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Natural and Forced Oscillations

Two types of oscillations are widely observed

* Natural/Free oscillation - Oscillations due to
undamped system modes

Forced oscillation - Oscillations from periodic sources
external to the system

n
X = AX X(t) = Z(Di Cieﬂit Natural
=1

X=Ax+ f(t) |f(t)isperiodic Forced
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Oscillation Type Distinguishing

* Why should we distinguish oscillation type?
— Different control measures for different oscillation types

— Natural oscillation: Increase the damping ratio of the
critical mode and the oscillation will decay

— Forced oscillation: Remove the external disturbance

 Why is this problem difficult?

— The approach should be measurement-based, or it is not
online applicable

— Both oscillation types show sustained oscillation with
constant amplitude in steady state

— Actual oscillation waveforms are complicated
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How to Study Forced Oscillation

* Natural oscillation
— Determined by system features
— Eigenvalue analysis or modal analysis
— Time-domain simulation

 Forced oscillation

— Determined by both external disturbances and system
features

— Time-domain simulation method is applicable, but not
capable of analytic and quantitative analysis

— Extended modal analysis
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Extended Modal Analysis

Linearized system X = AX+ Bu

Modal transformation X = @z

Uncoupled system 7=A7+dBu

180

_ At arT At
Natural oscillation { z, =72, =¥ X,e

u=20

270

-1
X (t) _ 2|¢|r”2ro|eart [ej(wdrt+7ir+9r) + e—j(wdrt+7ir+9r):| |¢ir|47ir

n-1 M d h
=23 g, |z.ole ™ cOs@,t+ 7, +6,) SR
r=1

@iﬁ O 9 IEEE




————
Extended Modal Analysis

4 A 4 »
Forced oscillation L= 1l . |+@D Bu
A A ||z

Assumption: only one sinusoidal disturbance Bu = AP, = AP, sin wt

Focus on steady state response

7 - TTAim giot
_ S joot Jo r
AP, = AR, e ) FTAB.
Complex phasor representation |z, = Im glet
L Jo — /"Lr

x(t) = Zn:@rzr + i(ﬁrz
r=1

:Z”:|:ja)(d7TT + DY (RE 1 +D T*T;L) ejm}
(jo—)(jo-A))
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Steady State Response of Forced Oscillation

The rth mode in the ith state variable

Bi,r — \/(a/a)r?rz)zz_'_ (Vrb/a)nrz)2 |r)l|
(1_Vr ) + (Zé/rvr)
a= _(i*érl/jlr +4 ¢*‘/7|,:) .

Kk A~k

¢|rl/jlr + ¢|rl/jlr

Damping ratio

X () =B, sin(wt—¢ )

2¢.va—(1-Vv:)Vvhao,
a(l-Vv>)+2¢ Viha,

¢, =arctan

Wy = |ﬂ‘r|

Natural frequency

V. =wl a,

Frequency ratio

Frequency ratio inducing
the largest amplitude

& =0

Poorly damped

d a d
v, = [14+20-247)(—)" +(—)' - (—)°
ba)nr ba)nr ba)nr
v. =1
Resonance
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Resonance - When the frequency of the external disturbance is close to the

frequency of a poorly damped mode, the system oscillates with a large
amplitude, which is often larger than that of the disturbance
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Easy to Understand
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Steady State Response at Resonance

When resonance with a poorly damped mode, the mode dominates the response

H P | sin (a)nrt + 7.+ O',r)

4
A

~

¢, b, =|¢

oy,

Ir e”/ir l/7lr :|l/7lr|e

Damping ratio  Right eigenvector  Left eigenvector

State variable Location of disturbance
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Oscillation Amplitude

~ir |lﬁlr || F~)| |
X, (t) ~ sin(w,t+7, +0o,)
ra)nr _
Amplitude of disturbance | p||
Oscillation amplitude is Location of disturbance |l/7|r|
affected by
Damping ratio of mode .

® Larger amplitude of disturbance induces larger amplitude of oscillation

® Larger|y7,|
controllability on the mode, induces larger amplitude of oscillation

® Smaller damping ratio induces larger amplitude of oscillation
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Mode Shape

Xi(t)z /

sin(w,t+7, +0o,)

® Relative amplitude and phase of different state variables is also determined
by the right eigenvector ‘¢|r ‘ -n

® Same as natural oscillation

® Not affected by the location of disturbance

At resonance, the mode shape of forced oscillation converges to system
mode shape, which brings difficulties in oscillation type distinguishing
and source location
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Simulations
Inter-area mode
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Simulations
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How to Distinguish Forced Oscillation

* Distinguishing natural and forced oscillations based on system
measurements is critical for control measure decisions

* In steady state, both natural and forced oscillations show
sustained oscillations with nearly constant amplitude
— A damped oscillation is obviously natural oscillation — Not Critical

