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 

Abstract—This paper proposes a new approach for power 

system transient stability simulation, which is based on a semi-

analytical solution (SAS) of power system differential-algebraic 

equations. In this paper, an SAS is derived using the Adomian 

decomposition method as a closed-form explicit function of sym-

bolic variables such as time, the initial state and other variables 

on system conditions, and hence it can directly give a power sys-

tem’s dynamic trajectory being accurate for a certain time win-

dow. Unlike a traditional numerical integration based simula-

tion approach, the proposed new approach offline derives an 

SAS and online evaluates the SAS by plugging in values of sym-

bolic variables for a series of time windows making up the de-

sired simulation period. This paper further studies the maxi-

mum length of the time window for an SAS being accurate and 

proposes a divergence indicator for simulation using adaptive 

time windows. Implementation of this new approach on parallel 

computers is also studied. The new approach is validated 

through contingency simulation of the IEEE 10-generator 39-

bus system with detailed generator models.  

 
Index Terms— Adomian decomposition method; parallel 

computing; power system simulation; semi-analytical solution; 

transient stability  

I.  INTRODUCTION 

IME-DOMAIN simulation of a power system following 

a contingency for transient stability analysis needs to 

solve the initial value problem (IVP) of nonlinear differ-

ential equations (DEs) about the system state over a simula-

tion period. Numerical integration methods, either explicit or 

implicit, are traditionally employed but their iterative compu-

tations could be time-consuming for a multi-machine power 

system because its model is essentially a set of DEs nonline-

arly coupled through sine functions. For accurate numerical 

integration, a very small integration step, typically less than 

one millisecond, is usually required. Thus, a large number of 

computations are needed even for a typical 10-second simu-

lation period. Also, numerical instability may become another 

concern with explicit integration methods like the 4th-order 

Runge–Kutta method (R-K 4), which is currently widely ap-

plied in simulation software. Implicit integration methods like 

the trapezoidal method overcome numerical instability by in-

troducing implicit algebraic equations, which have to be 

solved through numerical iterations by, e.g., the Newton-

Raphson method, and thus, the computational complexity is 

                                                           
The work is supported by the University of Tennessee, Knoxville. 

N. Duan and K. Sun are with the department of Electrical Engineering 

and Computer Science, University of Tennessee, Knoxville, TN 37996 USA 
(e-mail: nduan@vols.utk.edu, kaisun@utk.edu). 

significantly increased. 

Intuitively, to solve a power system’s DEs, if the analytical 

solution of the IVP about each state variable could be found 

as an explicit, closed-form function about symbolic variables 

including time, the initial state and other variables on the sys-

tem operating condition, such a function would directly give 

the state value at any time instant without conducting time-

consuming computations or iterations through all integration 

steps as R-K 4 does. However, for nonlinear power system 

DEs, such an analytical solution being accurate for any simu-

lation time period does not exist in theory. Thus, a compro-

mise is to find an approximate analytic solution, named a 

semi-analytical solution (SAS), which keeps accuracy for a 

certain length of time window (denoted by T), and can be re-

peatedly used over a series of such windows until those win-

dows make up a desired simulation period. If an SAS is de-

rived beforehand, then solving the IVP becomes simply eval-

uating the SAS, i.e. plugging in values of symbolic variables, 

which can be extremely fast compared to numerical integra-

tion. If online evaluation of the SAS for each window T takes 

a short computation time, the T/ indicates how many times 

the SAS-based power system simulation can be faster than the 

wall-clock time.  

The true solution of nonlinear power system DEs may be 

approached by summating infinite terms of some series ex-

pansion. An SAS can be defined as the sum of a finite number 

of terms that is accurate over window T. Such a series expan-

sion can be derived using the Adomian decomposition 

method (ADM) proposed by George Adomian in the 1970s 

[1]. The method applies the sum of infinite Adomian polyno-

mials to approach any nonlinear expression. Compared to 

other decomposition methods like Taylor series expansion, 

the ADM is able to keep nonlinearity of the system model. 

Reference [2] utilizes the ADM’s semi-analytical feature to 

analyze inter-area oscillation. Reference [3] proves that the 

convergence of Adomian polynomials is equivalent to the 

convergence of the SAS given by the ADM. Our preliminary 

work reported in [4] and [5] has tested the feasibility of using 

ADM to solve the DEs of multi-machine power systems hav-

ing all generators represented by the 2nd-order classic model. 

The results show that the ADM may give the solution as ac-

curate as the R-K 4 within a proper window T. The contribu-

tions of this paper include the following. First, it applies the 

multi-stage ADM (M-ADM) [6] to transient stability simula-
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tion with detailed generator models so as to validate the capa-

bility of the ADM-based SAS for practical power system sim-

ulation. Second, a two-stage SAS-based approach is proposed 

for online simulation: the offline stage applies the ADM to 

derive an SAS about the symbolized time, initial state varia-

bles and other variables on system conditions; the online stage 

repeatedly evaluates the SAS for a series of time windows 

making up the desired simulation period. Third, the paper 

studies the maximum time window for an SAS being accu-

rate, and accordingly proposes a divergence indicator and a 

method to choose its threshold. By the comparison of that di-

vergence indicator to its threshold, a variable-length time 

window is allowed for better performance. The development 

of high performance computing (HPC) has provided opportu-

nities for improving the speed of power system simulation [7], 

[8]. The paper also studies parallelization of this SAS-based 

new approach for online power system simulation using par-

allel computers. 

