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Abstract — Risk is the central issue in planning under 
uncertainty and the load flow is central tool in power system 
planning. The uncertainty considered here is of non-statistical 
nature and best modeled using fuzzy set theory. Two methods are 
generally used for obtaining solutions from load flow when this 
type of uncertainty is involved. The first one, recently developed, 
finds the boundary load flow solutions and produces accurate 
results. The second one is the linearized fuzzy load flow, which 
gives only approximate results. The fuzzy results obtained are 
aggregated in a form of system inadequacy indices that are 
further used to express risk. A comparison between the two 
methods is made. 
 

Index Terms — Exposure, fuzzy sets, load flow analysis, power 
system planning, risk assessment, robustness, uncertainty. 

I.  INTRODUCTION 
ncertainty is one of the most important issues in power 
system planning when decisions are made regarding the 

future system expansion and operation. Naturally, if decisions 
involve uncertainty there is always a financial risk. This fact 
has become of even greater importance recently within the 
restructured environment, which brings yet new uncertainties 
and risks. 

In power system planning, the load flow program is the 
most fundamental and most heavily used analytical tool. In 
trying to include uncertainty into the solution process, analysts 
have tried different approaches. Most frequently, planners 
repeat the analysis under varying system conditions. Still, the 
need for a different approach has been long recognized. A 
better solution would be to provide solutions over the range of 
the uncertainties included, i.e. solutions that are sets of values 
instead of single points. To date, two families of such load 
flow algorithms have evolved. 

The first, is the so-called probabilistic load flow (PLF) (for 
example, [1], [2]). PLF considers load and generation as 
random variables with appropriate probability distributions. 
The results of the load flow, i.e., voltages, power flows, and 
so on, are also random variables with the resultant probability 
distributions obtained using probabilistic techniques. Because 
of the complexity introduced by using random variables, PLF 
solutions are obtained using a linearized model and the results 
are rough approximations. 
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The second family of load flow algorithms incorporating 
uncertainty that has been developed more recently utilizes 
fuzzy sets for modeling, (for example, [3], [4]). This is a 
qualitatively different way of expressing uncertainty. It 
represents imprecise, or vague, knowledge, rather than 
uncertainty related to a frequency of occurrence. One inherent 
advantage of this approach is the ability to easily incorporate 
expert knowledge about the system under study. With this 
approach input variables are represented as fuzzy numbers 
(FNs), which are special types of fuzzy sets. When the 
uncertainty of input variables is of a non-statistical nature 
(which the authors believe is the most usual case), FNs best 
represent the inputs. 

FNs are defined by membership functions, also known as 
‘possibility distributions’. Usually, for the sake of simplicity, 
trapezoidal membership functions like the one shown in  
Fig. 1 are assumed. A FN may also be considered as nested 
intervals with an α−degree of possibility, 0 ≤ α ≤ 1. Each α 
corresponds to some ordinary interval number. From this 
viewpoint, interval numbers and interval mathematics are 
simply a special case of fuzzy numbers and fuzzy 
mathematics. 
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Fig. 1.  Trapezoidal membership function of a fuzzy load P = (P1, P2, P3, P4) 
expressing the possibility that load may occur between P1 and P4, but more 
typically between P2 and P3. 
 

Although the calculations in fuzzy load flow analysis are 
somewhat simpler than that in a probabilistic case 
(convolution is not needed), it is still far too complex to be 
applied directly to the full system model. Therefore, again a 
linearized model of the system has been used and the results 
obtained are approximate. Very recently, however, the authors 
have developed a methodology where an accurate solution for 
a non-statistical interval load flow is obtainable [5]. The 
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concept is based on finding the boundary values, which are 
equivalent to an optimization procedure for implicitly defined 
vector functions. A simple algorithm was developed that is 
easy to implement and robust. Finding the accurate boundary 
values enables us to obtain accurate solutions from a fuzzy/ 
interval load flow. The results presented in [5] show that a 
linearized fuzzy/interval load flow can also produce good 
results given a small degree of uncertainty very efficiently. 

This paper addresses the problem of calculating system 
risks that arise from including uncertain nodal powers (loads 
and generation) in the analysis. In doing so, it considers both 
approaches for solving the fuzzy load flow problem, boundary 
load flow solutions and linearized fuzzy load flow. It 
compares the results obtained and investigates the feasibility 
of the later to produce useful information for planners. 

