EMS Alarms at Puget Power Control Center

Typically

- Dispatchers Acknowledge Alarms in the Order Received
- 20-25 Alarms Awaiting Dispatcher Acknowledgment
- Burst of 100 Unacknowledged Alarms

Abnormal Conditions

 Wind Storm 	22,000 Alarms
January 20, 1993	13,000 Alarms
January 21, 1993	9,000 Alarms

Potential for Massive Alarm Display

Estimates by Hydro-Québec Regional Control Centers

Transformer Fault
150 Alarms in 2 Seconds

Generation Substation Fault 2,000 Alarms 300 Alarms in the First 5 Seconds

Thunderstorms
20 Alarms Per Second

System Collapse
15,000 Alarms for the First 5 Seconds

Reference:

D. S. Kirchen and B. F. Wollenberg, "Intelligent Alarm Processing in Power Systems," Proc. of IEEE, May 1992.

Information Overload

Information Overload can Degrade Dispatcher Performance

- Time-Consuming to Determine Cause(s) of Problem(s)
- Potential for Error with High Stress and Overabundance of Data

Reference:

D. S. Kirchen and B. F. Wollenberg, "Intelligent Alarm Processing in Power Systems," Proc. of IEEE, May 1992.

code	description		
. 1,	any circuit breaks position changes		
a ₂	any pair of circuit breaker position changes closing or opening		
a,	circuit breaker position changes to on-position		
B ₄	circuit breaker position changes to off-position		
a ₃	circuit breaker position leaving the off-position		
24	any trip commands		
2,	trip commands of bushar protection devices		
2,	trip commands of transformer protection devices		
a, ,	any indications of starting relays (neutral or phase)		
D ₁₀	indications of shating relays (only phase)		
a ₁₁	any indication about blocking of automatic reclosing		

Table II System set of events [3]

code	description	
e,	fault on busbar	
c,	tripping of transformers	
c,	tripping after closing	*
C,	tripping of lines	
C,	unsuccessful fast reclosing	
C,	successful fast reclosing	
C7	external incident	
C _a	blocked reclosing	
e,	switching operation	
C ₁₈	maintenance activities	

$a_1 \rightarrow A_1 = \{a_1 \ a_4 \ \overline{a}_5 \ a_6 \ a_7 \ \overline{a}_8\}$		(6.a)
$a_1 - A_2 - \{a_1 \ a_4 \ \overline{a}_5 \ a_6 \ \overline{a}_7 \ a_8\}$		(6.b)
$a_3 \rightarrow A_3 = \{a_1 \ a_4 \ a_5 \ a_9 \ a_{10}\}$		(6.c)
$e_4 \rightarrow A_4 = \{a_1 \ a_3 \ a_4 \ a_5 \ a_7 \ a_8 \ a_9 \ a_{10}\}$	· ·	(6.d)
$e_5 \rightarrow A_5 = \{a_1 \ a_3 \ a_4 \ b_5 \ \overline{a}_7 \ \overline{a}_8 \ a_9 \ a_{10}\}$		(6.e)
$e_6 \rightarrow A_6 = \{a_1 \ a_3 \ \overline{a}_4 \ \overline{a}_5 \ \overline{a}_7 \ \overline{a}_8 \ a_9\}$		(6.1)
$e_7 \rightarrow A_7 = \{\hat{\mathbf{x}}_1 \; \hat{\mathbf{x}}_2 \; \mathbf{a}_9\}$		(6.g)
$c_8 \rightarrow A_8 = \{\hat{a}_1 \ \hat{a}_6 \ \hat{a}_9 \ a_{11}\}$	¥	(6.h)
$c_9 \to A_9 = \{a_1 \ a_2 \ \bar{a}_6 \ \bar{a}_{10}\}$	٠.,	(6.i)
$c_{10} \rightarrow A_{10} = \{a_1 \overline{a}_2 \overline{a}_6 \overline{a}_9\}$		(6.j)