The rest of the paper is organized as follows. Section II 

briefly introduces the ADM, applies the ADM to derive an 

SAS for power system DEs, studies the length of the time 

window of accuracy, and proposes the divergence indicator 

for SAS evaluation using a variable-length time window. Sec-

tion III presents the flowchart, detailed steps and online im-

plementation of an SAS-based two-stage power system sim-

ulation approach using the M-ADM. Section IV validates the 

new approach using the IEEE 10-machine 39-bus system with 

detailed generator models, tests the time performances and 

discusses the parallelization of computation tasks in simula-

tion. Finally, conclusions are drawn in Section V. 

II.  SOLVING POWER SYSTEM DES USING THE ADM 

A.  Adomian Decomposition Method  

Consider a nonlinear dynamic system, e.g., a power sys-

tem, with M state variables modeled by nonlinear DE (1). 
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To solve x(t), the first step of the ADM is to apply Laplace 

transform L [] to transform (1) into an algebraic equation 

(AE) about complex frequency s [9], [10], and then solve L 

[x] to obtain (2). 
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Assume that x(t) can be decomposed as (3). Then, use (4) to 

decompose each fi(), i.e. f()’s i-th element, as a sum of infi-

nite Adomian polynomials given by (5), where λ is called a 

grouping factor [11]. 
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Matching the terms of x(t) and f() with the same index [12], 

we can easily derive recursive formulas (6) and (7) for L [xn] 

(n0), where An=[ A1,n , … AM,n]T. 

    0 0 sx xL  

    1      0n n s n  AxL L  

By applying an inverse Laplace transform L- -1[] to both sides 

of (6) and (7), we can obtain xn(t) for any n. An SAS of (1) is 

defined as the sum of first N terms of xn(t): 
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B.  Deriving an ADM-based SAS of Power System DEs  
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For a power system having K synchronous generators, con-

sider the 4th-order two-axis model (9) to model each genera-

tor with saliency ignored [13]. All generators are coupled 

through nonlinear AEs in (10) about the network. In (9) and 

(10), ωR is the rated angular frequency; δk , ωk, Hk and Dk are 

respectively the rotor angle, rotor speed, inertia and damping 

coefficient of the machine k; Yk is the kth row of the reduced 

admittance matrix Y; E is the column vector of all generator’s 

electromotive forces (EMFs) and Ek is the kth element; Pmk 

and Pek are the mechanical and electric powers; Efdk is the in-

ternal field voltage; 𝑒𝑞𝑘
′ , 𝑒𝑑𝑘

′ , iqk, idk, 𝑇𝑞0𝑘
′ , 𝑇𝑑0𝑘

′ , xqk, xdk, x’qk 

and x’dk are transient voltages, stator currents, open-circuit 

time constants, synchronous reactances and transient reac-

tances in q- and d-axes, respectively; Vk is the terminal bus 

voltage magnitude. 

In addition, consider the following first-order exciter and 

governor models [14]: 
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where TAk and KAk are respectively the time constant and gain 

in voltage regulation with the exciter, Vrefk is the reference 

voltage value, Tgk is total time constant of the governor and 

turbine, Prefk is the setting point of the mechanical power out-

put, Rk is the speed regulation factor.  

In the following context, the 4th-order model is utilized as 

an example to illustrate the derivation of an SAS for simplic-

ity of description. A similar procedure is applied to the 6th-

order DE model in (9), (11) and (12) and other DE models. 

Substitute AEs (10) into DEs (9) to eliminate iqk, idk and Pek. 

Then, the differential-algebraic equations (9) and (10) are 

transformed into the form of (1), where state vector 

1 1 1 1

T

q d K K qK dKe e e e         x  has M=4K state varia-

bles as the elements. Then, an SAS of this set of DEs can be 

derived by formulas (6) and (7), as illustrated below about the 

generator speed  of a single-machine infinite-bus (SMIB) 

system modeled by (9). Assume that the infinite bus has volt-

age V∞=1 pu. Let x=[ , , , ]T

q de e    and f=[f1, f2, f3, f4]T, which 

are the nonlinear functions in four DEs. From (3),  
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Then, equation (2) about  becomes 
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From (4) and (5), the first two Adomian polynomials for f2 are 

given in 
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where Yo and Y∞=|Y∞|∠ are respectively the admittances from 

the generator’s EMF to the ground and to the infinite bus. 

Note that Efd, which is constant in this 4th-order DE model, 

only explicitly appears in the Adomian polynomials about e’q. 