II.  BOUNDARY LOAD FLOW SOLUTIONS 
The concept of boundary load flow (BLF) was presented 

for the first time in [2] within the context of PLF. In this 
paper, an approximate solution for ranges of values for state 
and output variables, given the ranges of values of input 
variables from their probability distributions, was presented. 
The results for the ranges of variables were then used to 
determine multiple points of linearization for the load flow 
equations in order to improve the accuracy of the PLF 
solutions for the tail regions of probability distributions. 

Motivated by this concept, the authors have developed a 
methodology where an accurate solution for a non-statistical 
interval load flow is obtainable. In the following, a brief 
explanation of this methodology is given. 

 The load flow problem is defined by the following two 
sets of nonlinear equations: 

Y = g(X) (1) 

and 

Z = h(X), (2) 

where: 

X is the vector of unknown state variables (voltage 
magnitudes and angles at PQ buses; and voltage angles 
and reactive power outputs at PV buses),  

Y is the vector of predefined input variables (real and 
reactive injected nodal powers at PQ buses; and voltage 
magnitudes and real power outputs at PV buses), 

Z is the vector of unknown output variables (real and 
reactive power flows in the network elements), and 

g, h are the load flow vector functions. 
Finding the boundary values in a load flow problem is a 

process of locating the constrained extrema of implicitly 
defined vector functions of vector arguments. In our notation, 
we want to find the extreme values for the elements of X and 
Z implicitly expressed in (1) and (2), in terms of the elements 
of Y which, in turn, are constrained. 

Although the elements of X and Z cannot be explicitly 
expressed in terms of the elements of Y, their partial 

derivatives can be found during the solution of the ordinary 
load flow. 

As is well known, because X cannot be explicitly 
expressed in terms of Y, the solution of the system of 
equations (1) is found by an iterative process. Given an initial 
trial solution, X’, the error is calculated as: 

∆Y = Y –Y’ = Y – g(X’). (3) 

If a Newton-Raphson (N-R) based scheme is used, (1) is 
linearized around X’ and an update for the new solution is 
found as: 

∆X = K⋅∆Y, (4) 

where K is the inverse of the Jacobian of g evaluated at X’. 
The element Kij of this matrix is actually the partial derivative 
of Xi with respect to Yj. 

Similarly, if we linearize (2) and substitute for ∆X from (4) 
we will obtain: 

∆Z = S⋅∆X = L⋅∆Y,  (5) 

where S is the Jacobian of h at the given point of linearization. 
The matrix L = S⋅K is the sensitivity coefficient matrix and 
the element Lij is the partial derivative of Zi with respect to Yj. 

Each row of K and L represents the gradient vector of the 
corresponding state and output variable Xi and Zi, respectively. 
Similar to derivative based optimization procedures, by 
iteratively following the direction of the gradient, extreme 
points (possibly local) of the state or output variable can be 
found. 

Here, only the signs of the partial derivatives that comprise 
the gradient are used. Experience has shown that the values of 
these partials are not useful for efficiently determining the step 
length. Further, procedure is needed to maintain feasibility of 
the solution, i.e., ensure the input variables are within 
constrains for all iterations. 

Specifically, suppose that the minimum value of Xi is 
sought. If Kij is positive (negative), then decrease (increase) 
the value of Yj. After repeating for all Yj we obtain a new point 
of Y from which a new X from (1) can be found. From this 
new point, the above steps are repeated until one of the 
following is true for each input variable: 

- the partial derivative is positive and the associated 
variable is at a minimum; 

- the partial derivative is negative and the associated 
variable is at a maximum; 

- the partial derivative is zero. 
If the final condition does not hold for any of the variables, 

then the solution is a vertex of the Xi’s domain and clearly a 
point of constrained minimum. Because of the nonlinearity of 
the function, this point may not be the only minimum, i.e., 
there may be other vertices that are also points of local 
constrained minima. Still, our experience has shown that the 
physical nature of the load flow problem dictates either a 
unique solution or a solution, which is dominated by a few 
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input variables in a unique manner.  
When one or more of the partial derivates are zero, the 

solution point lies somewhere on the boundary surface. Such a 
point is either a local constrained extremum (either minimum 
or maximum) or a saddle point. Though it is highly unlikely 
that by preceding in a downhill direction one will end up 
trapped in a local maximum or a saddle point, theoretically 
such a possibility exists. Thus, additional conditions are 
imposed. Previous values of Xi are recorded and compared 
with the newly obtained one. If Xi fails to decrease, then 
different length steps are to be employed. 

