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Abstract—In this paper, the multi-type branching process is
applied to describe the statistics and interdependencies of line
outages, the load shed, and isolated buses. The offspring mean
matrix of the multi-type branching process is estimated by the
Expectation Maximization (EM) algorithm and can quantify the
extent of outage propagation. The joint distribution of two types
of outages is estimated by the multi-type branching process via
the Lagrange-Good inversion. The proposed model is tested with
data generated by the AC OPA cascading simulations on the
IEEE 118-bus system. The largest eigenvalues of the offspring
mean matrix indicate that the system is closer to criticality when
considering the interdependence of different types of outages.
Compared with empirically estimating the joint distribution of
the total outages, good estimate is obtained by using the multi-
type branching process with a much smaller number of cascades,
thus greatly improving the efficiency. It is shown that the multi-
type branching process can effectively predict the distribution of
the load shed and isolated buses and their conditional largest
possible total outages even when there are no data of them.

Index Terms—Cascading blackout, EM algorithm, interdepen-
dency, joint distribution, Lagrange-Good inversion, multi-type
branching process, reliability, resilience.

I. INTRODUCTION

ARGE and rare cascading blackouts are complicated

sequences of dependent outages that successively weaken
a power system. They have substantial risk and pose great
challenges in simulation, analysis, and mitigation [1]-[3]. Gen-
eral cascading failures have been studied in abstract network
models, such as the Motter-Lai model [4], [5] and the sandpile
model [6]. Specifically for electric power systems, simulations
of cascading outages from various models, such as OPA!
model [7]-[10], AC OPA [11], [12], OPA with slow process
[13], Manchester model [14], hidden failure model [15], [16],
and dynamic model [17], can produce massive amounts of data
regarding line outages, generator tripping, and load shedding.
However, simulations cannot produce statistical insight or met-
rics with actionable information without a carefully designed
information extraction method.
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Existing such methods include the interaction network and
interaction model [18], [19], the influence graph [20], and the
branching processes [21]-[25]. Among these methods, branch-
ing processes have descriptive parameters that characterize the
system resilience to cascading. It is much more time efficient
by first estimating the parameters of a branching process from
a shorter simulation run and then predicting the distribution
of total outages using the branching process than empirically
estimating the distribution. Branching processes can efficiently
predict the distribution of line outages and the load shed of
simulations from OPA and its variants on IEEE 118- and 300-
bus systems, and Northeastern Power Grid of China [21]-[23],
the distribution of the load shed for the TRELSS simulation
on an industrial system of about 6250 buses [22], and the
distribution of line outages in real data [24], [25].

Till now the branching process has only been used to de-
scribe the propagation of one type of outages. In real cascading
blackouts, however, several outages such as line outages, load
shedding, and isolated buses can exist simultaneously. More
importantly, these outages are usually interdependent and thus
their propagation can be better understood only when they can
be described jointly. Also, if we want to evaluate the time that
is needed to restore the system after a cascading outage event,
we need to know how many buses and lines are still in service,
as well as the amount of the load shed. But we may not have
all these data and thus need to predict some of them by only
using the available data.

In this paper, line outages, the load shed, and isolated buses,
are described by Galton-Watson multi-type branching pro-
cesses [26], [27]. The parameters of branching processes are
estimated by the Expectation Maximization (EM) algorithm
[28]. The joint distributions of total outages are efficiently
estimated by multi-type branching processes via the Lagrange-
Good inversion [29]. We also show that the multi-type branch-
ing process can effectively predict the distribution of the load
shed and isolated buses and their conditional largest possible
total outages when there are no data for them.

Note that the multi-type branching process discussed in this
paper can not only quantify the interdependencies between
different types of outages in power systems, but can also be
used to study the interactions between different infrastructure
systems, such as between electric power systems and commu-
nication networks [30], [31], natural gas networks [32], [33],
water systems [34], and transportation networks [35], [36].

The rest of this paper is organized as follows. Section
II briefly introduces the multi-type Galton-Watson branching
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processes. Section III explains the estimating of branching
process parameters. Section IV discusses the estimation of
the joint distribution of total outages by multi-type branching
processes. Section V determines how many cascades should
be simulated and how many should be utilized to estimate the
joint distribution by branching processes. Section VI tests the
proposed method with simulated cascades of line outages, the
load shed, and isolated buses by AC OPA on the IEEE 118-bus
system. Finally the conclusion is drawn in Section VIIL

II. GALTON-WATSON BRANCHING PROCESSES

Here, we will briefly introduce the Galton-Watson branching
process, especially the multi-type Galton-Watson branching
process. For more details, the reader is referred to [21]-[27].

As a high-level probabilistic model, the branching process
can statistically describe how the number of outages propa-
gates in a cascading blackout and the statistics of the total
number of outages, which is different from the OPA model
and its variants [7]-[13] that retain information about the
network topology, power flow, and the operator’s response,
or the interaction model [18], [19] that aims at quantifying
the interactions between component failures. The simplicity of
the branching process allows a high-level understanding of the
cascading process without getting entangled in the complicated
mechanisms of cascading.

