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Boundary Load Flow Solutions
Aleksandar Dimitrovski, Member, IEEE, and Kevin Tomsovic, Senior Member, IEEE

Abstract—The load flow is one of the most fundamental tools
used in power system analysis. The need for a load flow approach,
which would incorporate uncertainty into the solution process, has
been long recognized. The boundary load flow finds solutions given
uncertain nodal powers. Here, a new concept for finding accurate
boundary load flow solutions given fuzzy/interval numbers is pre-
sented. Extending an idea from probabilistic load flow, an opti-
mization procedure for implicitly defined functions is introduced.
Test systems are used for performance evaluation and comparison
between the new method and extant methods that give approxi-
mate solutions.

Index Terms—Fuzzy sets, Jacobian matrices, load flow analysis,
power system planning, uncertainty.

I. INTRODUCTION

THE load flow program is one of the most fundamental and
most heavily used tools in power system analysis both for

planning and operation. It provides the analyst with the steady
state of the system for a specified set of load and generation
values. The most common load flow approach, by far, is the de-
terministic load flow (DLF) where the system condition repre-
sents a snapshot in time or, more typically, a set of determin-
istic (“crisp”) values chosen by the analyst for each input vari-
able. This approach provides the solution for only one particular
case. Often, these specified values are found by making several
assumptions about the system under study, for example, future
load growth patterns.

Given the fact that the uncertainty is always present under
such assumptions and that one never knows the precise real con-
ditions in the system, there is a need for numerous cases to be an-
alyzed. In practice, analysis is repeated for under varying system
conditions. The advent of deregulation and competitive power
markets has increased such uncertainty even more. In this new
environment, the well-known generation patterns cease to exist,
the injection of power into system nodes becomes more unpre-
dictable, and the paths of supply are more diverse.

The need for a different approach to the load flow problem,
which would incorporate uncertainty into the solution process,
has been long recognized. The results from such approach are
expected to give solutions over the range of the uncertainties
included (i.e., solutions that are sets of values instead of single
points). To date, two families of such load flow algorithms have
evolved.

The first, introduced in [1] and further developed over the
years (for example, [2]–[6]), is the so-called probabilistic load
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flow (PLF). It considers load and generation as random variables
with appropriate probability distributions. The results of the load
flow (i.e., voltages, power flows, etc.) are also random variables
with the resultant probability distributions obtained using
probabilistic techniques. Because of the complexity introduced
by using random variables, PLF solutions are obtained using a
linearized model and the results are rough approximations.

The second family of load flow algorithms incorporating
uncertainty has been developed more recently and it utilizes
fuzzy sets for its modeling (for example, [7]–[9]). This is a qual-
itatively different way of expressing uncertainty. It represents
imprecise, or vague, knowledge rather than uncertainty related
to a frequency of occurrence. One inherent advantage of this
approach is the ability to easily incorporate expert knowledge
about the system under study. With this approach, input variables
are represented as fuzzy numbers (FNs), which are special types
of fuzzy sets. Although the calculations in fuzzy analysis are
somewhat simpler than that in a probabilistic case (convolution
is not needed), it is still far too complex to be applied directly to
the full system model. Therefore, again a linearized model of the
system is used and the results obtained are approximate.

In [10], an approach with interval variables is presented which
uses interval methods to obtain the so-called “hull” of the solu-
tion set. This approach properly belongs to the second family
since ordinary real intervals can be considered as a special case
of FNs. The methodology for finding the hull of the solution set
results in broad intervals that contain many nonsolution points.
Such excessive uncertainty renders the results not very usable
for practical purposes.

The approach proposed in this paper deals with uncertain
input variables modeled as fuzzy/interval numbers. It follows
the concept of a boundary load flow (BLF) presented in the con-
text of PLF [4] and develops a methodology where an accurate
solution for a nonstatistical interval load flow is obtainable from
multiple ordinary “crisp” load flow solutions. Numerical results
show the feasibility of this approach.