Finally, in the special case when all the partial derivatives 
are zero, a solution cannot be obtained due to the singularity 
of the Jacobian. Such a point typically indicates infeasibility 
of the load flow and a loading limit for the system considered. 
Further, a singularity of the Jacobian may occur even if not all 
of the partial derivatives are zero. In such cases, the ranges of 
values of the input variables are too great and one must repeat 
the calculations with reduced variations for some or all of the 
variables. 

It should be clear that the procedure described here must be 
repeated for each state and output variable considered. 
Therefore, it is computationally intensive. This is the cost for 
finding an accurate solution for a fuzzy/interval load flow. 
The next section describes a linearized fuzzy/ interval load 
flow. 

III.  LINEARIZED FUZZY / INTERVAL LOAD FLOW 
The fuzzy approach to the load flow problem presented in 

[4] uses linearized equations (1) and (2). The points of 
linearization (X0, Y0) and (X0, Z0) are obtained from a 
deterministic load flow (DLF) with input variables set at their 
midpoints with the highest degree of possibility (i.e., α = 1). 
These equations now have the form: 

0 0( )= + ⋅ −X X K Y Y  (6) 

and 

0 0( )= + ⋅ −Z Z L Y Y , (7) 

where Y  denotes the vector with fuzzy input variables, and 
X  and Z  denote the resultant vectors with fuzzy state and 
output variables, respectively. 

Using the rules of fuzzy arithmetic [6], which are based on 
interval operations for a given α, the approximate resultant 
fuzzy variables are readily available in a few single non-
iterative steps. Typically, computations are performed only for 
two values of α (α = 0 and α = 1), and then assuming 
trapezoidal membership functions for the output variables, 
results for intermediary values of α are found by interpolation.  

IV.  SYSTEM ADEQUACY INDICES 
In this paper we are confined to the steady state operation 

of the system and its adequacy in terms of bus voltage and 
branch current magnitudes. If uncertainty is allowed in the 
input variables (nodal powers), the resultant state variables 

(voltages) and output variables (currents) will become 
uncertain also. Given the predefined operational constraints 
for these variables, we may express the adequacy or, 
conversely, inadequacy of the system to accommodate such 
uncertainty [7]. 

A.  Voltage Inadequacy 
Let us assume, for example, that the possibility distribution 

of voltage magnitude at some particular bus in the system is 
described with the following trapezoidal FN: (0.93, 0.99, 1.02, 
1.03) p.u., as shown in Fig. 2. If the criterion for the minimum 
acceptable voltage is 0.95 p.u. (vertical dashed line), then 
there is a possibility of 0.33 that the voltage in this bus will be 
bellow this constraint. 
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Fig. 2. Possibility distribution of a bus voltage expressed by a trapezoidal 
membership function (solid line); Hard constraint for low voltage (dashed 
line); Soft constraint for low voltage (dotted line). 

 
The low voltage inadequacy index for this bus could be 

defined by the triangular FN: ((0.93,0), (0.95,0.33), (0.95,0)), 
obtained from the left tail of the possibility distribution 
beyond the voltage level 0.95 p.u. Such definition of 
inadequacy may be useful when a single bus is considered. 
Practically, there are numerous buses and one wants to 
compare voltages and, possibly, aggregate the results into a 
system wide index. Therefore, it is much more convenient to 
define the voltage inadequacy index in terms of voltage drop 
from the minimum acceptable voltage. Using fuzzy arithmetic, 
the voltage inadequacy index of bus i can be expressed as: 

IN minmax{ ,0}, for each [0,1]i i iV V V= − α ∈  (8) 

where min iV  is the minimum acceptable voltage constraint, 

which can also be a fuzzy number, and iV  is the fuzzy voltage 
magnitude at bus i. 

Using this definition, the voltage inadequacy from the 
previous example is defined with the following triangular FN: 
((0,0), (0,0.33), (0.02,0)), shown in Fig. 3 with dashed line. 
This number can be obtained geometrically by flipping the 
previously obtained FN horizontally and shifting it to the right 
of the x-axis origin. 
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Fig. 3. Voltage inadequacies for the fuzzy bus voltage in Fig. 2 when the low 
voltage constraint is ‘hard’ (dashed line) and ‘soft’ (dotted line). 
 

