Test Cases Library and Real-life Oscillation Examples

Kai Sun¹, Bin Wang², Slava Maslennikov³ 1- University of Tennessee, 2- Texas A&M University, 3- ISO New England

> Paper No. 18PESGM0563 2018 IEEE PES General Meeting, Portland, OR

Test Cases Library of Sustained Oscillations

- Website: <u>http://curent.utk.edu/research/test-cases/</u> or <u>http://web.eecs.utk.edu/~kaisun/Oscillation/</u>
 - Fall 2016: initiated at ISO New England and launched with 23 simulated cases on both natural and forced oscillations
 - Winter 2017: Added 4 more simulated cases to enrich forced oscillation cases
 - Spring 2018: Added 5 actual oscillatory events
 - 4000+ visits in past two years
- Objective: Facilitating the development and testing of methods and tools for identifying the source of poorly damped or forced power system oscillation.
- Test Cases
 - Simulated oscillation cases on a WECC 179-bus system model in PSS/E V30
 - Actual oscillatory events recorded by PMUs on multiple locations
- White paper:

[1] S Maslennikov, B Wang, Q Zhang, F Ma, X Luo, K Sun, E Litvinov, "A test cases library for methods locating the sources of sustained oscillations" 2016 IEEE PES General Meeting

Simulated Cases

- WECC 179-bus system model
 - 179 buses
 - 29 generators
 - 263 branches, including lines and transformers
 - 28 oscillatory modes:0.26 to 1.88 Hz
- 27 oscillation cases:
 - 9 natural oscillations (poorly damped or undamped)
 - 18 forced oscillations driven by injected periodical signals

Natural Oscillation Cases

Case #	D	Frequency/Hz	Damping	Source location	Fault location	Description
<u>ND_1</u>	D45=-2 D159=1	1.41	0.01%	45	159	Single source - single local mode
<u>ND_2</u>	D35=0.5 D65=-1.5	0.37	0.02%	65	79	Single source - single inter-area mode
<u>ND_3</u>	D6=2 D11=-6	0.46 0.70 1.63	2.22% 1.15% -0.54%	11	30	Single source - one unstable local mode and two poorly damped inter-area modes
<u>ND_4</u>	D6=5 D11=-9	0.46 0.70 1.63	0.68% -0.58% 0.54%	11	6	Single source - one unstable inter-area mode and two poorly damped local and inter-area modes
<u>ND_5</u>	D6=3 D11=-8	0.46 0.70 1.63	0.69% -0.19% -0.48%	11	30	Single source - two unstable local and inter-area modes, and one poorly damped inter-area mode
<u>ND_6</u>	D45=-2 D159=-0.5	1.41	-0.93%	45&159	159	Two sources with comparable contribution into a single unstable local mode
<u>ND_7</u>	D45=-0.5 D159=-0.5	1.41	-0.40%	45&159	159	Two sources with different contributions into a single unstable local mode
<u>ND_8</u>	D45=-2.5 D159=1 D36=-1	1.27 1.41	-1.06% -0.22%	45&36	159	Two sources - two unstable local modes
<u>ND_9</u>	D11=-10	0.46 0.69 1.63	-0.86% -1.81% -0.40%	11	79	Single source - three unstable modes
PES	; 🗕					

Power & Energy Socie

Example: Natural Oscillation ND_6

• System model:

- All generators in GENCLS model.
- All loads in constant MVA model.
- D= -2 and -0.5 for generators 45 & 159.
- D=4 for all other generators.

• Disturbance:

- Small 3-phase fault on bus 159 cleared after 0.01s.
- Oscillation Sources:
 - Generators 45 & 159 with comparable contributions into an unstable local mode (1.41Hz with a negative damping ratio of -0.93%).