II. FOUNDATIONS AND RELATED WORK

The load flow problem is given by the following two sets of
nonlinear equations:

(1)
and

(2)
where

vector of unknown state variables (voltage magnitudes
and angles at PQ buses; and voltage angle and reactive
power outputs at PV buses);
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vector of predefined input variables (real and reactive
injected nodal powers at PQ buses; and voltage mag-
nitudes and real power outputs at PV buses);
vector of unknown output variables (real and reactive
power flows in the network elements);

, load flow functions.
As is well known, the major problem is the solution of the

system of (1) because cannot be explicitly expressed in terms
of and so is instead found by an iterative process. Given a
solution for , the solution of (2) is straightforward. In a DLF,
from the initial trial solution the error is calculated as

(3)

If a Newton–Raphson (N-R)-based scheme is used, (1) is lin-
earized around and an update for the new solution is found
by driving the error in (3) to zero

(4)

where is the inverse Jacobian of evaluated at
. The iteration process then continues with the new point

(5)

and the process repeats until the convergence criterion is met or
the number of iterations exceeds some predefined value.

A. BLF Algorithm [4]

Within the context of PLF, this algorithm finds ranges (inter-
vals) of values for state and output variables, given the ranges
(intervals) of values of input variables from their probability dis-
tributions. The results are then used to determine multiple points
of linearization for the load flow equations in order to improve
the accuracy of the PLF solutions for the tail regions of prob-
ability distributions. The algorithm is presented briefly in the
following.

Starting from a crisp point for input variables (the point
of expected values), first find the deterministic solution for the
state variables that satisfies (1)

(6)

Linearizing (1) around the point yields

(7)

where now is evaluated at . Each state variable of the
vector is given by

(8)

where is the dimension of (and ) and are elements
of the sensitivity coefficient matrix .

The range of values for each input variable in (8) is de-
fined and it can be represented by an interval .
Now suppose that the minimum value of associated with
this linearization is desired. The minimum value of can be
obtained based on the sign of . If is positive, clearly,

will be minimum when is minimum. Likewise, if is
negative, will be minimum when is maximum. A similar
reasoning applies if the maximum value of is desired.

So, for a given and point of linearization , there exists a
certain set of boundary values for which gives the minimum
(maximum) value of . Let us denote this particular with

. By using (7), for this we can calculate the new values
of ,

(9)

The new point , however, does not satisfy (1).
Therefore, the corresponding new value must be evaluated
using (1)

(10)

This process can be repeated using the new point
as the second point of linearization with an updated value
evaluated.

In the case of the output variables, a similar reasoning can
be applied, provided a linear relationship between and has
been established. Then linearizing both (1) and (2) around the
points and gives

(11)

and finally

(12)

where is the Jacobian of at and . The complex
expressions for the elements of , for a general power system
branch, are given in the Appendix. Equation (12) has the same
form as (7) and a procedure for finding the minimum (max-
imum) value of some , similar to that for described above,
can be followed.

In some cases, some or all of the coefficients ( , in
the case of output variables) change their signs from iteration
to iteration. This phenomenon reflects the high degree of
nonlinearity associated with certain variables, especially in the
case of voltage magnitudes and reactive power flows. It also
presents convergence difficulties as values of oscillate from
one boundary value to the other. An approach to overcome this
problem, proposed in [4], is to set those input variables for
which the sign of the coefficient oscillates to a fixed midpoint.

B. Fuzzy Load Flow (FLF) Algorithm [8]

When the uncertainty of input variables is of a nonstatistical
nature (which the authors believe is the most usual case), FNs
best represent the inputs. FNs are defined by membership func-
tions, also known as “possibility distributions.” Usually, for the
sake of simplicity, trapezoidal membership functions like the
one shown in Fig. 1 are assumed. A FN may also be considered
as nested intervals with an -degree of possibility, .
Each corresponds to some ordinary interval number. From
this viewpoint, interval numbers and interval mathematics are
simply a special case of fuzzy numbers and fuzzy mathematics.
This fact is utilized when performing numerical computations
with FNs. The FNs are broken down into several intervals over
which computations are carried out and the resultant FN is ob-
tained by lumping together the resultant intervals. Interval com-
putations, in turn, consist of two or more ordinary, single point
(“crisp”) computations.
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Fig. 1. Trapezoidal membership function of a fuzzy load ~P expressing the
possibility that load may occur between P and P , but more typically between
P and P .

