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Natural and Forced Oscillations

• Two types of oscillations are widely observed

• Natural/Free oscillation - Oscillations due to 
undamped system modes

• Forced oscillation - Oscillations from periodic sources 
external to the system
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Oscillation Type Distinguishing

• Why should we distinguish oscillation type?

– Different control measures for different oscillation types

– Natural oscillation: Increase the damping ratio of the
critical mode and the oscillation will decay

– Forced oscillation: Remove the external disturbance

• Why is this problem difficult?

– The approach should be measurement-based, or it is not
online applicable

– Both oscillation types show sustained oscillation with
constant amplitude in steady state

– Actual oscillation waveforms are complicated
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How to Study Forced Oscillation

• Natural oscillation

– Determined by system features

– Eigenvalue analysis or modal analysis

– Time-domain simulation

• Forced oscillation

– Determined by both external disturbances and system
features

– Time-domain simulation method is applicable, but not
capable of analytic and quantitative analysis

– Extended modal analysis
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Extended Modal Analysis
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Uncoupled system
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Extended Modal Analysis
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Forced oscillation
1
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Complex phasor representation
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Steady State Response of Forced Oscillation
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Resonance - When the frequency of the external disturbance is close to the 

frequency of a poorly damped mode, the system oscillates with a large 
amplitude, which is often larger than that of the disturbance

Easy to Understand



Steady State Response at Resonance
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When resonance with a poorly damped mode, the mode dominates the response
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Oscillation Amplitude
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Mode Shape
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 Relative amplitude and phase of different state variables is also  determined 
by the right eigenvector
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 Not affected by the location of disturbance

 Same as natural oscillation

At resonance, the mode shape of forced oscillation converges to system 
mode shape, which brings difficulties in oscillation type distinguishing 
and source location



Simulations
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Simulations
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Disturbance on G4
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How to Distinguish Forced Oscillation

• Distinguishing natural and forced oscillations based on system
measurements is critical for control measure decisions

• In steady state, both natural and forced oscillations show
sustained oscillations with nearly constant amplitude
– A damped oscillation is obviously natural oscillation – Not Critical

– Oscillation with negative damping will converge to constant-amplitude
oscillation due to nonlinearities such as saturations and limits in actual
systems

• Mode shapes are similar when resonance

• Not easy to distinguish
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Fundamental Differences

• Influence factor
– Natural oscillation - system features

– Forced oscillation - system features + external disturbances

– The steady state waveform of natural oscillation is mainly sinusoidal

– If the external disturbance is non-sinusoid, the forced oscillation
waveform will also deviate a lot from sinusoid

– An obvious non-sinusoidal waveform is a sufficient but unnecessary
indicator of forced oscillation

• Intrinsic system damping
– Natural oscillation - zero or negative

– Forced oscillation – positive

– How to obtain the intrinsic damping from its outward performance?
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1. Harmonic Content of Steady State Waveform

• Obvious non-sinusoidal waveform in steady state is a
sufficient but unnecessary condition of forced oscillation

• Harmonic content
– Harmonic content higher than a given threshold is an indicator of non-

sinusoidal waveform, and forced oscillation

– A recommended value of the threshold is 0.11, which is the harmonic
content index for a triangle wave
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Examples

h=0.34>0.11
Forced 
oscillation

WECC FO, 2015
From Dan



2. Features of Start Up Waveform

• Different intrinsic system dampings result in different features
of start up waveform
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Start up: the stage when the amplitude increases



Features of Start Up Waveform

• The envelope of start up waveform
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Features of Start Up Waveform

• The envelope of start up waveform

• the difference is σ

• Steps
– Peak-peak value

– increment of peak-peak value

– logarithm

– Linear fitting to get the slope

– S>ε: natural oscillation, S<-ε: forced oscillation
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Examples

Measured
S=0.14>0, Natural

Simulated
S=-0.06<0, Forced



3. Spectral Methods (From Ruichao and Dan)

• The actual system response contains three components

• The intrinsic damping is contained in the ambient component
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Steady State Response

