_o$ $\Delta \tilde{\omega} = \text{Fourier component of } \omega(t) \text{ at frequency } f_o$ $R_m(f_o) = \text{pre-calculated ambient ratio} = \frac{S_{\omega, P_e}(f_o)}{S_{\omega, \omega}(f_o)}$

Example 1

- Forced Oscillation at Gen 11-1
- 1.6 Hz
- 25 MW
- Not near a mode

Example 1 FO at 1.6 Hz at Gen 11-1

Dama Diant	RM S	RM S		
Power Plant	Energy	Energy	W (pu)	\tilde{P}_f (MW)
- Gen	(mHz)	(M W)		-
1-1	0	1	0.00	0
2-1	0	2	0.00	0
3-1	0	1	0.01	0
4-1	1	5	0.00	0
5-1	0	3	0.00	0
6-1	1	5	0.00	0
7-1	0	2	0.00	0
7-2	0	2	0.00	0
7-3	0	2	0.00	0
8-1	1	8	0.00	0
9-1	1	9	0.00	0
10-1	1	20	0.00	0
11-1	10	78	0.55	25
11-2	1	16	0.00	0
12-1	0	1	0.00	0
13-1	0	0	0.00	0
14-1	0	0	0.00	0
14-2	0	0	0.00	0
15-1	1	1	0.00	0

Example 2

- Forced Oscillation at Gen 26-2
- 1.14 Hz
- 80 MW
- At a local mode

Example 2 FO at 1.14 Hz at Gen 26-2

Power Plant - Gen	RMS Energy (mHz)	RMS Energy (MW)	W (pu)	\tilde{P}_f (MW)
26-1	33.5	123.3	-0.24	0.1
26-2	33.5	182.7	7.04	79.7
26-3	34.8	137.4	0.14	0.1
27-1	16.4	237.3	0.04	0.2
27-2	16.4	237.3	0.04	0.2
28-1	6.1	174.1	-0.06	0.2

Energy Flow Contouring

- Break system into closed-contour regions.
- If a FO is detected in an area at frequency f
 - Calculate $\widehat{W}_{mn}(f)$ for each branch into the region.
 - If all $\widehat{W}_{mn}(f)$ emit from the region, then the FO is sourced from within the region.
 - Drill into region to find source.

Energy Flow Contouring

Parceval's theorem

$$\int x_1(t)x_2(t)dt = \int X_1(f)X_2^*(f)df = 2\int \operatorname{Re}\{S_{x_1(t)x_2(t)}(f)\}df$$

 $S_{x_1(t)x_2(t)}(f) =$ Cross spectrum between x_1 and x_2 .

Now apply Parceval's theorem to Energy Flow

$$W_m = \int \left[\Delta P_{em}(t) \Delta \omega_m(t) dt + \Delta Q_{em}(t) \dot{V}_m(t) dt \right] = 2 \int \widehat{W}_m(f) df$$

$$\widehat{W}_{m}(f) = \operatorname{Re}\left\{S_{\Delta P_{em}(t)\Delta\omega_{m}(t)}(f) + S_{\Delta Q_{em}(t)\dot{V}_{m}(t)}(f)\right\} = \operatorname{Energy-Flow} \operatorname{Spectra}$$

If $\widehat{W}_m(f)$ is positive, the FO is sourced from the device <u>at frequency f</u>.

Comments:

- Works with multi-frequency oscillation.
- Requires less data preprocessing and less data than time domain calculation.
- Easy to automate.
- MAS uses $S_{\Delta P_{em}(t)\Delta\omega_m(t)}(f)$ only

Example System

Example 1: FO at Gen 11-1, 0.3 Hz

Example 1: FO at Gen 11-1, 0.3 Hz

Example 1: FO at Gen 11-1, 0.3 Hz

Conclusions and Next Steps

- [1] focused on defining an FOs and distinguishing them from natural oscillations.
- Distinguishing FOs and natural modes seems to be a lower priority for industry?
- There is some blur for IBR induced oscillations
 - Are they FOs or a new type of system mode?
- FO detection is a mature science
- FO source locating is a high priority for industry
 - Simple largest-amplitude-based methods effective for non-resonance Fos (e.g. RMS Energy)
 - Power vs. frequency phase angle approaches seem to work for resonance conditions and are the basis for emerging control center applications (e.g. EF)
 - Other approaches not as well tested
- Task Force directions?
 - Catalog and expand source locating
 - Better define IBR-induced oscillations
 - Only include results based on peer-reviewed publications

Extra Slides

Damping vs Loading

Damping vs Loading