— Oscillation with negative damping will converge to constant-amplitude
oscillation due to nonlinearities such as saturations and limits in actual
systems

* Mode shapes are similar when resonance
* Not easy to distinguish
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Fundamental Differences

* Influence factor
— Natural oscillation - system features
— Forced oscillation - system features + external disturbances
— The steady state waveform of natural oscillation is mainly sinusoidal

— If the external disturbance is non-sinusoid, the forced oscillation
waveform will also deviate a lot from sinusoid

— An obvious non-sinusoidal waveform is a sufficient but unnecessary
indicator of forced oscillation
* Intrinsic system damping
— Natural oscillation - zero or negative
— Forced oscillation — positive
— How to obtain the intrinsic damping from its outward performance?
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1. Harmonic Content of Steady State Waveform

e Obvious non-sinusoidal waveform in steady state is a
sufficient but unnecessary condition of forced oscillation

e Harmonic content

— Harmonic content higher than a given threshold is an indicator of non-
sinusoidal waveform, and forced oscillation

m, m
m, +m .
h=Te s h, Amplitude of Amplitude of ith
m, fundamental harmonic

— A recommended value of the threshold is 0.11, which is the harmonic
content index for a triangle wave

Simple but Practical
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Examples
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2. Features of Start Up Waveform

* Different intrinsic system dampings result in different features
of start up waveform

350 . v . 12;

[ ~——— Active power of Pingsha transmission ine

Start up: the stage when the amplitude increases

6“53
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Features of Start Up Waveform

* The envelope of start up waveform Ae” +B

Natural oscillation A>0B=0,|0> Ol

Forced oscillation A<0,B=-Ap< Ol

15

— Natural

— Forced
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Features of Start Up Waveform

* The envelope of start up waveform Ae” +B
* the differenceiso
* Steps
— Peak-peak value X.
— increment of peak-peak value Y, =X, —-X,_, = A" -1)e""
— logarithm Z =InY, = (In(A(e”" —-1))—oT)+oT i
— Linear fitting to get the slope S =0T
— S>e: natural oscillation, S<-€: forced oscillation
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3. Spectral Methods (From Ruichao and Dan)

* The actual system response contains three components
* The intrinsic damping is contained in the ambient component
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Steady State Response

e Natural (undamped)
yr(t) = 2|£r£n1_7n£(0)|C05 (a)nt + 24 (grgnyng(O))) = Transient

M
+ z [CIz(t) ® 2|, unvnbai|cos(wnt + LErEnEanz)]] = Noise 1: Random Sinusoidal Noise
=1

* Forced
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Signal-Noise Separation

* First separate the whole response into signal and noise
* Power spectral density (PSD) of natural oscillation

IVrﬁVr (wn) J’SrYSr (wn) + S YNrINr (wn)

Ste s, (Wn) = |2ngrgn1_7n§(0)|26(0)2 PSD of signal/transient component

2
Sj}Nrer(wn) = |2T[£T'En|

sinusoidal noise

M
z|"—’n921|25qzqz(w)‘ 5(0)? PSD of noise, dominated by

=1

* For two different measurements

2
_ Spei9s (@n) ity _ Soyaon(@n)  |e1ttn]
As = = > Equal ay = S =

537323732 (wn) YN2VN2 (wn)

|£22n |£22n|
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Signal-Noise Separation

 Power spectral density (PSD) of forced oscillation

YTYT(wO) YSTJ’ST(wO) + SJ’NrYNr(wO)

5(0)>  PSD of signal/forced component

M
59rn9rn (@W0) = Z

* For two different measurements

Sq1q.(wo)  PSD of noise

5951951 (@n) S5 9, (Wr)
Ysiysi\ o n NOT Equal ay = YN1YN1 VTN
Sj}NZyNZ(wn)

aS =
3’523’52( n)
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Natural a¢=3.80and a, =3.85
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Forced ag=7.28 and ), =0.91
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Cross-Spectrum Difference Function

* To detect the existence of the “random sinusoid” component

e cross-spectrum difference function
Sr[ﬂ] = Yr*wlyrwz - Y;WZYT‘Wg

eri the scaled DFT of the signal over window i

e Cross-spectrum index

|E{s:[a]s,[]}]”
E{S;[Q]S.[Q]} E{S;[Q]S,[Q]}

CrglQ] £

r, g: different measurement channels

* Criterion
CrglQ] =1 Natural CrglQ] <1 Forced
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Examples

Natural Forced
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Examples

An actual forced oscillation incident in the western North American power system
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Conclusions

» Some methods for online distinguishing natural and

forced oscillations are proposed
» The problem is NOT well solved

» Due to the complexity of actual oscillation curves,
many methods, though have solid theoretical
foundations and perform well with simulation results,

do not perform well with actual records

» More practical approaches are still needed
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