
3

Overview

Decomposition based approach.

Start with 

Easy constraints

Complicating Constraints.

Put the complicating constraints into the objective 

and delete them from the constraints.

We will obtain a lower bound on the optimal 

solution for minimization problems.

In many situations, this bound is close to the 

optimal solution value.
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An Example:  Constrained Shortest Paths

Given:  a network G = (N,A)

cij cost for arc (i,j)

tij traversal time for arc (i,j)

( , ) ij iji j A
c xz* = Min

s. t.

  

x
ijj

x
ji

1     if i = 1        

1    if i = n         

0   otherwise
j

0 or 1   for all ( , )
ij

x i j A

( , ) ij iji j A
t x T Complicating constraint
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Example

$1,10

$1,1

$1,7$2,3

$10,3

$12,3

$2,2

$1,2 $10,1

$5,7
1

2 4

53

6

Find the shortest path from node 1 to 

node 6 with a transit time at most 10
$cij, tij
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Shortest Paths with Transit Time Restrictions

 Shortest path problems are easy.

 Shortest path problems with transit time restrictions 

are NP-hard.

We say that constrained optimization problem Y is a 

relaxation of problem X if Y is obtained from X by 

eliminating one or more constraints. 

We will “relax” the complicating constraint, and then 

use a “heuristic” of penalizing too much transit time.  

We will then connect it to the theory of Lagrangian 

relaxations.
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Shortest Paths with Transit Time Restrictions

Step 1. (A Lagrangian relaxation approach).    Penalize 

violation of the constraint in the objective function.

  

x
ijj

x
ji

1     if i = s        

1    if i = t         

0   otherwise
j

0 or 1   for all ( , )
ij

x i j A

( , ) ij iji j A
t x T Complicating constraint

  
c

ij
x

ij( i , j ) A
t

ij
x

ij( i , j ) A
Tz(λ) = Min

Note:  z*(λ) ≤ z*     ∀λ ≥ 0
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Shortest Paths with Transit Time Restrictions

Step 2. Delete the complicating constraint(s) from the 

problem.  The resulting problem is called the 

Lagrangian relaxation.

  
c

ij
t

ij
x

ij( i , j ) A
T

  

x
ijj

x
ji

1     if i = 1        

1    if i = n         

0   otherwise
j

0 or 1   for all ( , )
ij

x i j A

( , ) ij iji j A
t x T Complicating constraint

L(λ) = Min

Note:  L(λ) ≤ z(λ) ≤ z*     ∀λ ≥ 0
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What is the effect of varying λ?

Case 1:  λ = 0   
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cij + λ tij
ji



Question to class

If λ = 0, the min cost path is found.

What happens to the (real) cost of 

the path as λ increases from 0?

What path is determined as λ gets 

VERY large?

What happens to the (real) transit 

time of the path as λ increases 

from 0? 

10

cij + λ tij
ji
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Let λ = 1

Case 2:  λ = 1   
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11

2

85

13

15

4

3
11

12

1

2 4

53

6

$1,10

$1,1

$1,7$2,3

$10,3

$12,3

$2,2

$1,2 $10,1

$5,7
1

2 4

53

6

Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic


Kevin Tomsovic




12

Let λ = 2

Case 3:  λ = 2   

P = 1-2-5-6      c(P) = 5    P =      c(P) =    t(P) = 15    t(P) =    
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And alternative shortest path when λ = 2 
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P = 1-3-2-5-
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Let λ = 5

Case 4:  λ = 5   
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A parametric analysis

Toll

modified 

cost Cost

Transit

Time

Modified cost -10λ

0 ≤ λ ≤ ⅔ 3 + 18λ 3 18 3 + 8λ

⅔ ≤ λ ≤ 2 5 + 15λ 5 15 5 + 3λ

2 ≤ λ ≤ 4.5 15 + 10λ 15 10 15

4.5 ≤ λ <  ∞ 24 + 8λ 24 8 24 - 2λ

The best value of λ is the one 

that maximizes the lower bound.

A lower bound on z*
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The Lagrangian Multiplier Problem

L* = max {L(λ) :  λ ≥ 0}.             

Theorem. L( ) ≤ L* ≤ z*.

L( ) = min

s.t.

  

x
ijj

x
ji

1     if i = 1        

1    if i = n         

0   otherwise
j

0 or 1   for all ( , )
ij

x i j A

  
(c

ij
t

ij
)x

ij
T

( i , j ) A

Lagrangian Multiplier Problem
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Application to constrained shortest path

L( ) = min
  

(c
ij

t
ij
)x

ij
T

( i , j ) A

Let c(P)  be the cost of path P that satisfies the 

transit time constraint.  

Corollary.  For all λ, L(λ) ≤ L* ≤ z* ≤ c(P).

If L(λ’) = c(P), then L(λ’) = L* = z* = c(P).  In this case, P is 

an optimal path and λ’ optimizes the Lagrangian 

Multiplier Problem.
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