Forced Oscillation Cases

• Forced signal is injected into the excitation system of a generator

Periodical signals injected into generators' exciters or governors

- Sinusoidal or nonsinusoidal signals
- With or without resonance

Case	Type of injected	Frequency of first	Source	Description		
#	signal	harmonic/Hz	location	Description		
<u>F_1</u>	Sinusoidal	0.86	4	Resonance with local 0.86Hz mode		
<u>F_2</u>	Sinusoidal	0.86	79	Resonance with local 0.86Hz mode		
<u>F_3</u>	Sinusoidal	0.37	77	Resonance with inter-area 0.37Hz mode		
<u>F_4_1</u>	Sinusoidal	0.81	79	Forcing frequency is below natural 0.84Hz mode		
<u>F 4 2</u>	Sinusoidal	0.85	79	Forcing frequency is between natural 0.84Hz and 0.86Hz modes		
<u>F_4_3</u>	Sinusoidal	0.89	79	Forcing frequency is higher than natural 0.86Hz mode		
<u>F 5 1</u>	Sinusoidal	0.42	79	Forcing frequency is below natural 0.44Hz inter-area mode		
F_5_2	Sinusoida1	0.46	79	Forcing frequency is between natural 0.44Hz and 0.47Hz inter- area modes		
<u>F 5 3</u>	Sinusoidal	0.50	79	Forcing frequency is higher than natural 0.47Hz inter-area mode		
F_6_1	Periodic, rectangular	0.1	79	Spectra of forced harmonics consist of 0.1Hz, 0.3Hz, 0.5Hz, 0.7Hz, etc modes		
F_6_2	Periodic, rectangular	0.2	79	Spectra of forced harmonics consist of 0.2Hz, 0.6Hz, 1Hz, 1.4Hz, etc modes		
F_6_3	Periodic, rectangular	0.4	79	Spectra of forced harmonics consist of 0.4Hz, 1.2Hz, 2Hz, etc modes		
F 7 1	Sinusoidal	0.65	79	Two sources of forced signals creating resonance with two		
<u>/</u> -1	omusoidai	0.43	118	different modes, respectively		
F72	Sinusoidal	0.43	70	Two sources of forced signals creating resonance with the same		
<u> </u>			118	mode		

• Forced signal is injected into the governor of a generator

Case #	Type of injected signal	Frequency of first harmonic/Hz	Source location	Description		
<u>FM_1</u>	Sinusoidal	0.86	4	Resonance with local 0.86Hz mode		
<u>FM_3</u>	Sinusoidal 0.37 77		77	Resonance with inter-area 0.37Hz mode		
FM 6.2	Periodic,	0.2	70	Spectra of forced harmonics consist of 0.2Hz, 0.6Hz, 1Hz,		
<u>FM_0_2</u>	rectangular	0.2		1.4Hz, etc modes		
FM 7 1	Sinusoidal	0.65	79	Two sources of forced signals creating resonance with two		
<u></u> _	Sindsordar	0.43	118	different modes, respectively		

Example 1: Forced Oscillation F_1

In this forced oscillation case, the source of oscillations is at generator 4.

System model:

- Generator 4 is in GENROU model.
- · All other generators are in GENCLS model.
- · Parameter D for all generators equals 4, except for generator 4 whose D equals 0.
- · All loads are in constant MVA model.

Small signal analysis:

- · All natural modes have reasonably good damping.
- The system has a natural mode at 0.86Hz.

External force:

- Forced oscillation is injected into excitation system as a sinusoidal signal at generator 4 with a frequency 0.86Hz to cause resonance.
- The gain of the external force is tuned such that the largest peak-to-peak value among all generators' active power outputs is about 157MW.

Sinusoidal signal injected into an exciter to cause resonance

Example 2: Forced Oscillation FM 1

In this forced oscillation case, the source of oscillations is at the governor of generator 4.

System model:

- All the generators are in GENCLS model.
- Parameter D for all generators equals 4.
- All loads are in constant MVA model •

Small signal analysis:

- All natural modes have reasonably good damping.
- The system has a natural mode at 0.86Hz.

External force:

- Forced oscillation is injected into the governor of generator 4 as a sinusoidal signal at frequency 0.86Hz to cause resonance.
- The gain of the external force is 0.3 p.u. ٠
- Due to resonance, MW oscillations of generator 9 (which is not the source) is much larger than in generator 4 (source). ٠

Figure 1. Block diagram of the external force

Sinusoidal signal injected into

a governor to cause resonance

Illustrations of three existing source locating methods on simulated cases

Existing methods [2]	Assumption on the source
Damping torque	The generator with a negative damping torque coefficient
Mode shape	Largest magnitude or most leading phase in mode shape
Energy-based method	The device producing dissipation energy
Equivalent circuit	The source of an equivalent circuit
Hybrid	Measurement has the largest difference from simulation
Traveling wave	The starting point of the electromechanical wave
Machine learning	Located using a decision tree trained by offline simulation

[2] Bin Wang, Kai Sun, "Location Methods of Oscillation Sources in Power Systems: A Survey," Journal of Modern Power Systems and Clean Energy, 2016

Damping Torque Method ^[3]

- Estimate the damping torque for each generator about the dominant mode
- Generator with a negative damping torque coefficient is the source
- Data requirement: P_G , f_t and θ_t
- Case ND_1
 - Actual source: Bus 45
 - Identified source: Bus 45
- Case F_1
 - Actual source: Bus 4
 - No source identified

Case #	(Generator, K _{md})								
ND_1	(G45, - 1.81) (G*, 0.91 to 7.89)								
F_1	(All generators, 1.88 to 3.98)								

G* represents all generators in the system except for G45.