For one-type branching process, the initial outages propa-
gate randomly to produce subsequent outages in generations.
Each outage (a “parent” outage) independently produces a
random nonnegative integer number of outages (“children”
outages) in the next generation. The children outages then
become parents to produce another generation until the number
of outages in a generation becomes zero.

The distribution of the number of children from one parent
is called the offspring distribution. The mean of this distri-
bution is the parameter A, which is the average number of
children outages for each parent outage and can quantify the
tendency for the cascade to propagate in the sense that larger
A corresponds to faster propagation. For cascading blackout
A < 1 and the outages will always eventually die out.

The multi-type branching process is a generalization of
the one-type branching process. Each type ¢ outage in one
generation (a type ¢ “parent” outage) independently produces
a random nonnegative integer number of outages of the same
type (type ¢ “children” outages) and any other type (type k
“children” outages where k # ). All generated outages in
different types comprise the next generation. The process ends
when the number of outages in all types becomes zero.

For an n-type branching process there will be n? offspring
distributions. Correspondingly there will be n? offspring
means, which can be arranged into a matrix called the offspring
mean matrix A. The criticality of the multi-type branching
process is determined by the largest eigenvalue of A. The
process will always extinct if the largest eigenvalue of A is
less than or equal to one [26], [27].

Although the branching process does not directly represent
any of the physics or mechanisms of the outage propagation,
after it is validated it can be used to predict the total number

of outages. The parameters of the branching process can be
estimated from a much smaller data set, and then predictions
of the total number of outages can be made based on the
estimated parameters. The ability to do this via the branching
process with much less data is a significant advantage that
enables practical applications.

ITI. ESTIMATING MULTI-TYPE BRANCHING
PROCESS PARAMETERS

The simulation of OPA and its variants [7]-[13] can nat-
urally produce outages in generations. Each iteration of the
“main loop” of the simulation produces another generation.
A total of M cascades are simulated to produce nonnegative
integer data that can be arranged as

generation 0 generation 1
cascade 1 (Z3, -, Z8™) (ZM,. . Zhm
cascade 2 (Z3t, -, Z3™) (221, 2>
cascade M (ZM1 ... ZMmy  (ZMr L ZMmy

where Z;”vt is the number of type ¢ outages in generation
g of cascade number m, and n is the number of types of
outages. Each cascade has a nonzero number of outages in
generation zero for at least one type of outages and each type
of outage should have a nonzero number of outages at least
for one generation. The shortest cascades stop in generation
one, but some cascades will continue for several generations
before terminating. Note that continuous data such as the load
shed need to be first discretized by the method in [23].

Here, we explain how to estimate the offspring mean matrix
and the empirical joint distribution of the initial outages from
the simulated data. Note that we do not need all of M cascades
but only M, < M cascades to perform the estimation. We will
specially discuss the number of cascades needed to obtain a
good estimate in Section V.

A. Estimating Offspring Mean Matrix

For n-type branching processes where n > 2 the offspring
mean A will be generalized to the offspring mean matrix A.
Different from the branching processes with only one type, for
which the criticality is directly determined by the offspring
mean A, the criticality of multi-type branching processes is
determined by the largest eigenvalue of A, which is denoted
by p. If p < 1, the multi-type branching process will always
extinct. If p > 1, the multi-type branching process will extinct
with a probability 0 < g < 1 [27].

The largest eigenvalue p of the mean matrix can be esti-
mated as the total number of all types of children divided by
the total number of all types of parents by directly using the
simulated cascades and ignoring the types [37]
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When the number of type j children to type i parents S ()
and the total number of type i parents S() are observed, Aij
(the expected number of type j children generated by one type
1 parent) can be estimated by a maximum likelihood estimator
that is the total number of type j children produced by type @
parents divided by the total number of type ¢ parents [38]

R S(d)

i = 5 2
where S(“7) and S(*) can be described by using the simulated
cascades as

M, oo

S = NN "z 3)
m=1 g=1
M,

S0 =3%" i zn, (4)

m=1 g=0

where Z;’””j is the number of type j offspring generated by
type ¢ parents in generation g of cascade m.

However, it is usually impossible to have so detailed infor-
mation. For cascading blackouts, it is difficult to determine the
exact number of type j outages that are produced by type @
outages, due to too many mechanisms in cascading. In other
words, Z;*77 in (3) cannot be determined and thus y (i)
cannot be decided and the mean matrix cannot be estimated.

To solve this problem, we apply the Expectation Maxi-
mization (EM) algorithm [28], which fits the problem well
as a method for finding maximum likelihood estimates of
parameters in statistical models where the model depends on
unobserved latent variables. Besides, we assume the offspring
distributions of branching processes are Poisson. There are
general arguments suggesting that the choice of a Poisson
offspring distribution is appropriate [22], [23] since offspring
outages being selected from a large number of possible outages
have very small probability and are approximately indepen-
dent. The EM algorithm mainly contains two steps, which are
E-step and M-step. For the estimation of the offspring mean
matrix of an n-type branching process, the EM algorithm can
be formulated as follows.

