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Abstract-- With the introduction of electricity markets, it has 

become clear that power system planning must be considered a 
dynamic process, particularly with regards to understanding investor 
behavior given incentives to build new transmission lines and power 
plants. The authors have recently introduced a hybrid approach 
combining system dynamics modeling with the more traditional 
power system planning.  In this paper, we focus on one aspect of this 
larger body of work, namely, the importance of uncertainty and its 
impact on investor decisions. 
 

Index Terms— Boundary load flow, Fuzzy sets, Interval methods, 
Power system planning, Risk behavior, Uncertainty modeling 

I.  INTRODUCTION 
ROM perhaps the beginning of power system planning, it 
has been recognized that long term planning entails a 

great amount of uncertainty about future conditions. The 
earliest attempts to address the uncertainties focused on 
analyzing typical scenarios. Such scenario analysis remains 
the foundation of power system planning at most utilities 
today. Probabilistic techniques, such as, probabilistic load 
flow [1], and sensitivity methods [2], were introduced many 
years ago. While these are an important step forward in terms 
of complexity, they have not been widely adopted in practice. 
Part of the difficulty arises from determining appropriate 
parameters for probabilistic models. In fact, the problem may 
be more fundamental since many of the uncertainties are not 
probabilistic in nature. Philosophically, probability assumes 
repeatable events and this is difficult to apply to future 
conditions 10 or 20 years in the future. Both sensitivity and 
probabilistic approaches suffer from separating the input 
uncertainty models from the decision-making process.  

This vacuum has led researchers to introduce fuzzy sets, or 
interval methods, to approximate uncertainties [3] and 
incorporate expert decision-making. This has led to such 
interesting decision models as minimizing regret [4]. These 
types of approaches can be thought of as a generalization of 
sensitivity type calculations leading to a range of possible 
outputs based on a range of possible inputs coupled with 
criteria for choosing design options. The authors have 
developed a fundamental tool for fuzzy/interval analysis 
termed the boundary load flow (BLF) [5-7]. This tool allows 
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for determining a range of possible power flows given 
uncertainties in the nodal demands. Still, there are two major 
drawbacks in these fuzzy set approaches. Notably: 
 
• Interval uncertainties tend to accumulate, so that, for large 

systems, or longer-term studies with greater uncertainties, 
the output intervals become so large as to be meaningless 
(if solutions can be found at all). The typical approach is 
to either reduce the uncertainties to narrower intervals or 
to relegate the uncertainties to specific subsystems.  

• Future conditions are assumed a priori and do not account 
for the more practical considerations of how those 
conditions will evolve over time. For example, if one 
assumes a relatively small number of generators will 
come on-line while at the same time load growth remains 
strong, it is clear the system reliability will decrease. Still 
in practice, when such conditions develop, it is likely that 
various remedial measures or new plans will be put in 
place to address the reliability. Thus, the more extreme 
conditions will not arise. 

 
We take our inspiration for this work from natural systems. 

It is well known, in studies of ecosystems, financial markets 
and control theory, that feedback can act to limit future 
uncertainties [8]. So, for example, one can predict future 
species populations in a relatively narrow range given that in a 
limited habitat large populations will reduce survival rates. 
These modeling studies are often performed using techniques 
from the field of “system dynamics” [9]. This is a top-down 
modeling approach where the emphasis is on including the 
relevant inputs and understanding the overall system behavior 
rather than the detailed understanding of the subsystems.  
 With the introduction of electricity markets, it has become 
clear that the power system planning must be considered a 
dynamic process, particularly with regards to understanding 
investments in new transmission lines and power plants [10]. 
The authors have recently introduced a hybrid approach 
combining system dynamics modeling with the more 
traditional power system planning [11].  In this paper, we 
focus on one aspect of this larger body of work, namely, the 
importance of uncertainty and its impact on investors. 

II.  BACKGROUND 
This section briefly summarizes the modeling approach in our 
overall studies. The initial wholesale market model was 
constructed to help one understand if power plant construction 
would appear in waves of boom and bust. Such boom/bust 
patterns arise commonly in industries from commercial real-
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estate to commodities. The salient feature tends to be 
wherever markets face long lead times to bring new capacity 
to market [10]. Historically, the construction of new power 
plants has also appeared in such waves and there is concerned 
that these will be exacerbated by deregulation. These cycles 
could be devastating due to dependence of the modern 
economy on a reliable electric supply. 

Modeling the investment process for new generating 
capacity, includes the long delays for permitting and 
construction. Investors weigh the risks and rewards of 
investing in new plants, primarily gas-fired combined cycle 
(CC) capacity based on estimates of future market prices. The 
models have been tested on the Western Electric Coordinating 
Council (WECC) system and found to be successful in 
explaining the under-building that occurred in 1998-1999 and 
the over-building that appeared in 2000-2001 [10]. The boom 
and bust in this case arose from a combination of the delays in 
power plant construction and the limitations on investor’s 
ability to anticipate the future trends in the wholesale market. 
The simple model of investor behavior as shown in Figure 1 is 
used. While the model is conceptually simple, simulations 
based on this model match historical data well. 