Since the accuracy of an SAS defined by (8) only lasts for 

a limited time window T [15][18], a multi-stage strategy, 

i.e. the M-ADM [6], [19] [21], is adopted to extend the ac-

curacy of the same SAS to an expected simulation period by 

these two steps: 

Step-1: Partition the simulation period into sequential win-

dows of T each able to keep an acceptable accuracy 

of the SAS.  

Step-2: Evaluate the SAS at desired time points in the first T 

using the given initial state and the values of other 

symbolic variables; starting from the second window 

T, evaluate the SAS by taking the final state of the 

previous T as the initial state.  

As long as the final state of each window is accurate enough, 

the accuracy of the next window will be ensured. To apply 

this approach to simulate a contingency, we may first perform 

the numerical approach until the contingency is cleared to ob-

tain the initial state for the IVP about the post-contingency 

simulation period, and then the M-ADM can be performed. 

C.  Convergence and Time Window of Accuracy for an SAS 

This subsection studies the convergence and time window 

of accuracy of the ADM-based SAS. First, consider an SMIB 

system having a 2nd-order classical model generator con-

nected to the infinite bus by an impedance. Thus, Yo is zero 

and the EMF E of the generator has a constant magnitude so 

as to eliminate two DEs on e’d and e’q in (9). System param-

eters and initial conditions are listed in Table I. Mechanical 

power Pm determines the operating condition. V∞ is the volt-

age magnitude of the infinite bus, whose phase angle is con-

sidered zero. δ(0) and ω(0) are the initial rotor angle and 

speed of the generator, which are initial state variables. 
 

TABLE I 
PARAMETERS OF THE SMIB SYSTEM 

 

H D Y∞= |Y∞|∠ Yo Pm 

3 s 0 s 0.9∠90°pu 0 pu 0.8 pu 

|E| V∞ 𝜔𝑅 𝛿(0) 𝜔(0) 

1.1 pu 1 377 rad/s 0.06 rad 2.05 rad/s 

 

Fig. 1 plots the trajectories of six different SASs with N=3 

to 8, respectively, and compare them with the numerical inte-

gration result from the R-K 4.  
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Fig. 1.  Comparison of SASs with numerical result. 
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For N=5, 5 terms of the SAS are given in (16) as an exam-

ple and its trajectory and the trajectories of individual terms 

are shown in Fig. 2. In Fig. 2, Tmax denotes a limit of the time 

window of accuracy. Also define the absolute value of the last 

term, i.e.|xN-1|, as a divergence indicator ID, which is close to 

zero within Tmax and sharply increases the magnitude, other-

wise. Tmax can be estimated by selecting an appropriate thresh-

old ID,max for ID. For instance in Fig. 2, ID,max is set at 0.01 rad 

to determine Tmax. There are two observations from Fig. 2:  

 

 The SAS from the ADM matches well the R-K 4 re-

sult within 0.2s, i.e. a time window of accuracy.  

 The higher order of a term, the less contribution it has 

and the faster it diverges to infinity. The last term δ4 

diverges quickly outside 0.2s.  

 

 
Fig. 2.  Different terms of the SAS and the time window of accuracy. 

 

TABLE II 

TMAX VS. TIME CONSTANTS OF THE SYSTEM 
 

No. 𝐻3(s) 𝑇1(s) 𝑇2(s) Tmax(s) 

1 4.5 0.9510 0.5516 0.2546 

2 4.0 0.9438 0.5280 0.2342 

3 3.5 0.9369 0.5014 0.2131 

4 3.0 0.9304 0.4718 0.1905 

5 2.5 0.9241 0.4365 0.1662 

6 2.0 0.9183 0.3961 0.1410 

7 1.5 0.9128 0.3479 0.1137 

8 1.0 0.9076 0.2881 0.0845 

 

 
Fig. 3.  Relationships between Tmax, T2, T1 and H3. 

 

To unveil the relation between Tmax and time constants of 

a multi-machine system, the IEEE 3-generator 9-bus system 

in [22] is studied. Gradually decrease H3, the inertia of gener-

ator 3, from 4.5 s to 1.0 s while keeping the other two un-

changed at original 23.64 s and 6.4 s, such that eight system 

models are yielded as shown in Table II. Because the system 

has two oscillation modes and their oscillation periods T1 and 

T2 may be important time constants influencing Tmax, T1 and 

T2 are estimated from each linearized model of the system and 

are listed in Table II. A three-phase fault at bus 7 cleared by 

tripping line 5-7 is simulated on each model by both the R-K 

4 and the ADM with N=3 (using the post-fault state from the 

R-K 4 as its initial state). Using 0.01 rad as ID,max, the esti-

mated Tmax for each model is given in the table. Fig. 3 illus-

trates that T1, T2 and Tmax monotonically increase with H3. The 

bigger time constant T1 does not change significantly with H3. 

Fig. 4 shows values of Tmax for H3=1.5 s, 3 s and 4.5 s, beyond 

which the ADM result starts diverging from the R-K 4 result. 

A hypothesis for a multi-machine power system is that Tmax is 

mainly influenced by the smallest time constant.  
 

 
Fig. 4.  𝑇max’s with respect to selected 𝐻3’s. 
 