1) Imitialization: Set initial guess of mean matrix as A,
Since for cascading blackouts the outages will always
die out, we have 0 < )\;; < 1. Based on this all elements
of the initial mean matrix are set to be 0.5, which is the
mid point of the possible range.

2) E-step: Estimate S()(*+1) based on A%,

Under the assumption that the offspring distributions
are all Poisson, for generation g > 1 of cascade
m, the number of type j offspring produced by type
t =1,...,n parents follows Poisson distribution

ZI179 ~ Pois(Z)1 AY). )

Thus the number of type j offspring in generation g > 1
of cascade m produced by type ¢ parents in generation

g — 1 of the same cascade is:

B L (6)

Zy ) =z :
n m,t 3 (k
Z nglAEj)
t=1
After obtaining Z"*7/ for all generations g > 1 of
cascades m = 1, ..., M, we are finally able to calculate
S(:9) by using (3).
3) M-step: Estimate A**1) based on S/ (k+1),
After obtaining S(“/)(k*1) the updated mean matrix
A*+D) can be estimated with the estimator given in (2).

4) End: Iterate the E-step and M-step until

max

ijell, - n} D\Z('fﬂ) - S‘Ef)‘ <6 )

where € is the tolerance that is used to control the
accuracy and /\Z(-;-CH) is the final estimate of A;;.

B. Estimating the Joint Distribution of Initial Outages
For a n-type branching process, the empirical joint probabil-

ity distribution of the number of initial outages (Z}, -, Z%)
can be obtained as
Az (20, 28) = P(Zy = 25, , 2 = 2§)
1 L
:ﬁZI[ZgTJ:Z(l)V“7Z(T)n’n:Z(T)L]7 )
U m=1

where the notation I[event] is the indicator function that
evaluates to one when the event happens and evaluates to zero
when the event does not happen.

IV. ESTIMATING THE JOINT PROBABILITY DISTRIBUTION
OF TOTAL OUTAGES

Since we are most interested in the statistics of the total
outages produced by the cascades, here we will discuss how
to estimate the joint distribution of n types of blackout size
by using the estimated offspring mean matrix and the joint
distribution of initial outages in Section III.

A. Estimation for an n-Type Branching Process

The probability generating function for the type ¢ individual
of an n-type branching process is

o0
filst, o osn) = D pilug, up)sitoesin, (9)
ul, -, up=0
where p;(uq, - -+, uy,) is the probability that a type ¢ individual

generates uj type 1, - - -, u, type n individuals. If we assume
that the offspring distributions for various types of outages are
all Poisson, as in Section III, (9) can be easily written after
the offspring mean matrix A is estimated by the method in
Section III-A.

According to [27] and [29], the probability generating
function, w;(s1, - , S,), of the total number of various types
of individuals in all generations, starting with one individual
of type i, can be given by

wi:Sifi(wlv"' 7wn)u 7':177” (10)
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When the branching process starts with more than one
type of individuals, the total number of various types can be
determined by using the Lagrange-Good inversion in [29], in
which the following theorem is given.

Theorem 1: If the n-type random branching process starts
with r; individuals of type 1, ro of type 2, etc., then the
probability that the whole process will have precisely m; of
type 1, mo of type 2, etc., is equal to the coefficient of

mi1—T1
Sq .

Mnp—Tn

..Sn

in
_ SuOfu
fu 0s,

where ||a};|| denotes the determinant of the n x n matrix whose
entry is GZ(MV =1,...,n) and 4}, is Kronecker’s delta (=
1 if u = v, otherwise = 0). We denote the coefficient of
STV T ag ey, TR M, M)

Given the joint probability distribution of initial sizes
P(Z},---,Z}) and the generating functions in (9), the
formula for calculating the joint probability distribution
d®t(yy,-- ,y,) of the total number of various types

(YL,--- Y1) can then be written as

dei(ylf" ayn) = P(Yolo =Y, aYo’g :yn)
20=Y1. 520 =Yn

-y

1 n
zg, 520 =0

25+ 25 #0

U S

; (1)

v
9y,

{P(ZS =20, 25 = 20)

(12)

C(Zé"" 7Z6L;y1a"' JYn) |-

B. An Example for a Two-Type Branching Process

Here, we take the joint probability distribution estimation
of a two-type branching process as an example to better
illustrate the proposed method. The empirical joint probability
distribution of the number of initial outages (Z¢, Z3) can be
obtained by (8). As in Section III, we assume that the offspring
distributions for various types of outages are all Poisson. Then
the probability generating functions for a two-type branching
process can be written as

oo
)\ul )\UQ e—)\ll—)\lg )
fi(s1,82) = g T B 81785 (13)
ul=u2=0 U=tz
o0
)\ul )\UQ ef)\glf)\zz
falsi,s0) =y 222 1'sy?, (14)
ul=u2=0 urluy!

where the parameters A11, A12, A21, and Ao can be estimated
by the method in Section III-A.