In this paper, we focus on different perceptions of 
uncertainty from the point view of the investors in a power 
market. For this purpose, and to maintain simplicity, out of 
many possible uncertain parameters only one is assumed 
uncertain - demand growth rate. Demand uncertainty, in turn, 
makes future reserve margins and market prices uncertain. As 

a result, profits are uncertain and investors face risky 
decisions. Investors’ behavior when facing risky decisions is 
modeled according to the Utility Theory (for example, [13]). 
This theory states that there are three main types of risk 
profiles: risk-averse, risk-neutral and risk-taker. Figure 2 
shows one possible model for risk-averse and risk-taking 
persons. What is important is the shape of the functions: 
concave for risk-averse and convex for risk-taker. The risk-
neutral player is modeled as a straight-line in the utility vs. 
profit plane. 
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Figure 2. Risk profiles according to the Utility Theory 

 

 
 

Figure 1. A simple model of construction of CC power plants [12]. 
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Figure 3. Continuously variable demand growth, investors are risk-averse 
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Figure 4. Discretely variable demand growth, investors are risk-averse 
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Figure 5. Continuously variable demand growth, investors are risk-taking 
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Figure 6. Discretely variable demand growth, investors are risk-taking 
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Figure 7. Continuously variable demand growth, investors are  risk-averse 
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Figure 8. Discretely variable demand growth, investors are risk-averse 
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Figure 9. Continuously variable demand growth, investors are risk-taking 
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Figure 10. Discretely variable demand growth, investors are risk-taking 
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III.  SIMULATION STUDY OF INVESTOR BEHAVIOR 
CONSIDERING UNCERTAINTIES 

The model of investors’ behavior under uncertainty from 
Figure 2 was integrated in the model of plant construction 
shown in Figure 1 and various simulations were performed. In 
the simulations, uncertainty was simulated in two different 
ways. First, it was assumed that the demand growth is a 
random variable with some distribution whose value changes 
during the course of each simulated run. That is, the demand 
growth is a continuous stochastic process. The simulations 
performed correspond to ‘sequential simulations’ used in 
reliability evaluations. Second, it was assumed that the 
random variable follows the same distribution from one 
simulation to another, but within a simulation run it remains 
constant. Thus, the demand growth is fixed in time although 
its realization is uncertain and follows the given distribution. 
This reminds of ‘direct’ (‘non-sequential’) simulations in 
reliability evaluations and is equivalent to sensitivity analysis. 

Clearly, the sequential simulation is how a real power 
market will unfold. This is what careful investors should 
consider in their analyses. They may still speculate in different 
ways on future market conditions but they constantly readjust 
their position according to the past and current situation.    

Figures 3-6 show the results of investors’ decisions to 
construct new CC capacity. The results are given for the two 
different perceptions of uncertainty and two different risk 
profiles. The results from sequential simulations when all of 
the investors are risk-averse and risk-takers are shown in 
Figures 3 and 5, respectively. Figures 4 and 6 show the same 
results from non-sequential simulations. 

In each case simulated, it was assumed that the demand 
growth rate follows uniform distribution in the interval from 
2.5% to 3.5% annually. The resultant variable, the CC power 
plants under construction, follows a different, time-dependent 
distribution, which can be obtained numerically from a set of 
various percentiles. The results presented here show the 
boundaries at 50%, 75%, 90%, and 100% percentiles. 

It can be seen from these figures that there is much more 
variation in the results, i.e. much more uncertainty, when 
development is considered statically. The graph ‘strips’ that 
show different percentiles are much broader for non-
sequential simulations than those from sequential simulations, 
which include uncertainty in the dynamics. This, in turn, 
shows that a real market would inherently bound the 
uncertainties one would have to consider in power system 
planning.  

Another interesting point is that the investors’ risk profile 
does not affect the uncertainty as much as one may have 
expected. The levels of CC under construction do change, in 
this case the amplitudes of the cycles, but the breadth of the 
variation is very similar for the two extreme cases, when all of 
the investors are risk-averse or all are risk-takers.  

Another interesting comparison, which may not be obvious 
at the first glance, is the time shift in the resultant pattern of 
behavior in non-sequential simulations. In other words, the 
variation is stretched across the time axis as well. In sequential 
simulations, investors perceive uncertainty dynamically and 
there is no time delay in their actions. As a result, the variation 
is across the y-axis only. 

If some of the other parameters in the model are adjusted, 
then a fundamental change in the performance can be seen. 
For example, assume one, the levelized cost for a new CC 
plant is decreased from 32 $/MWh to 28 $/MWh, and two, the 
factor of accounted for plants concurrently in construction is 
increased from 50% to 100%. Under these conditions, the 
plant constructions no longer exhibit boom and bust cycles. 
Figures 7-10 repeat the earlier results for this situation. It can 
be seen that, although the pattern of behavior has changed, the 
same comments apply as from before. 

IV.  CONCLUSIONS 
Power systems are both dynamic and uncertain in nature. 

Such is the process of power system planning. This paper 
focuses on one aspect of this complex problem, the impact of 
uncertainty on investor decisions in a restructured power 
market. Although market operations are a source of additional 
uncertainty in the system, this paper demonstrates that future 
uncertainties are bounded as a consequence of feedback. The 
investors take into account the past and current market 
conditions and make decisions accordingly. 

When facing risky decisions investors take actions in line 
with their risk profile. Contrary to what may be expected, this 
paper also shows that risk-averse investors do not necessarily 
reduce uncertainty by their decisions, nor do risk-taking 
investors necessarily increase uncertainty. While they 
determine the overall level of activity, this tends to influence 
the expected value more so than the variance, which is the 
measure of uncertainty or risk. 
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