The approach presented in [8] uses linearized (7) and (12).
The points of linearization and are obtained
from a DLF with input variables set at their midpoints with the
highest degree of possibility (i.e., ). These equations now
have the form

(13)
and

(14)

where denotes the vector with fuzzy input variables, and
and denote the resultant vectors with fuzzy state and output
variables, respectively. The sensitivity matrices and are
“crisp” and have the same meaning as before.

Using the rules of fuzzy arithmetic [11], which are based
on interval operations for a given , the approximate resultant
fuzzy variables are readily available in a few single nonitera-
tive steps. Typically, computations are performed only for two
values of ( and ), and then assuming trapezoidal
membership functions for the output variables, results for inter-
mediary values of are found by interpolation.

C. Monte Carlo Simulation

Monte Carlo simulation (MCS) is another feasible approach
to obtaining boundary values for state and output variables. It
consists of repetitive solutions of many DLFs using randomly
sampled values, typically assuming a uniform distribution, for
the input variables.

MCS is more appropriate for the purpose of finding an ex-
pected value than for the purpose here of finding the boundary
solutions. That is, the problem is one of finding the right com-
bination of values and there is no useful relationship between
error and number of simulations as there is for determining ex-
pected values.

III. A NEW BLF APPROACH

Finding the boundary values in a load flow problem is
a process of locating the constrained extrema of implicitly
defined vector functions of vector arguments. In our notation,
we want to find the extreme values for the elements of and

implicitly expressed in (1) and (2) in terms of the elements
of which, in turn, are constrained.

Although the elements of and cannot be explicitly ex-
pressed in terms of the elements of , their partial derivatives are

available. Namely, the elements of the sensitivity coefficient
matrix in (7) are actually the partial derivatives of with
respect to . Similarly, the elements of the sensitivity
coefficient matrix in (12) are the partial derivatives of with
respect to .

Similar to derivative-based optimization procedures, by itera-
tivelyfollowing thedirectionof thegradient,extremepoints (pos-
sibly local) of the state or output variable can be found. Here, as
in the approach from the BLF presentedpreviously, only the signs
of the partial derivatives that comprise the gradient are used. Ex-
perience has shown that the values of these partials are not useful
for efficiently determining the step length. Further, a procedure is
neededtomaintain feasibilityof thesolution(i.e., ensure the input
variables are within constrains for all iterations).

Suppose that the minimum value of is sought. If is posi-
tive (negative), then decrease (increase) the value of . After re-
peating for all , using the same notation as before, we obtain a
newvector of input variables , , from which anew vector of
state variables from (1) can be found, . From this new load
flowsolutionpoint , theabovestepsarerepeateduntil
one of the following is true for each input variable:

• The partial derivative is positive and the associated variable
is at a minimum.

• The partialderivative isnegativeand theassociatedvariable
is at a maximum;

• The partial derivative is zero.
If the final condition does not hold for any of the variables, then

the solution is a vertex of the ’s domain and clearly a point of
constrained minimum. Because of the nonlinearity of the func-
tion, this point may not be the only minimum (i.e., there may be
other vertices that are also points of local constrained minima).
Still, our experience has shown that the physicalnature of the load
flowproblemdictateseitherauniquesolutionorasolution,which
is dominated by a few input variables in a unique manner.

When one or more of the partial derivates are zero, the solution
point lies somewhere on the boundary surface. Such a point is ei-
thera localconstrainedextremum(eitherminimumormaximum)
or a saddle point. Though it is highly unlikely that preceding in a
downhill direction one will end up trapped in a local maximum
or a saddle point, theoretically such a possibility exists. Thus, ad-
ditional conditions are imposed. Previous values of shall be
recorded and compared with the newly obtained one. If fails
to decrease, then different length steps are to be employed.