In (11) the n x n matrix whose determinant needs to be
evaluated is actually

150  _s10h
f1 0s1 f2 Os2

_s20f2 _ 520f2
f2 O0s1 f2 Os2

The joint probability distribution of the two-type branching
process can be obtained by evaluating (12) with elementary

algebra. Since the coefficients in (13) and (14) will decrease
very fast with the increase of the order of s1 and s9, we can use
a few terms to approximate the generating functions to reduce
the calculation burden while guaranteeing accurate enough
results. Furthermore, the probability obtained by (12) will also
decrease with the increase of y; and y». We do not need to
calculate the negligible probability for too large blackout size.
Specifically, we can only calculate the joint probability for

YL = 20,525 + 11 (15)

and

ygzzg,...7zg+7'2, (16)

where 71 and 7o are integers properly chosen for a tradeoff of
calculation burden and accuracy. Too large 7, or 7o will lead
to unnecessary calculation for blackout sizes with negligible
probability. Too small 7 or 75 will result in loss of accuracy
by neglecting blackout sizes with not so small probability.

C. Validation

In Section IV-A we propose a method to estimate the
joint distribution of n types of blackout size (YL, --,Y2),
which is denoted by d§* (y1,--- ,y»). Here, we validate it by
comparing it with the empirically obtained joint distribution

d‘;‘:(yl, -+ ,Yn), Which can be calculated by
d;ﬁ:f(yla T 7y7l) :P(Yolo =Y1, aYo’Z == yn)
NYL =y, Y2 =yn)
= = L= 17
= . an
where N(YL =yp,---, Y2 =y,) is the number of cascades
for which there are y; type 1 outages, - - -, y, type n outages.
Specifically,

1) Joint entropy: We compare them by the joint en-
tropy, which can be defined for n random variables

(Yo, -, YZ) as
:_Z"'Zp(yh"' s Yn) logo[P(y1, -+, yn)l,
Y1 Yn
(18)
where P(y1,--,yn)logs[P(y1,- -+ ,yn)] is defined to
be 0 if P(y1, - ,yn) = 0.

The joint entropy for the estimated and the empirical
joint distribution can be respectively denoted by H¢st
and H*™P. Then the estimated joint distribution can be
validated by checking if H*'/H*™ is close to 1.0.

2) Marginal distribution: The marginal distribution for
each type of outages can also be calculated after estimat-
ing the joint distribution of the total outages, which can
be compared with the empirical marginal distribution
directly calculated from the simulated cascades in order
to validate the estimated joint distribution.

3) Conditional largest possible total outages (CLO):
We can also calculate the conditional largest possible
total outage of one type of blackout size when the
total outage of the other types of blackout size are
known. For example, for a two-type branching process,
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fori,j € {1,2} and ¢ # j, given the total outage of one
type of blackout size y; we can get the total outage of
another type of blackout size y; that satisfies

P(YL < y; VL = 4i) = peont (19)
where
P(YL <y IYL = vi)
v ; )
P(Y: =y, YL =k
620 > P(YE =y YA = 1)
=0

Peonf 18 the confidence level close to 1.0 and P(A|B)
is the conditional probability of event A given B. If we
know that the total outage of type i is y;, from the joint
distribution we know that the total outage of type j will
not exceed y; with a high probability pcon.

We can calculate the y; from either the empirical joint
distribution or the estimated joint distribution by branch-
ing process and compare them to check if the y; from
the estimated joint distribution is close to that from the
empirical joint distribution.

V. NUMBER OF CASCADES NEEDED

In the above sections we assume there are a total of M
cascades and in section III we use M, of them to estimate
the offspring mean matrix and the joint distribution of initial
outages. But two questions remain unanswered, which are how
many cascades we need to empirically obtain a reliable joint
distribution of total outages and how many cascades we need
to get a reliable estimate of the offspring mean matrix and joint
distribution of initial outages which can further guarantee that
the estimated joint distribution of total outages is close enough
to the reliable empirical joint distribution. Here, we discuss
these questions by a similar method in [18] and determine the
lower bounds M™" and M™™ respectively for M and M,,.

A. Determining Lower Bound for M

More cascades tend to contain more information about
the property of cascading failures of a system. The added
information brought from the added cascades will make the
joint entropy of the joint distribution empirically obtained from
the cascades increase. However, the amount of information
will not always grow with the increase of the number of
cascades but will saturate after the number of cascades is
greater than some number M™", which can be determined
by gradually increasing the number of cascades, recording the
corresponding joint entropy of the empirical joint distribution,
and finding the smallest number of cascades that can lead to
the saturated joint entropy (amount of information).