As noted in the definition of the voltage inadequacy index, 
the operational constraints may also be defined in a ‘soft’, 
fuzzy, manner. For example, we may define a ‘good voltage’ 
with the following trapezoidal FN: (0.9, 0.98, 1.02, 1.1) p.u. 
From here, the definition of ‘bad voltage’ is obtained by 
applying the negation operator over the fuzzy set ‘good 
voltage’, i.e. subtracting its membership function (possibility 
distribution) from 1. The left part of this new membership 
function is the fuzzy ‘low voltage’ criterion and it defines the 
minimum acceptable voltage as a fuzzy constraint, given by 
the line ((0.9,1), (0.98,0)). This line is shown in Fig. 2 as a 
dotted line. In this case, by applying (8), the voltage 
inadequacy index is given with the following FN: ((0,0), 
(0,0.357), (0.05,0)), also shown in Fig. 3 (dotted line). 

Having defined the fuzzy ‘low voltage’ criterion, the 
degree of ‘low voltage’ can be found by applying the fuzzy 
and operator on both membership functions. This operator, 
while falling within the family of t-norms, can be defined in 
various ways. For the examples here, the min operator appears 
to be adequate. The result is the intersection of the fuzzy 
voltage and fuzzy constraint sets. 

In our case, the result for ‘low voltage’ is the triangular 
FN: ((0.93,0), (0951, 0.357), (0.98,0)) (see Fig. 2). From here, 
the voltage inadequacy index can be obtained geometrically 
by first flipping horizontally this ‘low voltage’ FN, aligning 
its left side with the y-axis, and shifting it to the right of the x-
axis origin. Then, the system voltage inadequacy index can be 
defined as the fuzzy sum of voltage inadequacies for all buses 
in the system: 

IN INsys i
i

V V= ∑  (9) 

At this point, only the low voltage inadequacy has been 
considered. Although this is usually the main concern in 
power systems, there may be cases when some of the voltages 
in the system may reach unacceptably high values. In such 
cases, one may define the high voltage inadequacy index 
analogously to the above.  

B.  Current Inadequacy 
Now, similarly to that for voltage inadequacy, current 

inadequacy indices for each branch in the system can be 
defined, given the possibility distribution for the current and 
the maximum loading criterion for the branch. 

For example, Fig. 4 shows a possibility distribution of 
current magnitude in some particular branch in the system, 
described with the trapezoidal FN: (1.5, 2.0, 2.2, 2.5) p.u. If 
the maximum current for this branch is given as ‘hard’ and 
equals, for example, 2.3 p.u. (dashed line), then there is a 
possibility of 0.666 that the current in this branch will be 
beyond this constraint. Again, if the maximum current for this 
branch is given as ‘soft’, for example, as line ((2.2,0), (2.4,1)) 
(dotted line), then the possibility of overloading is 0.6. 
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Fig. 4. Possibility distribution of a branch current expressed by a trapezoidal 
membership function (solid line); Hard constraint for maximum current 
(dashed line); Soft constraint for maximum current (dotted line). 

 
The current inadequacy indices can be defined as: 

maxmax{ ,0}, for each [0,1]INi i iI I I= − α ∈  (10) 

where maxiI  is the maximum current constraint (in general, 

fuzzy number), and iI  is the fuzzy current magnitude in 
branch i. 

Using this definition, the current inadequacy indices similar 
to those for voltage inadequacies shown in Fig. 3 can be 
found. 

The system current inadequacy index can be defined as the 
fuzzy sum of current inadequacies for all branches in the 
system: 

IN INsys i
i

I I= ∑  (11) 

V.  RISK INDICES 
As uncertainty has increased with deregulation, the concept 

of risk has become central issue in power system planning [8]. 
Risk can be defined as the hazard to which we are exposed 
because of uncertainty [9]. It is associated with some set of 
decisions and it has the following two dimensions: 
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- The likelihood of making a regrettable decision; 

- The amount by which the decision is regrettable. 

The decision in power system planning is the particular 
system configuration. 

A.  Robustness 
Robustness is the likelihood of making a regrettable 

decision. It is the fundamental measure of risk. In the 
possibilistic framework used here, it is the possibility for 
which the system still accommodates uncertainty without any 
inadequacy. Therefore, in connection with inadequacy indices 
defined in the previous section, robustness can be expressed 
as: 

Robustness = 1 - αIN (12)  

where αIN is the highest possibility for the given inadequacy, 
i.e., the possibility for zero voltage or zero current 
inadequacy. In the previous example, given the current 
uncertainty, the robustness of the branch with the soft 
constraint for maximum current is 0.4. 