Finally, in the special case when all of the partial derivatives
are zero, a solution cannot be obtained due to the singularity of
the Jacobian. Such a point typically indicates infeasibility of the
load flow and a loading limit for the system considered. Further, a
singularity of the Jacobian may occur even if not all of the partial
derivativesarezero. Insuchcases, the rangesofvaluesof the input
variables are too great and one must repeat the calculations with
reduced variations for some or all of the variables.

Based on the above discussion, a simple procedure to find
the minimum value of the state variable is as follows. Each
input variable from is increased or decreased according to
the sign of its partial derivative to the extent possible before the
partial derivative changes its sign. At this point, the procedure
should attempt to drive the derivative toward zero. An algorithm
to achieve this is presented as pseudocode in Fig. 2.
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The algorithm drives the partial derivative toward zero by em-
bracing the input variable within an interval, which is obtained
by halving the interval from the previous step. The initial in-
terval is the predefined range of values for the input variable

. If at some step, a variable shows the tendency to
fall outside one of the boundaries of the current interval, the
boundary is reset to the initial value (either or ).
Also, once a variable is found to lie on one of the initial bound-
aries, it will keep its value as long the associated partial deriva-
tive does not change sign. In the case when the maximum of
is sought, a simple sign change is needed to proceed. So, in the
algorithm presented in Fig. 2, the parameters “up” and “down”
will change to 1 and 1, respectively. When an extreme value of
the output variable is sought, the procedure is identical with

replaced by and by .
Remarks: It should be clear that the procedure presented

here, like that of [4] presented in the previous section, must
be repeated for each state and output variable considered.
Therefore, finding boundary values involves several load flow
solutions for each variable and is computationally intensive.
This is the cost of a more accurate solution than that from a
linearized fuzzy/interval load flow.

After finding the new point of , the new solution of the load
flow is found straight from (1), instead of using (9) and then (10)
for correction. Using (9) and (10) may save a few load flow iter-
ations, but one still needs to calculate the inverse Jacobian to ob-
tain the new . On the other hand, when close to the boundary
solution, (10) may result in some of the variables from falling
outside their predefined ranges. Those variables have to be cor-
rected and a new solution from (1) is needed anyway.

Generally, the above algorithm works best if the first few iter-
ations are simplified by letting the ’s obtain only the boundary
values from their ranges (i.e., not narrowing the initial intervals to
themidpoints).Inthisway,theprocesssettlesdownbeforestarting
to chase values that diminish the partial derivatives. The proposed
algorithm may occasionally fail to find the right solution if the
function exhibits extreme changes during the course of solution.
Still, thiscanberecognizedbykeeping trackof intermediatesolu-
tions and checking the values of partial derivatives. In such cases,
a warning should accompany the obtained solution.

IV. CONVERGENCE IMPROVEMENTS FOR N-R DLF

The N-R DLF is a natural choice for the engine behind the
BLF. It provides the Jacobian required for the BLF and has good
convergence characteristics. It is important for the N-R DLF to
be robust, since the BLF algorithm requires load flow solutions
for points that may be far from the normal operating conditions.
Thus, a robust N-R DLF will not impede the BLF and allow for
solutions under widely varying conditions, including a heavily
stressed system.

There arevarious ways to improve the convergence androbust-
nessofaN-RDLF,someofwhichareidentifiedin[12].Inaddition,
many implementations use some undocumented heuristic proce-
dures and programming techniques which can be described more
as an art than a science. It is outside the scope of this paper to go
into details on this issue. Here, we mention a simple modification
of the basic N-R algorithm [13], suitable for implementation in a

Fig. 2. Pseudocode of algorithm that minimizes the state variable X by
driving the input variables Y , j = 1; . . . ;m, toward their boundary values or
values where partial derivatives are zero.

computationallyextensiveBLFthatimprovesrobustnessandcon-
vergence at the cost of a small computational overhead. It can be
categorized as an approach that restricts the magnitude of correc-
tions.Asimilar,thoughmorecomplicatedandcostlyapproachhas
been proposed in [14].