Assume there are a total of N, different M’s ranging
from a very small number to a very large number, which are
denoted by M;, 1 = 1,2,..., Np;. The joint entropy of the
joint distribution of total outages obtained from M, cascades
is denoted by H™(M;).

Fori=1,..., Ny — 2 we define

o1 = o (H™), b3))

where H;"™" = [H*™(M;) --- H*™(My,,)] and o(-) is the
standard deviation of a vector. The o; for : = Njp; — 1 and
i = Njs; are not calculated since we want to calculate the
standard deviation for at least three data points. Very small and
slightly fluctuating o; indicates that the joint entropy begins
to saturate after M. Specifically, the M; corresponding to
o; < €, is identified as M™™ where €, is a small real number.

The M™" original cascades can guarantee that the accuracy
on statistical values of interest is good and thus can provide a
reference joint distribution of the total outages.

B. Determining Lower Bound for M,

When we only want to obtain good enough estimate of the
joint distribution of total sizes, we do not need as many as
M™" cascades but only M™" cascades to make sure that the
information extracted from M™™" cascades by the branching
process can capture the general properties of the cascading
failures. Here, we propose a method to determine M,

Since both H*™ and H**! vary with M,,, we denote them by
He™(M,,) and H*'(M,,). H*™(M,,) can be directly obtained
from the cascades by (17) and (18) and H®'(M,) can be
calculated by (12) and (18).

When M, is not large enough, it is expected that there
will be a big mismatch between H*™ (M, ) and H*'(M,,),
indicating that the estimated joint distribution from the branch-
ing process cannot well capture the property of the joint
distribution of the cascades. But with the increase of M,
more information will be obtained and thus the mismatch will
gradually decrease and finally stabilization. In order to indicate
the stabilization, we define

[HE(M,,) — H™(M,)|
Jemp (Mu)

R(M,) = , (22)
start from a small integer M? and increase it gradually by AM
each time, and calculate the standard deviation of R(M,,) for
the latest three data points by

5’1‘ = O'(Ri), ) Z 2, (23)
where ¢ denotes the latest data point and
R; = [R(M,™?) R(M, ") R(M,)]. 24)

Then M™* is determined as the smallest value that satisfies
0; < e€g where € is used to determine the tolerance for
stabilization.

By decreasing AM we can increase the accuracy of the
obtained M™", But smaller AM will increase the times of
calculating the joint distribution by branching processes. When
more types of outages are considered, greater M™™ will be
needed, in which case larger AM can be chosen to avoid too
many times of calculating the joint distribution.

Note that there is an implicit assumption in this section that
all the cascades are generated from the same cascading failure
model or at least from similar models. If the cascades come
from very different cascading failure models or are generated
by very different mechanisms, it might be possible that the
proposed methods in this section are difficult to converge or
stabilize with the increase of the number of cascades.
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TABLE I
NUMBER OF CASCADES NEEDED

No. of types Type Mmin - pymin
1 line outage 18000 1400
1 load shed 36000 1900
1 isolated bus 33000 900

line outage and
2 39000 6500
load shed
line outage and
2 37000 5500
isolated bus
VI. RESULTS

Here we present results of the branching process parameters
computed from simulated cascades and the joint distributions
of outages predicted from these parameters. The cascading out-
age dataset is produced by the open-loop AC OPA simulation
[11], [12] on the IEEE 118-bus test system, which is standard
except that the line flow limits are determined with the same
method in [23]. The probability for the initial line outage is
po = 0.0001 and the load variability v = 1.67, which are the
same as [21] and [23].

To test the multi-type branching process model, the simu-
lation is run so as to produce M = 50000 cascades with a
nonzero number of line outages at the base case load level. In
each generation the number of line outages and the number
of isolated buses are counted and the continuously varying
amounts of the load shed are discretized as described in [23]
to produce integer multiples of the chosen discretization unit.

A. Number of Cascades Needed

The method in Section V is used to determine M™" and
M{Lni“. For determining M min we choose Ny = 50 and the
data points are linearly scaled. The €, is chosen as 0.002. In
order to determine M™®, we choose MY, ez, and AM in
Section V-B as 100, 0.002, and 100 for one type of outages
and 1000, 0.002, and 500 for multiple types of outages, since
the M™™ for multiple outages case is expected to be greater
and we need to limit the calculation burden. The determined
M™® and M™® for different types of outages are listed in
Table 1. The M™® used for estimation is significantly smaller
than M™", thus helping greatly improve the efficiency.

B. Parameters of Branching Processes

The € in (7) is chosen as 0.01. The EM algorithm that
is used to estimate the offspring mean matrix of the multi-
type branching processes can quickly converge. The number
of iterations N is listed in Table IL

The estimated branching process parameters are listed in
Table III, where X is the offspring mean for one type of
outages estimated by the method in [23]. It is seen that the
estimated largest eigenvalue of the offspring mean matrix p is
greater than the estimated offspring means for only considering
one type of outages, indicating that the system is closer to
criticality when we simultaneously consider two types of

TABLE I
NUMBER OF ITERATIONS OF EM ALGORITHM

Type My, Nite
. 39000 7
line outage and load shed
6500 7
37000 4
line outage and isolated bus
5500 4

outages. This is because different types of outages, such as
line outage and the load shed, can mutually influence each
other, thus aggregating the propagation of cascading. In this
case, only considering one type of outages will underestimate
the extent of outage propagation.

