Deployment and Initial Experience with Oscillation Detection Application at Bonneville Power Administration

Dmitry Kosterev, Ashley Donahoo, Nick Leitschuh – BPA Jeff Dagle, Frank Tuffner – PNNL Dan Trudnowski – Montana Tech

2016 IEEE Meeting

BPA Overview

- Bonneville Power Administration (BPA) is a federal Power Marketing Agency in Pacific Northwest
- BPA markets power from 31
 Federal dams and the
 Columbia Generating Station
 Nuclear Plant
- BPA operates more than 15,000 miles of transmission, including 4,735 miles of 500-kV lines
- BPA operates several large paths in the Western Interconnection California Oregon AC Intertie (4,800 MW), Pacific HVDC Intertie (3,100 MW), Northern Intertie (3,100 MW), and Montana Intertie (2,200 MW)

History of Syncrophasors at BPA

- BPA has been one of the earliest adopters of synchrophasor technology since early 1990s
- BPA has greatly expanded PMU coverage and networking following 1996 outages

- BPA researched, prototyped and deployed several PMU applications for engineering analysis
- However, that PMU network was research-grade and was not reliable or secure for real-time control room applications

2010 Synchrophasor Investment Project

BPA initiated a capital investment project in 2010 to build a secure, reliable, control-grade synchrophasor network:

- 5-year, \$35M project
- Part of DOE Smart Grid Program
- "Control" PMUs
 - Fully redundant architecture
 - 32 substations
 - 110 PMUs (55 redundant pairs)
- "Data" PMUs
 - 15 wind sites
- Total of 3,322 signals

Platt's Global Energy Award

BPA synchrophasor investment project received 2013 Platt's Global Energy Award for Industry Leadership in Grid Optimization

BPA Oscillation Detection Application

Control Room: Oscillation Detection

BPA deployed Oscillation Detection in its control room in October 2013

Scans 100+ signals for signs of growing or sustained power oscillations

Alarms dispatchers when an oscillation is detected

Dispatcher training sessions are performed

Operating procedures are developed in 2016

How are Oscillations detected?

The magnitude of the oscillation is calculated in 4 frequency bands

How alarm is generated

If the oscillation is strong enough, and lasts long enough then an alarm is issued

Oscillation Detection Events

- Multiple events of oscillation are detected monthly
- Examples:
 - Generator control interactions
 - Wind generation oscillations
 - Bad operating point on a power plant
 - Pacific HVDC Intertie controls
 - Generator rotor angle oscillations
 - Etc

(a) Central Oregon Oscillation on February 20, 2014

Overview display

(a) Central Oregon Oscillation on February 20, 2014

(b) Hydro Power Plant Oscillation

Overview Display

(b) Hydro Power Plant Oscillation

Power & Energy Society

Period of oscillation is 3 seconds, oscillation frequency is 0.33 Hz, seen in both active and reactive power

The oscillation is caused by a surging water vortex in one of the turbines operating at a partial load

Plant was redispatched to a stable operating point

(c) Wind Power Oscillation

(c) Wind Power Oscillations

Power & Energy Society*

Oscillation is at 14 Hz, most visible in reactive power, indication of voltage control issues

Oscillations reached 80 MVAR peak to peak

(c) Wind Power Oscillations

Manufacturer upgraded the controls in April 2014 to fix the oscillation problem

(d) Hydro Plant Control Interaction

Overview Display

(d) Hydro Plant Control Interaction

Oscillation is caused by interactions between generator UEL and PSS UEL was retuned in January 2016

Success Story

- BPA successfully deployed Oscillation Detection Module (ODM) in its control room
- ODM is developed by Dan Trudnowski at MTU
- ODM scans for 100+ signals for sustained high energy oscillations
- ODM was implemented in 2013, and displays have been in the control rooms since October 2013 log alarm only
- Several dispatcher training sessions have been performed
- Dispatchers took actions based on ODM results
- Operating procedures are developed, in effect June 1, 2016
- Several control improvements are implemented, including UEL tuning at a hydro-power plant and control firmware upgrades at a wind power plant