B.  Exposure 
Exposure is the amount by which the decision is 

regrettable. It usually represents the loss that will occur for an 
adverse materialization of uncertainties. Unfortunately in 
power system planning, it is difficult to directly express the 
loss and instead we deal with inadequacy [7]. Thus, exposure 
is the possibility for which an inadequacy in the system 
occurs. It follows that it simply takes the value of αIN. In the 
previous example, the exposure of the branch to the current 
uncertainty, with the soft constraint for maximum current, is 
0.6. 

VI.  CASE STUDY 
Now we find system inadequacy indices for the IEEE 14-

bus system shown in Fig. 5. The system data and the base case 
description can be found elsewhere (for example, [10]). Both 
solution methods are analyzed here. The boundary load flow 
will give us exact solutions for the ranges of voltage and 
current magnitudes, given the ranges of values for input nodal 
powers. The linearized fuzzy load flow will give us 
approximate solutions. The point of linearization for the later 
is the base case solution. 

The system current inadequacy, assuming that all the input 
variables are trapezoidal FNs with (80%, 90%, 110%, 120%) 
of the base case values, are shown in Fig. 6. The same indices 
are shown again in Fig. 7, for the case when the 0-support set 
is changed significantly such that the trapezoidal FNs are 
(50%, 90%, 110%, 150%) of the base case values. 

These figures, together with the fact that the results from 
both approaches are equal when there is no uncertainty in the 
system, reveal an interesting phenomenon. Namely, as the 
uncertainty increases, the difference in the exact and 
approximate robustness (as well as, exposure) increases up to 
a certain level of uncertainty, and then starts to decrease. 

 

 

 

Fig. 5.  IEEE/AEP 14-bus test system. 
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Fig. 6. System current inadequacies for the IEEE 14-bus system when input 
nodal powers are trapezoidal FNs with (80%, 90%, 110%, 120%) of the base 
case values. Solid line - exact solution from boundary load flow; Dotted line – 
approximate solution from the linearized fuzzy load flow. 
 

This follows since the inadequacy of the system is a 
property that has saturation. Once a certain threshold is 
reached it can no longer increase significantly, but slowly 
converges to 1. When this happens, the exact and the 
approximate method will give similar results, because the 
error is beyond the critical point. At intermediary values, there 
may be a significant difference. For example, if we let the 
loads vary with (0%, 90%, 110%, 200%) of the base case 
value, the system voltage inadequacy shown in Fig. 8 arises. 
Heavy load is needed for this system in order to drive the 
voltages down because it has many buses with voltage 
support. The important point here is two fold: first, that care 
needs to be taken if using approximate load flow solutions; 
and second, that the approximation must be evaluated in terms 
of the decision variable, i.e., adequacy, not simply the load 
flow solution. 
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Fig. 7. System current inadequacies for the IEEE 14-bus system when input 
nodal powers are trapezoidal FNs with (50%, 90%, 110%, 150%) of the base 
case values. Solid line - exact solution from boundary load flow; Dotted line – 
approximate solution from the linearized fuzzy load flow. 
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Fig. 8 System voltage inadequacies for the IEEE 14-bus system when input 
nodal powers are trapezoidal FNs with (0%, 90%, 110%, 200%) of the base 
case values. Solid line - exact solution from boundary load flow; Dotted line – 
approximate solution from the linearized fuzzy load flow. 

VII.  DISCUSSION AND CONCLUSIONS 
This paper presents a risk assessment application of a 

newly developed concept for finding accurate boundary 
values of load flow solutions. To approximately obtain the 
same results one may also apply a linearized fuzzy/interval 
load flow. While this may produce some useful results 
quickly, the problem is how to know when the solutions are 
valid. There is no direct answer to this problem and it depends 
on the system itself and the decision process. The tool 
developed by the authors can not only produce exact results, 
but check the validity of the approximate ones. 

A final point to emphasize here is that while the risk 
measures employed here are fairly simplistic, they show the 
types of assessments the authors believe should be employed 
in the planning process. In a more sophisticated, i.e., practical 
tool, errors of the type exposed here could be exacerbated.  
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