The 5\12 in A is the estimated expected discretized number
of the load shed when one line is tripped while Aoy s
the estimated expected number of line outages when one
discretization unit of load is shed. From the offspring mean
matrix A we can see that line outages tend to have a greater
influence on the load shed and isolated buses but the influence
of the load shed or isolated buses on line outages is relatively
weak. This is reasonable since in real blackouts it is more
possible for line tripping to cause the load shed or isolated
buses. Sometimes line outages directly cause the load shed or
isolated buses, for example, the simplest case occurs when a
load is fed from a radial line.

Also note that there is some mismatch between the largest
eigenvalue of the offspring mean matrix p estimated from
(1) and that calculated from the estimated offspring mean
matrix A by the EM algorithm. The estimator in (1) is the
maximum likelihood estimator of the largest eigenvalue of the
offspring mean matrix [37], which does not need to make
any assumption about the offspring distribution. By contrast,
in order to estimate the offspring mean matrix we have to
assume a specific offspring distribution, such as the Poisson
distribution used in this paper. As mentioned in Section III-A,
there are general arguments suggesting that the choice of a
Poisson offspring distribution is appropriate, which will also
be further validated in the following sections. However, the
offspring distribution is only approximately Poisson but not
necessarily exactly Poisson. Numerical simulation of multi-
type branching processes with Poisson offspring distributions
shows that the estimated p and the largest eigenvalue of the
estimated A do agree with each other. Therefore, the largest
eigenvalue estimated from (1) without any assumption of the
offspring distribution is expected to be more reliable and the
closeness of the system to criticality should thus be determined
based on the estimated p from (1).

The estimated parameters for branching processes by only
using Mqﬂni“ cascades are listed in Table IV, which are very
close to those estimated by using M™" cascades, indicating
that M™" cascades are enough to get good estimate.

C. Estimating Joint Distribution of Total Outages

In (13) and (14), the highest orders for both s; and so are
chosen as 4. In (15) and (16), 7, and 79 are chosen based on
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TABLE III
ESTIMATED PARAMETERS OF BRANCHING PROCESSES BY (1) AND THE
EM ALGORITHM USING M™™ CASCADES

Type h) p A
line outage 0.45 - -
load shed 0.48 - -
isolated bus 0.14 - -
line outage and 0.5 0.45 0.42
load shed - 0.0018  0.029
line outage and 0.60 0.45 0.40
isolated bus ’ 6.0 x 1075 0.0049
TABLE IV

ESTIMATED PARAMETERS OF BRANCHING PROCESSES BY (1) AND THE
EM ALGORITHM USING M '™ CASCADES

Type A p A
line outage 0.45 - -
load shed 0.49 - -
isolated bus 0.15 - -
line outage and B 0.56 l: 0.45 0.43 :|
load shed 0.0020 0.027
line outage and B 061 |: 0.45 0.39 ]
isolated bus 5.5 x 1075  0.0040

the number of initial outages from the samples of cascades
and the tradeoff between calculation burden and accuracy. For
line outages and the load shed, 7; and 7, are chosen as 12 and
9, respectively. For line outages and isolated buses, 71 and 7
are chosen as 12 and 18, respectively.

It has been shown for one-type branching process that it
is much more time efficient to estimate the parameters of
a branching process from a shorter simulation run and then
predict the distribution of total outages by branching process
than it is to run much longer simulation in order to accumulate
enough cascades to empirically estimate the distribution [21]-
[23]. Here, we estimate the joint distribution of total outages
with multi-type branching process by using MMt < Jfmin
cascades and compare it with the empirical joint distribution
obtained from M™™ cascades.

To quantitatively compare the empirical and estimated joint
distributions, the joint entropy is calculated and listed in Table
V. It is seen that the joint entropy of the estimated joint
distributions is reasonably close to that of the empirical joint
distributions. Also, the joint entropy of the distributions for
two types of outages is significantly greater than that for one
type of outages, meaning that we can get new information by
jointly analyze two types of outages.