 
Fig. 5  Using an initial state with (0)=0 rad/s and δ(0)=0.76 rad. 

 

 
Fig. 6.  Using an initial state with (0)=1.38 rad/s and δ(0)=0.04 rad. 

 

If the initial state varies, the time of accuracy may change as 

well. For the above SMIB system, different values of δ(0) and 

ω(0)  will lead to different Tmax’s. As illustrated by Figs.5 and 

6, the SAS evaluated starting from an initial state with (0)=0 

rad/s and δ(0)=0.76 rad keeps its accuracy for a time window 

around 0.25s while for a larger (0)=1.38 rad/s and δ(0)=0.04 

rad, the window of accuracy may reduce to below 0.2 s.  

For a general multi-machine system, it can be difficult to 

analyze how Tmax changes with ID,max about a state variable. 

However, we may analyze their relationship on the above 

SMIB system first to help gain an insight on their relationship 

for a multi-machine system. Consider a 3-term SAS of rotor 

angle , whose last term 2 has this expression  

 4 3

2 1 2c t c t    

where 
2 2

0
1 2
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Define divergence indicator ID as 2 and let t=Tmax and 

2=ID,max in (17) to obtain 


4 3

,max 1 max 2 maxDI c T c T   

Tmax has 4 roots as given in 

5 6 5 62 4 2 4
max

1 1

 or 
4 2 2 4 2 2

p p p pc p c p
T

c c

 
     



where 
2 3 2

1 2 ,max 2 1 1 ,max 1
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,max 2 2

3 4 32
3
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2 3

2 2
5 3 62 3

1 1 4
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I p c
p p p

c cp

c c
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c c p

     

    


  

 

 

Since Tmax>0, the smallest positive root should be selected 

as an estimate of Tmax. For a multi-machine system, equations 

(18) and (19) can also be applied to approximately analyze 

the relationship of ID,max and Tmax for state variables of each 

machine by means of an SMIB equivalent about that machine 

against the rest of the system. 

The studies above show that, for an SAS, its Tmax depends 

on time constants of the system, the initial state starting the 

evaluation and the contingency as well. Therefore, we may 

either choose a fixed time window less than the most con-

servative Tmax observed offline based on many simulations on 

probable contingency scenarios or allow the window T to 

change adaptively as long as divergence indicator ID remains 

below a preset threshold ID,max for each state variable.  

D.  Evaluating an SAS Using an Adaptive Time Window 

The convergence of the SASs for a general nonlinear sys-

tem is still an open question [23], and no sufficient condition 

for convergence has been proved yet. Reference [24] gives a 

necessary condition, i.e. the satisfaction of a ratio test: 

1 2 2n n x x holds for n=0, 1, …, N-1, where 0<α<1 is a 

constant depending on the system. However, α is difficult to 

derive analytically for a high-dimensional system.  

This paper proposes a practical approach for evaluation of 

an ADM-based N-term SAS using an adaptive time window. 

The approach compares divergence indicator ID with a preset 

threshold ID,max to adaptively judge the end of the current win-

dow for evaluation and proceed to the next window until the 

entire simulation period is made up. ID,max is estimated by the 

following procedure for a list of scenarios that each have a 

contingency simulated under a specific operating condition: 

Step-1:  For each scenario, use the post-contingency state 

from the R-K 4 as the initial state to run the M-

ADM using a small enough fixed time window T. 

Step-2: Find the maximum per unit absolute value that the 

last SAS term, i.e. |xk,N-1|, of any state variable may 

reach over the entire simulation period. Use that 

value as a guess of ID,max. 

 Step-3: Add a small random variation to the post-contin-

gency state and repeat Step-2 for a number of times. 

Take the smallest guess of ID,max.  

Step-4: After finishing Steps 1-3 for all contingencies, 

choose the smallest ID,max as the final threshold. 

Remarks: 1) Step-2 on guessing an ID,max may exclude k,N-1, 

i.e. the last SAS term for each rotor angle k, since its diver-

gence can be detected through the divergence of the last SAS 

term of k; 2) Step-2 finds the maximum value of all last terms 

rather than the minimum value in order to provide a necessary 

condition for convergence rather than an over-conservative, 

sufficient condition causing loss of the advantage of using an 

adaptive time window; 3) the random variation in Step-3 is 

added to make the ID,max more independent of the post-contin-

gency state, which may be around 1% as case studies in Sec-

tion IV do.  

The above procedure can be performed offline for potential 

contingencies and operating conditions. Based on our tests, 

ID,max does not vary significantly with contingencies, so in 

practice, the list of scenarios does not have to be large to find 

an effective ID,max. 

III.  SAS-BASED SCHEME FOR POWER SYSTEM SIMULATION  

 

 
Fig. 7.  Flowchart of the proposed approach. 
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A two-stage scheme is presented for power system simu-

lation using the M-ADM, which comprises an offline stage to 

derive the SASs and an online stage to evaluate the SASs as 

shown in Fig. 7.   