Define a scalar function associated with the vector
in (3), such that

(15)

where denotes transposition. Now, if is minimized, the
norm of is simultaneously minimized since is propor-
tional to the square of the Euclidean norm of . Clearly, the
global minimum of is when the norm is zero, which is the so-
lution point of (1). The step from (4) is a descent direction
for

(16)
Hence, the value of must decrease along the direction of
starting from the current solution. While this may not be for the
full step, for some intermediary values, it must hold. So at each
iteration, the full step is first attempted (since a full step
provides quadratic convergence in the vicinity of the solution);
however, if this does not decrease , smaller step sizes are tried
until one that decreases is found. It is possible to find the
step size that decreases the most (i.e., that minimizes in
the direction of ), but it is usually not worth the additional
computational effort. A simple strategy of successively halving
the steps as needed was used here.
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V. TEST RESULTS

The three existing procedures presented in Section II and the
proposed approach presented in Section III are applied to several
IEEEtest systems.Thesystemdataand thebasecasedescriptions
can be found elsewhere (for example, [15]). The results for the
14-bus test system, shown in Fig. 3, are given in detail and with
only a summary of the results for the other test systems. In several
cases,weallowanextreme variation in the inputvariables to show
the effectiveness of the algorithm.

The results from the new BLF for the boundary values of
voltage magnitudes (in per unit) are presented in Table I. There
are four cases of variation of values of injected nodal powers.
The corresponding interval boundaries are specified in the first
row of the table as a percentage of the base case values. For ex-
ample, (80%–120%) means that the interval of variation of each
nodal power is between 80% and 120% of its base case value.
For simplicity, the same percentages of variation are assumed
for each input variable.

The most general case isconsideredwhen variations areuncor-
related.Thismeansthatthepowerinonebuscanhaveavalueonthe
highboundary,while thepower insomeotherbuscanhaveavalue
onthelowerboundaryorinthemiddleofitsintervalofvalues.This
is in accord with the notion of fuzziness and “possibility,” dealing
with uncertainties as a result of imprecision, and such uncertain-
tiesare typicallyuncorrelated. Ifcorrelation isassumedthen there
is a linear relationship between the input variables, and the BLF
degenerates into a simpler set of DLFs with input variables taking
their extreme values at interval boundaries.

It is also assumed that the real and reactive powers are uncor-
related. Thus, the power factors vary and take any value defined
within the rectangle . Other def-
initions of load variation are possible, for example, polar rec-
tangle and that is a matter of im-
plementation of the algorithm.

The second most left column in Table I gives the base case
voltages. To the right of each boundary solution from the BLF
is the number of BLF iterations (DLF solutions) required. The
specified tolerance was 1.e-4, but only three decimal places are
displayed here. As expected, the bigger the variation in the input
variables is, the bigger the variation in the state variables. Also,
the required number of BLF iterations tends to increase with the
size of variation, though that is irregular and depends on the bus.

Using the values obtained from the new BLF as the standard,
Table II summarizes the ranges of errors in percentage for the
values of voltage magnitudes obtained from the three approaches
from Section II. The MCS solutions were obtained after 20 000
simulations. In the FLF approach, rectangular membership func-
tions were assumed so that a single interval solution was needed
for each case.The points of linearization were composed from the
midpoints of the specified intervals of variation.

The errors in Table II are surprisingly small even for the
greatest variation of input variables. It can be seen that both the
BLF from [4] and MCS produce boundary values that are very
similar to the results from the new BLF, because they all use the
exact model. FLF, on the other hand, uses a linearized model,
which results in a slight exaggeration of the upper boundary
values (positive errors for the maximal values).

Note that by using the modification to N-R DLF presented
in Section IV, it was possible to find the state of the system for

Fig. 3. IEEE/AEP 14-bus test system.

variations of input variables as high as 395% and voltages as
low as 0.703 p.u. (bus 5). Without the modification, the highest
variation that was possible was 375%, with the lowest voltage at
0.784 p.u. (bus 14). While such voltages are not meaningful in a
practical sense, they are important here for finding the possible
range of power flows and also to show the problem with using
a dc load flow model.