After estimating the joint distributions, the marginal dis-
tributions for each type of outage can also be calculated.
In Figs. 1 and 2 we show the marginal distribution of line

TABLE V
JOINT ENTROPY OF DISTRIBUTIONS

Type Mu Hemp Hesl
. 18000  3.50 391
line outage
1400 3.48 3.92
36000  3.52 3.56
load shed
1900 3.53 3.57
. 33000  2.63 2.64
isolated bus
900 2.59 2.61
39000  6.99 7.08
line outage and load shed
6500 6.94  7.06
. . 37000  5.33 6.45
line outage and isolated bus
5500 530 644

probability
=
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N

103; ]
o initial outage
4 e total outage
107¢ branching process o ]
10° 10t

number of line outages

Fig. 1. Estimated marginal probability distribution of the number of line
outages by using M™™ = 6500 cascades when line outages and the load
shed are considered. Dots indicate total outages and squares indicate initial
outages; both distributions are empirically obtained from M™® = 39000
simulated cascades. The solid line indicates the distribution of total outages
predicted with the multi-type branching process.

outages and the load shed for the two-type branching process
of line outages and the load shed. The empirical marginal dis-
tributions of total outages (dots) and initial outages (squares)
calculated from M™™ = 39000 are shown, as well as a solid
line indicating the total outages predicted by the multi-type
branching process from M™" = 6500 cascades. The branch-
ing process data is also discrete, but is shown as a line for ease
of comparison. It is seen that the branching process prediction
with MM = 6500 cascades matches the marginal distribution
empirically obtained by using M™" = 39000 cascades very
well. Similar results for the marginal distribution of the line
outages and isolated buses for the two-type branching process
of line outages and isolated buses are shown in Figs. 3 and 4,
for which M™" = 37000 and M™™* = 5500.

The conditional largest possible total outages (CLO) defined
in Section IV-C when the total number of line outages is
known can also be calculated from either the empirical joint
distribution using M™" cascades or from the estimated joint
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10°

Fig. 2. Estimated marginal probability distribution of the load shed by using
MM = 6500 cascades.
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Fig. 3. Estimated marginal probability distribution of the number of line
outages by using M}}‘i“ = 5500 cascades when the line outages and isolated
buses are considered. Dots indicate total outages and squares indicate initial
outages; both distributions are empirically obtained from M™® = 37000
simulated cascades. The solid line indicates the distribution of total outages
predicted with the multi-type branching process.

distribution from branching process using MM < Jfmin
cascades. In this paper the p.one in (19) is chosen as 0.99. The
CLOs for the load shed and the isolated buses are, respectively,
shown in Figs. 5-6, which indicate that the CLO estimated by
multi-type branching process using a much smaller number of
cascades matches the empirically obtained CLO very well.

In order to further validate the proposed method for estimat-
ing the joint distribution of the total outages, we also perform
a thorough cross validation. Specifically, randomly chosen
MM cascades are used to estimate the joint distribution by
the multi-type branching process, which is compared with the
joint distribution empirically obtained from another randomly
chosen M™" cascades. The corresponding results, as shown in
the Appendix, show that the model trained by some randomly
chosen subset of data is accurate in describing other subsets.

10° ‘
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107 branching process ° F
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number of isolated buses

Fig. 4. Estimated marginal probability distribution of the number of isolated
buses by using M;*'" = 5500 cascades.
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Fig. 5. Estimated CLO for the load shed when the total number of line
outages is known.
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Fig. 6. Estimated CLO for the isolated buses when the total number of line
outages is known.

D. Predicting Joint Distribution from One Type of Outage

To further demonstrate and validate the proposed multi-type
branching process model, we estimate the joint distribution
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of the total sizes of two types of outages by only using the
predetermined offspring mean matrix and the distribution of
initial line outages, as follows.

1) The offspring mean matrix A is calculated offline from
M{f‘in cascades, as shown in Table IV.

2) To mimic online application, M™® cascades are ran-
domly chosen from the M™® — )™ cascades for test.
The empirical joint distribution of line outages and the
load shed (isolate buses) is calculated as a reference.

3) We estimate the joint distribution of line outage and the
load shed (isolated buses) by using the A in step 1 and
the distribution of initial line outages, assuming there are
no data about the load shed (isolated buses) for which
initial outage is set to be zero with probability one.

4) We compare the marginal distributions and the CLO
calculated from the estimated and empirical joint dis-
tributions.

The predicted marginal probability distributions of the load
shed and isolated buses are shown in Figs. 7 and 8. The
prediction is reasonably good even if we do not have the
distribution of initial load shed or isolated buses. Also, from
Fig. 7 it is seen that the prediction of the load shed is very
good when the blackout size is small while the prediction
when the blackout size is large is not as good. By contrast,
the prediction of the number of isolated buses is good for
both small and large blackout sizes. This is mainly because
the initial outage of the load shed can be greater than zero with
a nonnegligible probability and assuming the initial outage is
zero with probability one can influence the accuracy of the
prediction. However, the initial number of isolated buses is
zero or one with a high probability (86.21% in this case)
since in the initial stage the possibility that some buses are
isolated from the major part of the system is very low, and
thus assuming the initial number of isolated buses is zero with
probability one does not obviously influence the prediction.

