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Natural and Forced Oscillations

• Two types of oscillations are widely observed

• Natural/Free oscillation - Oscillations due to 
undamped system modes

• Forced oscillation - Oscillations from periodic sources 
external to the system
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Oscillation Type Distinguishing

• Why should we distinguish oscillation type?

– Different control measures for different oscillation types

– Natural oscillation: Increase the damping ratio of the
critical mode and the oscillation will decay

– Forced oscillation: Remove the external disturbance

• Why is this problem difficult?

– The approach should be measurement-based, or it is not
online applicable

– Both oscillation types show sustained oscillation with
constant amplitude in steady state

– Actual oscillation waveforms are complicated
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How to Study Forced Oscillation

• Natural oscillation

– Determined by system features

– Eigenvalue analysis or modal analysis

– Time-domain simulation

• Forced oscillation

– Determined by both external disturbances and system
features

– Time-domain simulation method is applicable, but not
capable of analytic and quantitative analysis

– Extended modal analysis
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Extended Modal Analysis
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Extended Modal Analysis
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Forced oscillation
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Steady State Response of Forced Oscillation
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Resonance - When the frequency of the external disturbance is close to the 

frequency of a poorly damped mode, the system oscillates with a large 
amplitude, which is often larger than that of the disturbance

Easy to Understand



Steady State Response at Resonance
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When resonance with a poorly damped mode, the mode dominates the response
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Oscillation Amplitude
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Mode Shape
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At resonance, the mode shape of forced oscillation converges to system 
mode shape, which brings difficulties in oscillation type distinguishing 
and source location



Simulations
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Simulations
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How to Distinguish Forced Oscillation

• Distinguishing natural and forced oscillations based on system
measurements is critical for control measure decisions

• In steady state, both natural and forced oscillations show
sustained oscillations with nearly constant amplitude
– A damped oscillation is obviously natural oscillation – Not Critical

– Oscillation with negative damping will converge to constant-amplitude
oscillation due to nonlinearities such as saturations and limits in actual
systems

• Mode shapes are similar when resonance

• Not easy to distinguish

15



Fundamental Differences

• Influence factor
– Natural oscillation - system features

– Forced oscillation - system features + external disturbances

– The steady state waveform of natural oscillation is mainly sinusoidal

– If the external disturbance is non-sinusoid, the forced oscillation
waveform will also deviate a lot from sinusoid

– An obvious non-sinusoidal waveform is a sufficient but unnecessary
indicator of forced oscillation

• Intrinsic system damping
– Natural oscillation - zero or negative

– Forced oscillation – positive

– How to obtain the intrinsic damping from its outward performance?
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1. Harmonic Content of Steady State Waveform

• Obvious non-sinusoidal waveform in steady state is a
sufficient but unnecessary condition of forced oscillation

• Harmonic content
– Harmonic content higher than a given threshold is an indicator of non-

sinusoidal waveform, and forced oscillation

– A recommended value of the threshold is 0.11, which is the harmonic
content index for a triangle wave
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Examples

h=0.34>0.11
Forced 
oscillation

WECC FO, 2015
From Dan



2. Features of Start Up Waveform

• Different intrinsic system dampings result in different features
of start up waveform
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Start up: the stage when the amplitude increases



Features of Start Up Waveform

• The envelope of start up waveform
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Features of Start Up Waveform

• The envelope of start up waveform

• the difference is σ

• Steps
– Peak-peak value

– increment of peak-peak value

– logarithm

– Linear fitting to get the slope

– S>ε: natural oscillation, S<-ε: forced oscillation
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Examples

Measured
S=0.14>0, Natural

Simulated
S=-0.06<0, Forced



3. Spectral Methods (From Ruichao and Dan)

• The actual system response contains three components

• The intrinsic damping is contained in the ambient component
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Steady State Response

• Natural (undamped)

• Forced
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Signal-Noise Separation

• First separate the whole response into signal and noise

• Power spectral density (PSD) of natural oscillation

• For two different measurements
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Signal-Noise Separation

• Power spectral density (PSD) of forced oscillation

• For two different measurements
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Examples
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Cross-Spectrum Difference Function

• To detect the existence of the “random sinusoid” component

• cross-spectrum difference function

• Cross-spectrum index

• Criterion
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Examples
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ForcedNatural
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Examples
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An actual forced oscillation incident in the western North American power system
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 Some methods for online distinguishing natural and 

forced oscillations are proposed

 The problem is NOT well solved

 Due to the complexity of actual oscillation curves, 

many methods, though have solid theoretical 

foundations and perform well with simulation results, 

do not perform well with actual records

 More practical approaches are still needed

Conclusions
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