Table III presents the real and reactive power flows (in per
unit) using the new BLF for the same intervals of variation of
injected nodal powers as before. Only a select few highly loaded
and one lightly loaded branches are presented. As before, the
second most left column gives the base case values and to the
right of each solution from the BLF is the number of BLF iter-
ations. The values shown are for the sending nodes (first index)
of each branch.

It can be seen, as should be expected, that the variation is
much larger in the flow variables. Once again, the number of
BLF iterations required tends to increase with the variation, but
is dependent on the particular branch. The most difficult to cal-
culate are usually the minimal values when reverse flows occur.
In such cases, the dominance of certain input variables is lost
and the search for extrema is more complicated.

It is interesting to note problems with calculating the min-
imum value of reactive power flow when the variation
of nodal powers is up to 300%. This is a case with several
local minima and difficult convergence. The program issues a
warning that the least value of 0.056 is one of the interme-
diate values found during the course of the solution, and not the
converged solution which had a value 0.039. A more elaborate
search method was applied to find the true minimum of 0.058.
So in some extreme cases, global minima will not be found but
the error appears acceptable.

Because of the wide range of values for power flows, summa-
rizing the solutions from these approaches with only the ranges
of errors may create the false impression of extremely poor re-
sults. Therefore, in Table IV, the errors (in percentage) for the
boundary values of power flows for a few selected branches are
given. While this table shows some extremely large errors, a
closer inspection reveals that those are the errors for flows with
rather small values, smaller than 0.1 p.u. where a relatively small
mismatch can produce a large relative error. Usually, the small
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TABLE I
BOUNDARY VALUES (IN PER UNIT) FOR THE IEEE/AEP 14-BUS SYSTEM VOLTAGE MAGNITUDES OBTAINED FROM THE NEW BLF

FOR DIFFERENT VARIATIONS OF INJECTED NODAL POWERS

TABLE II
RANGES OF ERRORS (%) FOR THE BOUNDARY VALUES OF VOLTAGE MAGNITUDES OBTAINED USING THE THREE METHODS

FROM SECTION II. FOR DIFFERENT VARIATIONS OF INJECTED NODAL POWERS

TABLE III
BOUNDARY VALUES (IN PER UNIT) FOR SOME OF THE REAL AND REACTIVE POWER FLOWS OBTAINED USING THE NEW BLF

FOR DIFFERENT VARIATIONS OF INJECTED NODAL POWERS

flows are not of concern and the planner concentrates on the
large flows.

Due to space limitations, only excerpts are given for the larger
IEEE test systems in Table V. The choice was made to show
only those voltage magnitudes and real and reactive power flows
that have the widest range of values for the given variation of
input nodal powers, shown in the second row of the table. As
before, that variation is specified with interval boundaries as a
percentage of the base case values and is the same for each input
variable. The values of variation shown are the biggest symmet-
rical values around 100% for which a feasible load flow solution
still exists. It is clear that the bigger the system (and more un-
certain variables), the bigger is the total combined uncertainty.
Therefore, the biggest relative variation of the input variables
decreases with the size of the system.

The previous conclusion suggests that one could introduce
uncertainty over a selected subsystem. To illustrate this, we

chose one bus of the IEEE-300 bus system and all of its
adjacent buses to define a small subsystem. The rest of the
system is left with the original “crisp” base case inputs. The
chosen bus is bus 3 (230 kV) with its adjacent buses: bus 7003
(13.8-kV generator bus); bus 1 and bus 2 (115 kV); bus 7, bus
19, and bus 150 (230 kV); and bus 4 (345 kV). Within this
area, we applied various uncertainties in the input variables in
the same way as before. The results for the boundary values of
the voltage magnitude of bus 3 are shown in Table VI. It can be
seen that we can increase much more the level of uncertainty
locally and obtain results with broader ranges than if we apply
uncertainty system-wide.