The empirically obtained and estimated CLOs of the load
shed and the isolated buses when the number of line outages is
known are shown in Figs. 9-10, respectively. In both figures
we use MM cascades to get the empirical and estimated
CLOs. The prediction of the CLO when there are no data for
the load shed or isolated buses (especially the former one)
is not as good as the case with those data (the prediction of
the CLO for the isolated buses is better than that for the load
shed for the same reason as that for the prediction of the
marginal distribution discussed above). However, the multi-
type branching processes can generate useful and sometimes
very accurate predictions for those outages whose data are
unavailable, which can further provide important information
for the operators when the system is under a cascading outage
event or is in restoration. It is also seen that the estimated
CLO from the branching process seems to be more statistically
reliable than the empirically obtained CLO from the same
number of cascades which can oscillate as the number of line
outages increases. Comparing the empirically obtained CLOs
in Fig. 9 and Fig. 5, we can see that the oscillation in Fig. 5 is
not that obvious, mainly because it uses much more simulated
cascades to obtain the empirical CLO.

probability

o initia outage
* total outage
branching process

10° 10°
total load shed (MW)

Fig. 7. Estimated marginal probability distribution of the load shed assuming
there are no load shed data.
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Fig. 8. Estimated marginal probability distribution of number of isolated
buses assuming there are no isolated bus data.
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Fig. 9. Estimated CLO for the load shed when the number of line outages
is known assuming there are no load shed data.

E. Estimating Propagation of Three Types of Outages

In the above sections we only consider up to two types
of outages, mainly because the calculation complexity for
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Fig. 10. Estimated CLO for the isolated buses when the number of line
outages is known assuming there are no isolated bus data.

TABLE VI
ESTIMATED PARAMETERS FOR THREE TYPES OF OUTAGES

Type p A Hemp
line outage, 0.44 0.39 0.39
load shed, and  0.64 0.0035 0.024 0.018 8.54

] 7.4 %1077 0.079 4.2 x 10~4
isolated bus

estimating the joint distribution for more than two types of
outages can significantly increase. However, we can estimate
the parameters of the three-type branching process, which can
be used to better indicate the extent of the outage propa-
gation. By using the method in Section V-A, we determine
Mmin 46000 when considering line outages, the load
shed, and isolated buses simultaneously. The EM algorithm
for estimating the offspring mean matrix of the multi-type
branching processes converges in 6 steps. The estimated
largest eigenvalue of offspring mean matrix, the offspring
mean matrix, and the joint entropy of the empirical joint
distribution are listed in Table VI. It is seen that line outages
tend to have a greater influence on the load shed and isolated
buses but the influence of the load shed or isolated buses on
line outages is relatively weak. The largest eigenvalue of the
offspring mean matrix is greater than that for the two-type
branching processes, indicating that the system is even closer
to criticality when considering the mutual influence of three
types of outages. Besides, the joint entropy is also greater
compared with the two-type branching process, although the
increase of joint entropy from two-type to three-type is not as
high as that from one-type to two-type.

VII. CONCLUSION

In this paper, the multi-type branching process is applied to
statistically describe the propagation of line outages, the load
shed, and isolated buses. The largest eigenvalues of the esti-
mated offspring mean matrix for more than one type of outages
are greater than the offspring means for one type of outages,
indicating that the system is actually closer to criticality and
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Fig. 11. Estimated marginal probability distribution of the number of line
outages in cross validation when line outages and load shed are considered.

only considering one type of outages will underestimate the
extent of outage propagation. The joint distributions of two
types of outages are efficiently estimated by the multi-type
branching process with much smaller number of cascades
than empirically estimating the joint distribution, which is a
significant advantage since simulation time is a limiting factor
when studying cascading blackouts. The example studied
suggests that the multi-type branching process can effectively
predict the distribution of the load shed and isolated buses and
their conditional largest possible total outages even when there
are no data for them. Finally, we demonstrate that a three-type
branching process can provide joint analyses on line outages,
the load shed, and isolated buses.

APPENDIX
CROSS VALIDATION

This appendix presents results for cross validation. Ran-
domly chosen MM cascades are used to estimate the joint
distribution by the multi-type branching process, which is
compared with the joint distribution empirically obtained from
another randomly chosen MM cascades. The joint entropy
for the empirical and estimated joint distributions is listed
in Table VII. The marginal distributions for each type of
outages are shown in Figs. 11-14. The empirically obtained
and estimated CLOs for the load shed and the isolated buses
when the total number of line outages is known are shown
in Figs. 15-16. The results show that the branching process
model trained by some randomly chosen subset of data is
accurate in describing other subsets.

TABLE VII
JOINT ENTROPY OF DISTRIBUTIONS IN CROSS VALIDATION

Type M;nin Hemp Hest
line outage and load shed 6500 6.91 7.23
line outage and isolated bus 5500 5.33 6.38
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Fig. 12. Estimated marginal probability distribution of the load shed in cross
validation.
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Fig. 13. Estimated marginal probability distribution of the number of
line outages in cross validation when line outages and isolated buses are
considered.
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Fig. 14. Estimated marginal probability distribution of the number of isolated
buses in cross validation.
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