A.  Offline Stage 

Assuming a constant impedance load at each bus, an SAS 

is derived by the ADM for each generator with symbolic var-

iables from, e.g., one of these two groups: 

 Group-1: Time, the initial state, and the operating con-

dition (e.g. generator outputs and load impedances) 

 Group-2: Group-1 plus selected symbolized elements 

(symbolized parameters of system that subject to 

changes) in the system admittance matrix.  

Group-1 assumes a specific post-contingency system topol-

ogy (i.e. a constant system admittance matrix) but relaxes the 

system operating condition so as to enable one SAS to simu-

late for multiple loading conditions. Group-2 additionally re-

laxes selected elements in the admittance matrix and hence 

enables one SAS suitable for simulating multiple contingen-

cies. Other symbolic variables can also be added as undeter-

mined parameters but the more symbolic variables the more 

complex expression of the SAS. All SASs derived in the of-

fline stage will be saved in storage for later online use.  

If an adaptive time window for SAS evaluation is used, the 

offline stage also needs to estimate ID,max. The detailed imple-

mentation of estimating ID,max is illustrated in section IV. If a 

fixed window is adopted, T can be chosen less than the mini-

mum Tmax estimated by a procedure similar to that for the de-

termination of ID,max using a list of scenarios. 

B.  Online Stage 

For a specific contingency scenario, this stage evaluates 

the corresponding SAS’s of every generator consecutively 

over time windows T, fixed or adaptive, until making up the 

expected simulation period. The first time window needs to 

know the post-contingency initial system state, which can be 

obtained from numerical integration for the fault-on period 

until the fault is cleared. Starting from the second window, 

the initial state takes the final state of the previous window.  

If an adaptive time window is applied, an initial window 

may be chosen less than the estimated Tmax for a fixed win-

dow. Then, during each window, the divergence indicator ID 

for each state variable is calculated and compared with the 

threshold ID,max acquired in the offline stage in order to decide 

when to proceed to the next window, i.e. the end of the current 

window. Thus, even if the initial window is not small enough, 

comparison of ID and ID,max will enable self-adaptive adjust-

ment of the window.  

Within each window, because SAS’s are independent ex-

pressions, their evaluations can be performed simultaneously 

on parallel computers. In expression, each SAS is the sum of 

terms in this form 

 ( ) ( )   where ( ) is sin( ) or cos( )n

i j k k l l

mh

C x x t f x f x f    

Where C is a constant which depends on system parame-

ters, t is time, i, j, k and l are integer indices of state variables. 

For different numbers of SAS terms and different systems, the 

ranges of h, m and n are different. For the IEEE 39-bus system 

with 3 SAS terms tested in Section IV, h=0,…,3, n=0,1,2 and 

m=0,…,4. Expression (20) is defined as one Computing Unit 

(CU) in this paper. All such CUs can be evaluated simultane-

ously on parallel processors to accelerate the online stage. 

The proposed SAS-based approach may be applied for fast 

power system simulation in the real-time operating environ-

ment: in the offline stage, an SAS is derived that symbolizes 

a group of uncertain parameters like Group-2; then, in the 

online stage, whenever the real-time state estimation is fin-

ished (typically, every 1 to 3 minutes) to give the current 

power-flow solution and network topology, the SAS will be 

evaluated to provide simulation results on a given contin-

gency. However, if a change on the network topology or any 

parameter about the operating condition is detected in real 

time by, e.g., the SCADA system [25] and makes the most 

recent state estimation result invalid, the SAS evaluation 

should wait until the state estimator gives a new estimation 

result. Thus, online power system simulation using the pro-

posed approach can be performed synchronously with real-

time state estimation. 

IV.  CASE STUDIES ON THE IEEE 39-BUS SYSTEM 

 
Fig. 8.  IEEE 10-generator 39-bus system. 
 

IEEE 10-generator, 39-bus system, as shown in Fig. 8, is 

used to validate the SAS-based approach for power system 

simulation. Generator 39 has the largest inertia and its rotor 

angle is defined as the reference. The proposed two-stage 

scheme is tested using both a fixed time window and an adap-

tive time window. To achieve the fastest simulation, only one 

data point on each trajectory is evaluated within each time 

window, which is enough for transient stability assessment. 

A.  Fixed Time Window  

A permanent three-phase fault lasting for 0.08 s is applied 

to line 3-4 at bus 3. We preset ID,max=0.005 p.u. (per unit) for 

all state variables except for the rotor angle. If all generators 

are represented by the 4th-order model in (9), our tests show 

that when an SAS with 2 terms is evaluated over a time win-

dow of 0.002 s, the largest 2nd SAS term of the state variables 

is 0.0047 p.u. <ID,max, which means Tmax0.002 s for a 2-term 

SAS. Fig. 9 gives the results from the M-ADM (dash lines) 

using a 0.001 s window and the results from the R-K 4 (solid 

lines) with a 0.001 s integration step, which are identical. If 

the time window and integration step are both increased to 
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0.01 s (>Tmax), the simulation results from the R-K 4 and M-

ADM have slight, noticeable differences as shown in Fig. 10. 