The results show that the BLF from [4] gives very good re-
sults which, in cases with smaller variations, are almost identical
to the new approach. However, the effort to produce solutions
is similar in both approaches. Therefore, if one is interested in
finding the accurate boundary values, the proposed procedure
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TABLE IV
ERRORS (IN PERCENTAGE) IN BOUNDARY VALUES FOR SOME OF THE REAL AND REACTIVE POWER FLOWS OBTAINED USING THE

METHODS FROM SECTION II. FOR DIFFERENT VARIATIONS OF INJECTED NODAL POWERS

TABLE V
BOUNDARY VALUES (IN PER UNIT) FOR THE VOLTAGE MAGNITUDES AND

REAL AND REACTIVE POWER FLOWS WITH THE LARGEST RANGES OF

VALUES OBTAINED USING THE NEW BLF AND THE METHODS FROM

SECTION II. FOR DIFFERENT IEEE TEST SYSTEMS

is more appropriate. Moreover, there exist examples, not neces-
sarily limited to specific “pathological” cases, where large er-
rors result if not using the new method.

Table IV shows that the FLF can produce good results for small
to moderate variations in input variables. This is especially true
for the real power flows, which exhibit less nonlinear dependence
on the input variables. Together with the previous results for the
voltages in Table II, it confirms the usability of this approach for
fast calculations of the boundary values. Here again, in cases with
greater uncertainty, the results will not be valid, especially for the
reactive power flows and bus voltage magnitudes.

The errors for the MCS reveal that it is the least accurate of all
the other methods. Though it may be improved by using a some-
what different sampling scheme, oriented toward the boundary
values of input variables instead of uniform probability distri-
bution, its accuracy will still be questionable. Furthermore, the
issue of computational speed remains a serious concern.

TABLE VI
BOUNDARY VALUES (PER UNIT) FOR THE VOLTAGE MAGNITUDE OF BUS 3

(IEEE-300 BUS) FOR DIFFERENT VARIATIONS OF LOCAL POWERS

Fig. 4. General power system branch.

VI. CONCLUSION

This paper presents a new concept for finding accurate
boundary values of load flow solutions. The concept is based
on an optimization procedure for implicitly defined vector
functions. A simple algorithm is developed that is easy to
implement and performs well, in the sense that it provides a
solution whenever the associated DLF converges.

Finding the accurate boundary values enables us, for the first
time, to obtain accurate solutions from a fuzzy/interval load flow
in which the uncertain generation and load powers are modeled
with fuzzy/interval numbers. It also enables us to establish a ref-
erence for other methods that solve the same problem approxi-
mately. The results presented in the paper show that a linearized
fuzzy/interval load flow can produce good results given a small
degree of uncertainty very efficiently. Still, the range of validity
depends on the actual system and must be verified.

Finally,when lookingatboundarysolutions for larger systems,
one must carefully choose an appropriate level of uncertainty for
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each of the uncertain input variables involved. Even a small rel-
ative variation applied system-wide in an unbiased manner may
render the problem infeasible. A reasonable approach is to intro-
duceuncertaintyoveraparticulararea,or subsystem,andobserve
the resulting range of voltages and flows. The authors feel the de-
veloped tool can be extremely useful for planners and regulators
trying to determine needed system upgrades.

APPENDIX

PARTIAL DERIVATIVES OF POWER FLOWS

Consider a general power system branch which consists of
an ideal transformer with complex per unit ratio and a

-circuit, as shown in Fig. 4. In case of a power transformer,
the usual representation is an ideal transformer and serial ad-
mittance, while a transmission line is usually represented with
a symmetrical -circuit ( , ).

The complex power flows at both nodes “ ” and “ ” of branch
“ ” are given by

where denotes conjugation. The partial derivatives of the
complex power flow at node “ ” with respect to the magnitudes
and angles of the terminal voltages are then

Similarly, the partial derivatives of the complex power flow
at node “ ” are

The partial derivatives of real and reactive power flows are
the real and imaginary parts of the above expressions. If one is

interested in the boundary values of current magnitudes, for ex-
ample, because of thermal loadings, similar expressions can be
derived for partial derivatives at both nodes of the corresponding
elements.
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