Overview

Decomposition based approach. Start with

- Easy constraints
- Complicating Constraints.

Put the complicating constraints into the objective and delete them from the constraints.

We will obtain a lower bound on the optimal solution for minimization problems.

In many situations, this bound is close to the optimal solution value.

An Example: Constrained Shortest Paths

Given: a network G = (N,A) C_{ij} cost for arc (i,j) t_{ij} traversal time for arc (i,j)

 $\begin{aligned} \mathbf{z}^* &= \mathsf{Min} & \sum_{(i,j)\in A} c_{ij} x_{ij} \\ \text{s. t.} & \sum_j x_{ij} - \sum_j x_{ji} = \begin{cases} 1 & \text{if } i = 1 \\ -1 & \text{if } i = n \\ 0 & \text{otherwise} \end{cases} \\ & \sum_{(i,j)\in A} t_{ij} x_{ij} \leq T & \text{Complicating constraint} \end{cases} \end{aligned}$

 $x_{ij} = 0 \text{ or } 1 \text{ for all } (i,j) \in A$

Example

Shortest Paths with Transit Time Restrictions

- Shortest path problems are easy.
- Shortest path problems with transit time restrictions are NP-hard.

We say that constrained optimization problem Y is a <u>relaxation</u> of problem X if Y is obtained from X by eliminating one or more constraints.

We will "relax" the complicating constraint, and then use a "heuristic" of penalizing too much transit time. We will then connect it to the theory of Lagrangian relaxations.

Shortest Paths with Transit Time Restrictions

<u>Step 1.</u> (A Lagrangian relaxation approach). Penalize violation of the constraint in the objective function.

$$z(\lambda) = \operatorname{Min} \sum_{(i,j)\in A} c_{ij} x_{ij} + \lambda \left(\sum_{(i,j)\in A} t_{ij} x_{ij} - T \right)$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{(i,j)\in A} t_{ij} x_{ij} \leq T \qquad \text{Complicating constraint}$$

$$x_{ij} = 0 \text{ or } 1 \quad \text{for all } (i,j) \in A$$

Note: $z^*(\lambda) \le z^* \quad \forall \lambda \ge 0$

Shortest Paths with Transit Time Restrictions

<u>Step 2.</u> Delete the complicating constraint(s) from the problem. The resulting problem is called the *Lagrangian relaxation*.

$$L(\lambda) = \operatorname{Min} \sum_{(i,j)\in A} (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & \text{if } i = 1 \\ -1 & \text{if } i = n \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{(i,j)\in A} t_{ij} x_{ij} \leq T \qquad \text{Complicating constraint}$$

$$x_{ij} = 0 \text{ or } 1 \quad \text{for all } (i,j) \in A$$

$$\operatorname{Note:} L(\lambda) \leq z(\lambda) \leq z^* \quad \forall \lambda \geq 0$$

What is the effect of varying λ ?

Question to class

If $\lambda = 0$, the min cost path is found.

What happens to the (real) cost of the path as λ increases from 0?

What path is determined as λ gets VERY large?

What happens to the (real) transit time of the path as λ increases from 0?

Let $\lambda = 1$

Let $\lambda = 2$

And alternative shortest path when $\lambda = 2$

Let $\lambda = 5$

A parametric analysis

Toll	modified cost	Cost	Transit Time	Modified cost -10λ A lower bound on z*
$0 \leq \lambda \leq \frac{2}{3}$	3 + 18λ	3	18	3 + 8λ
²⁄₃ ≤ λ ≤ 2	5 + 15λ	5	15	5 + 3λ
2 ≤ λ ≤ 4.5	15 + 10λ	15	10	15
4.5 ≤ λ < ∞	24 + 8λ	24	8	24 - 2 λ

The best value of λ is the one that maximizes the lower bound.

Costs Modified Cost – 10λ

modified cost Т Т λ

The Lagrangian Multiplier Problem

$$L(L) = \min \qquad \sum_{(i,j)\in A} (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$$
s.t.
$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & \text{if } i = 1 \\ -1 & \text{if } i = n \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij} = 0 \text{ or } 1 \quad \text{for all } (i,j) \in A$$

 $L^* = \max \{L(\lambda) : \lambda \ge 0\}$. Lagrangian Multiplier Problem

Theorem. $L(\underline{/}) \leq L^* \leq z^*$.

Application to constrained shortest path

$$L(L) = \min \sum_{(i,j) \in A} (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$$

Let c(P) be the cost of path P that satisfies the transit time constraint.

Corollary. For all λ , $L(\lambda) \leq L^* \leq z^* \leq c(P)$.

If $L(\lambda') = c(P)$, then $L(\lambda') = L^* = z^* = c(P)$. In this case, P is an optimal path and λ' optimizes the Lagrangian Multiplier Problem. 15.082J / 6.855J / ESD.78J Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.