Although including more terms is expected to increase 

Tmax as indicated by Fig. 1, using an SAS with 3 terms does 

not extend Tmax significantly in this case. For example, use a 

0.01 s time window to run a 3-term SAS for the same contin-

gency, there are still obvious mismatches between the R-K 4 

and M-ADM results. Moreover, a 3-term SAS has a more 

complex expression, so it takes longer to evaluate than a 2-

term SAS.  

 

 

(a) Rotor speeds 

 

(b) Rotor angles 

 

(c) q-axis transient voltages 

 

(d) d-axis transient voltages 

Fig. 9.  Comparison of the simulation results given by the R-K 4 and the 2-

term SAS using a fixed time window of 0.001 s. 

 

 
(a) Rotor speeds 

 
(b) Rotor angles 

 
(c) q-axis transient voltages 

 
(d) d-axis transient voltages 

Fig. 10.  Comparison of the simulation results given by the R-K 4 and the 2-
term SAS using a fixed time window of 0.01 s. 

 

 
Fig. 11.  Comparison of the simulation results of rotor speeds given by the R-

K 4 and the 2-term SAS using a fixed time window of 0.02 s. 

 

When an SAS is evaluated over a fixed time window T for 

power system simulation, the last SAS terms, i.e. divergence 

indicator ID’s, of all state variables can distinguish numerical 

instability from power system instability: if the simulated sys-

tem trajectory becomes unstable while all ID’s are still small, 
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e.g. much less than the predefined ID,max, it is very likely to be 

power system instability; if some ID also increases drastically 

to approach or exceed ID,max when the system trajectory ap-

pears to be unstable, numerical instability may happen. Thus, 

a smaller T should be used to re-evaluate the SAS for verifi-

cation of numerical instability. For example, if T is increased 

to 0.02 s 10Tmax, the simulation results diverge with numer-

ical instability introduced on purpose as shown in Fig. 11, 

where the results from the R-K 4 method are still stable. That 

numerical instability can be detected by ID>ID,max for many 

windows. From the results of Fig.9 to Fig. 11, as T increases 

from 0.001 s to 0.01 s and then to 0.02 s, the largest ID of all 

states variables increases from 0.0023 p.u. to 0.0279 p.u. (i.e. 

12.1 times) and then to 0.1051 p.u. (i.e. 45.7 times), which 

indicates the occurrence of numerical instability. ID can be 

utilized to avoid numerical instability by changing the time 

window adaptively. The detailed method will be proposed in 

the next sub-section. 

  The M-ADM is also tested on the system having each gen-

erator represented by the 6th-order DE model in (9), (11) and 

(12) containing the exciter and governor. The parameters of 

exciters and governors are set up as TAk  = 0.02 s, KAk = 5, Tgk 

= 0.5 s, Rk = 0.01 for all machines. A 2-term SAS is derived 

for each of the six state variables, and the time window is se-

lected to be 0.001 s within the estimated Tmax. Under the same 

contingency on line 3-4, The R-K 4 simulation indicates the 

frequency oscillation is better damped than that without a 

governor. Fig. 12 compares the results from the M-ADM 

(dash lines) and R-K 4 (solid lines) for each state variable, 

which match well. 

 
(a) Rotor speeds 

 
(b) Rotor angles 

 
(c) q-axis transient voltages 

 
(d) d-axis transient voltages 

 
(e) Field voltages 

 
(f) Governor outputs 

Fig. 12.  Comparison of the simulations using the 6th-order generator model 
by the R-K 4 and the 2-term SAS using a fixed time window of 0.001 s. 

B.  Adaptive Time Window 

The first step is to use a list of contingencies to determine 

an ID,max that can guarantee the accuracy of an SAS  and avoid 

numerical instability in simulation by the M-ADM. For the 

illustration purpose, the above contingency on line 3-4 and a 

second contingency adding a three-phase fault lasting 0.08 s 

on line 15-16 at bus 15 are considered. Consider the 3rd SAS 

term of each state variable (except the rotor angle) in per unit 

as an ID. Fig. 13 plots the ID’s for all those state variables of 

10 generators, where 3 random variations are added and the 

resulting trajectories are also plotted in the same figure. The 

effective ID,max for two contingencies are found both associ-

ated with |e’d5,2|, which are 6.5×10-6 and 9.4×10-6 (p.u.), re-

spectively. Fig. 14 gives the result from a 3-term SAS evalu-

ated over an adaptive time window, which is identical to the 

R-K 4 result.  