[3] Li Y, Huang Y, Liu J, et al, "Power system oscillation source location based on damping torque analysis." Power System Protection and Control, 43(14):84-91, 2015

Mode Shape Method ^[4]

- Calculate mode shape phase and amplitude using PMU data
- Identify two opposing groups oscillating against each other
- The leading phase in the leading group is the source

[4] N Ashwal, D Wilson, M Parashar, "Identifying sources of oscillations using wide area measurements," Grid of the Future Symposium, CIGRE US National Committee, 2014

Energy-based Method ^[5]

- Calculate dissipation energy (DE) on the terminal of each generator
- Generator with increasing DE is the source
- Data requirement: P_G , Q_G , V_t and θ_t
- Case ND_1
 - Actual source: Bus 45
 - Identified source: Bus 45
- Case ND_6
 - Actual sources: Buses 45&159
 - Identified source: Bus 45

[5] L Chen, Y Min, W Hu, "An energy-based method for location of power system oscillation source," IEEE Transaction on Power Systems, 28(2):828-836, 2013

Actual Oscillatory Events

- Using the data format suggested by IEEE PES Oscillation Source Location Taskforce (the effort was led by Slava Maslennikov)
- Five Eastern Interconnection events recorded by ISO-NE PMUs are available now.

Cas #	es Case name	Data of event	Power system - source of PMU	Type of oscillations	Frequency/Hz	Peak to peak magnitude	Source and location	Confidence level on the source location	Duration of sample set	Comments
1	ISO- NE case 1	Jun.17, 2016	ISO-NE	System- wide mode	0.27	Up to 27 MW	Generator outside of ISO-NE in Area 2.	100%	3 min	Near-resonance conditions with system- wide natural oscillatory mode caused by a large generator located in Area 2. Area map: ISO-NE_map.pdf.
2	ISO- NE case 2	Oct.3, 2017	ISO-NE	Multi- frequency, wide- spread	Dominant modes: 0.08 0.15 0.31	Up to 130 MW	Generator outside of ISO-NE in Area 3.	100%	6 min	Multi-frequency process with growing magnitude caused by a generator located outside of ISO-NE in Area 3. Oscillations with significat MW magnitude were observed in multiple locations. Area map: ISO-NE_map.pdf.
3	ISO- <u>NE</u> <u>case</u> <u>3</u>	Jul.20, 2017	ISO-NE	Regional	1.13	Up to 115 MW	Generator located East from Sub:2. Lines Ln:2 and Ln:4 lead to the area, where the source generator resides.	100%	3 min	Equipment issue in a large generator has created 1.13Hz oscillations with growing magnitude during 40 seconds.
4	ISO- <u>NE</u> case <u>4</u>	Feb.14, 2018	ISO-NE	Wide- spread	0.25	Up to 10 MW	Presumably outside of ISO-NE.	Low	5 min	Sustained oscillations with variable magnitude and observed in multiple locations.
5	ISO- <u>NE</u> <u>case</u> <u>5</u>	Jan.29, 2018	ISO-NE	Local	1.57	Up to 15 MW	Generator Gen2 at Sub:7.	100%	4 min	Local oscillations caused by a large generator. Area map: ISO-NE_map.pdf.
	CC 1									A

Power & Energy

Example 1: June 17, 2016 Event

• Near-resonance condition with system-wide natural oscillation caused by a large unit in Area 2.

Case name	Date	Source of PMUs	Type of oscillation	Freq./Hz	Peak to peak magnitude	Source and location	Confidence level on the location	Duration
ISO-NE case 1	Jun.17, 2016	ISO-NE	System-wide mode	0.27	Up to 27 MW	Generator outside of ISO-NE in Area 2.	100%	3 min

Example 2: Jan 29, 2018 Event

• Local oscillations caused by a large internal unit.

Power & Energy Society*

Case name	Date	Source of PMUs	Type of oscillation	Freq./Hz	Peak to peak magnitude	Source and location	Confidence level on the location	Duration
ISO-NE case 5	Jan.29 2018	ISO-NE	Local	1.57	Up to 15 MW	Generator 2 at Sub: 7	100%	4 min

Next Steps

- Encouraging more uses of the library
- Looking for more real oscillation events
- More comparison tests on existing methods using the simulated/real cases
- Adding cases caused by renewables

Q&A

• Contact Information:

Kai Sun (University of Tennessee) <u>kaisun@utk.edu</u>

Slava Maslennikov (ISO New England) <u>smaslennikov@iso-ne.com</u>