• Natural (undamped)

• Forced
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Signal-Noise Separation

• First separate the whole response into signal and noise

• Power spectral density (PSD) of natural oscillation

• For two different measurements
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𝑆ො𝑦𝑟 ො𝑦𝑟 𝜔𝑛 = 𝑆ො𝑦𝑆𝑟 ො𝑦𝑆𝑟 𝜔𝑛 + 𝑆ො𝑦𝑁𝑟 ො𝑦𝑁𝑟 𝜔𝑛

𝑆 ො𝑥𝑆𝑟 ො𝑥𝑆𝑟 𝜔𝑛 = 2𝜋𝑐𝑟𝑢𝑛𝑣𝑛𝑥 0
2
𝛿 0 2

𝑆ො𝑦𝑁𝑟 ො𝑦𝑁𝑟 𝜔𝑛 ≅ 2𝜋𝑐𝑟𝑢𝑛
2


𝑙=1

𝑀

𝑣𝑛𝑏2𝑙
2
𝑆𝑞𝑙𝑞𝑙 𝜔 𝛿 0 2

PSD of signal/transient component

PSD of noise, dominated by
sinusoidal noise

𝛼𝑆 =
𝑆ො𝑦𝑆1 ො𝑦𝑆1 𝜔𝑛

𝑆ො𝑦𝑆2 ො𝑦𝑆2 𝜔𝑛
=

𝑐1𝑢𝑛
2

𝑐2𝑢𝑛
2 𝛼𝑁 =

𝑆ො𝑦𝑁1 ො𝑦𝑁1 𝜔𝑛

𝑆ො𝑦𝑁2 ො𝑦𝑁2 𝜔𝑛
=

𝑐1𝑢𝑛
2

𝑐2𝑢𝑛
2Equal



Signal-Noise Separation

• Power spectral density (PSD) of forced oscillation

• For two different measurements
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Examples
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Cross-Spectrum Difference Function

• To detect the existence of the “random sinusoid” component

• cross-spectrum difference function

• Cross-spectrum index

• Criterion

28

𝑆𝒓 Ω ≜ ෨𝑌𝑟𝑤1
∗ ෨𝑌𝑟𝑤2

− ෨𝑌𝑟𝑤2
∗ ෨𝑌𝑟𝑤3

෨𝑌𝑟𝑤𝑖
the scaled DFT of the signal over window i
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E 𝑆𝑟

∗ Ω 𝑆𝑔 Ω
2

E 𝑆𝑟
∗ Ω 𝑆𝑟 Ω E 𝑆𝑔

∗ Ω 𝑆𝑔 Ω

r, g: different measurement channels

𝐶𝑟𝑔 Ω = 1 𝐶𝑟𝑔 Ω < 1Natural Forced



Examples

29

ForcedNatural

0 10 20 30 40 50 60 70 80 90 100
1.025

1.0255

1.026

1.0265

1.027

1.0275

1.028

Time (s)

V
ol

ta
ge

 a
m

pl
itu

de
 (

p.
u)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel

M
ea

n 
w

ith
 S

ta
nd

ar
d 

D
ev

ia
tio

n

0 10 20 30 40 50 60 70 80 90 100
1.025

1.0255

1.026

1.0265

1.027

1.0275

1.028

Time (s)

V
ol

ta
ge

 a
m

pl
itu

de
 (

p.
u)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel

M
ea

n 
w

ith
 S

ta
nd

ar
d 

D
ev

ia
tio

n



Examples
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An actual forced oscillation incident in the western North American power system
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 Some methods for online distinguishing natural and 

forced oscillations are proposed

 The problem is NOT well solved

 Due to the complexity of actual oscillation curves, 

many methods, though have solid theoretical 

foundations and perform well with simulation results, 

do not perform well with actual records

 More practical approaches are still needed

Conclusions



Thanks!

Lei CHEN
PhD, Associate Professor

Department of Electrical Engineering
Tsinghua University

chenlei08@tsinghua.edu.cn

32