Fig. 15 plots how the length of the time window changes 

with time during a 5.5-s simulation for three cases: 1) the 2-

term SAS with an initial T=0.001 s, 2) the same SAS with an 

initial T=0.01s, and 3) the 3-term SAS with an initial T=0.001 

s. The comparison of the cases 1) and 2) in Fig. 15 verifies 

that, if an adaptive time window is used, the accuracy of sim-

ulation is independent of the choice of the initial time window 

since the T of the case 2) adaptively decreases below 0.002 s 

soon after simulation starts. For the cases 1) and 2), the largest 

T reaches 0.0022 s. A main advantage of using an adaptive 
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time window is that the total number of windows for evalua-

tion is effectively reduced. The M-ADM using a fixed 0.001 

s window evaluates 5500 windows to finish 5.5-s simulation 

while the case 1) using an adaptive time window only takes 

4500 windows (i.e. 4500/5500=81.8%) to finish the same 

simulation period. For the case 3), the reduction of time win-

dows is even more significant. As shown in Fig. 15, the larg-

est T reaches 0.005 s, which is more than twice of the largest 

T for the 2-term SAS. Also, the total number of windows 

drops to 2000 (i.e. 2000/5500=36.4%). Thus, a conclusion is 

that using an adaptive time window enables the M-ADM to 

better exploit the advantage with a higher order SAS in terms 

of the reduction of the window number. 

In the future development of a practical M-ADM based 

power system simulation tool, the optimal size of the time 

window and the proper number of SAS terms should be de-

cided in a more adaptive way based on the information of the 

simulated power system to minimize the user intervention. It 

is not the focus of this proof-of-concept paper but will be ad-

dressed in the future work. 

 

 
(a) Contingency 1 

 
(b) Contingency 2 

Fig. 13.  Estimation of ID,max . 

 

 
Fig. 14.  Comparison of rotor angles given by the R-K 4 and the 3-term SAS 

using an adaptive time window initiated from 0.001 s. 

 

 
Fig. 15.  Adaptive changing of time window length. 

 

C.  Time Performance 

To demonstrate the time performance of the proposed 

SAS-based approach, the following three cases are tested: 

 Case-A: only symbolizing time t and initial state varia-

bles, i.e. for one specific simulation. 

 Case-B: beside Case-A, also symbolizing the reduced ad-

mittance matrix Y about 10 generator EMFs, i.e. for sim-

ulating different faults under one specific loading condi-

tion. Magnitudes and angles of elements of the reduced 

admittance matrix are symbolized separately to generate 

two symmetric symbolic 10×10 matrices. 

 Case-C: beside Case-B, also symbolizing generators’ 

mechanical powers to make the SAS be also good for 

simulating various loading conditions. 

Here, the load at each bus is represented by a constant imped-

ance load model and is embedded in the reduced admittance 

matrix Y. In the online stage, for a given power-flow condi-

tion with all loads known, load impedances will first be cal-

culated, and then with the knowledge of the post-fault net-

work topology, all elements of Y can be calculated in order to 

evaluate the SAS.  

The offline stage is implemented in MAPLE and the online 

stage is performed in MATLAB. For 4th-order and 6th-order 

generator models, the numbers of CU’s comprising the 3-term 

SAS’s of each state variable are given in Tables III and IV, 

respectively, for three cases.  

 
TABLE III 

THE NUMBER OF CUS FOR THE 4TH-ORDER MODEL SYSTEM 
 

State Variable Case-A Case-B Case-C 

ωk 4,269 11,430 11,430 

δk 150 150 150 

𝑒′𝑞𝑘 225 301 301 

𝑒′𝑑𝑘 223 299 299 

 
TABLE IV 

THE NUMBER OF CUS FOR THE 6TH-ORDER MODEL SYSTEM 

 

State Variable Case-A Case-B Case-C 

ωk 4,272 11,434 11,434 

δk 150 150 150 

𝑒′𝑞𝑘 227 303 303 

𝑒′𝑑𝑘 223 299 299 

𝐸𝑓𝑑 2,644 5,234 5,234 

𝑃𝑚 153 155 155 
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For Case-A, it only takes less than 3 s to evaluate one CU. 

If all such CU’s are evaluated simultaneously on parallel pro-

cessors, it takes about 3 s to evaluate one SAS for each time 

window plus the time costs for communication in parallel 

computing. Because summating the values of all CU’s for a 

state variable is essentially the addition of constants, it is ex-

tremely fast. The additions for different state variables can 

also be performed in parallel. Thus, the final time for sum-

mating all CUs equals the time for the most complex SAS ex-

pression, often on a rotor speed, which only takes 7 s. There-

fore, the ideal total time cost for evaluations of state variables 

of one generator is 3+7=10 s per time window T. If evalua-

tions for various generators are also done simultaneously on 

an unlimited number of parallel processors, that time is also 

the time cost  for SAS evaluation over each time window T. 

The R-K 4 method takes 0.37 s to finish a 5.5-s simulation 

with all generators represented by the 4th-order model on one 

computer processor. (It takes 0.48 s if all generators are rep-

resented by the 6th-order model.) Given the fact that a 3-term 

SAS only needs 2000 adaptive time windows for a 5.5-s sim-

ulation, it can be concluded that the online stage ideally only 

takes 0.000012000=0.02 s to finish simulation on parallel 

processors, which is about 18 times faster than the time cost 

of the R-K 4. Ratio T/ =5.5/0.02=275, i.e. the number of 

times faster than wall-clock time. For Case-B and Case-C, T/ 
=137.5 as given by Table IV, which indicates how many times 

the simulation can be faster than the wall-clock time. 

By comparing Tables III and IV, it can be easily noticed 

that even after the exciter and governor models are added, the 

state variables that have the most CUs are still rotor speeds. 

Meanwhile, the number of CUs of each rotor speed’s SAS 

only increases very slightly (by 3 for Case-A and 4 for Case-

B and Case-C.) when the generator model changes from the 

4th-order to the 6th-order. Basically, adding those details or 

controllers to each generator does not influence the online 

performance of the proposed approach. 

The time performance of the offline stage is not as critical 

as the online stage, so it is evaluated in a sequential computing 

manner. Tables V and VI summarize the time performances 

of both offline and online stages for two systems respectively 

using the 4th and 6th order generator models under the as-

sumption of an ideal parallel computing capability. 
 

TABLE V 

TIME PERFORMANCE ON THE 4TH-ORDER MODEL SYSTEM 

 

 Case-A Case-B Case-C 

Offline time cost (s) 198.05 682.18 711.17 

Online time cost (s) 0.02 0.04 0.04 

Ratio T/ 275.0 137.5 137.5 

 
TABLE VI 

TIME PERFORMANCE ON THE 6TH-ORDER MODEL SYSTEM 

 

 Case-A Case-B Case-C 

Offline time cost (s) 6215.51 13472.91 16339.71 

Online time cost (s) 0.02 0.04 0.04 

Ratio T/ 275.0 137.5 137.5 

 

Considering that the number of parallel processors cannot 

be infinity in practice, we also studied how the time perfor-

mance changes with the number of available processors. As 

theoretical estimates, ideal parallelism among all available 

processors is assumed. Thus, all processors are assumed to 

take equal computational burdens. The results are listed in Ta-

ble VII for Case-A using 3-term SASs. From the table, when 

the number of processors drops to 100, the simulation time 

increases to 0.3 s, which is close to 0.37 s of the R-K 4. If the 

number of parallel processors is further decreased, the simu-

lation using the M-ADM becomes slower than the R-K 4.  

 
TABLE VII 

INFLUENCE OF PARALLEL CAPABILITY ON TIME PERFORMANCE 

 

Number of Parallel 

Processors 

Time Cost of Each 

Time Window (s) 

Time Cost for a 

5.5-s simulation (s) 

∞ 1.0×10-5 2.0×10-2 

1000 1.4×10-5 2.8×10-2 

100 1.5×10-4 3.0×10-1 

10 1.5×10-3 3.0 

 

When a long list of contingencies need to be simulated, 

parallel processors may simulate multiple contingencies sim-

ultaneously, so power system simulation using the proposed 

SAS-based approach will be parallelized also at the contin-

gency level besides the aforementioned CU level. Thus, a 

more sophisticated hierarchy for parallel implementation of 

the proposed SAS-based approach should be designed and 

will be addressed in the future work.  

D.  Simulation of a contingency with multiple disturbances 

The proposed SAS-based approach can be used to simulate 

a contingency containing multiple disturbances, e.g. “n-1-1” 

and even “n-k” contingencies, which involve one or more dis-

turbances during the simulation period. The same SAS can be 

used for the entire simulation period as long as all parameters 

that may change during the simulation period are defined as 

symbolic variables like an SAS from Case-B or Case-C.  

In the following, we demonstrate how to use the SASs of 

Case-B to perform an “n-1-1” simulation involving a topolog-

ical change of the system during the simulation period. The 

6th-order generator models are adopted. The initial contin-

gency is still the same as that in Fig. 9-Fig. 12 except that at 

t=3 s, the line 22-35 is opened, making the system have a dif-

ferent topology in the remaining 2.5 s. The SAS’s derived for 

Case-B treat all elements of reduced Y matrix as symbolic 

variables. Therefore, at t=3 s, the time when topology 

changes, new values of the elements in the reduced Y matrix 

should be plugged into the SASs. The simulation results are 

shown in Fig. 16. Generator 35 loses its stability. The online 

time cost is 0.04 s with ideal parallelism on enough proces-

sors.  
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(a) Rotor speeds 

 
(b) Rotor angles 

 
(c) q-axis transient voltages 

 
(d) d-axis transient voltages 

 
(e) Field voltages 

 
(f) Governor outputs 

Fig. 16.  Comparison of the simulation results with a topology change at  t=3 
s given by the R-K 4 and a 3-term SAS using an adaptive time window. 

V.  CONCLUSIONS 

This paper has proposed a new approach for transient sta-

bility simulation, which is based on the SAS of power system 

DEs derived by the ADM. A two-stage implementation 

scheme, i.e. offline SAS solving and online SAS evaluation, 

was presented to minimize the online computational burden, 

and was validated using the IEEE 39-bus power system. 

Moreover, an approach using an adaptive time window for 

SAS evaluation is proposed to further reduce the time cost in 

the online stage. At the end, the performance of the proposed 

approach is tested and analyzed in a parallel computing 

framework. This new approach has potentials to be faster than 

a traditional R-K 4 based approach if parallel processors reach 

to a certain number. 
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