
PRESENTED AT THE 2005 EPNES WORKSHOP, WASHINGTON DC, NOVEMBER 2005 

LONG TERM DYNAMICS OF INVESTMENT AND GROWTH IN ELECTRIC 
POWER SYSTEMS: MODELING UNCERTAINTY 

 
A. Dimitrovski, and K. Tomsovic, School of Electrical Engineering and Computer Science  

A. Ford, Program in Environmental Sciences and Regional Planning 
Washington State University, Pullman 

ABSTRACT 
This paper overviews recent research results on the use of system dynamics modeling for 
understanding long term investment in power system infrastructure. These computer 
models are intended for use by both policy makers and researchers. The main effort is 
focused on the simulation models that simulate both short-term behavior, such as, 
electricity prices and congestion in the near term, and long-term behavior, such as, 
investment in new generation and transmission. Our emphasis in this annual report is on 
modeling uncertainty and the role of feedback in minimizing such uncertainty.  
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1 INTRODUCTION  
 
Arguments of the benefit for the deregulation of the 
electric power system have been largely based on 
conventional and general wisdom regarding separate topics 
such as competition, service reliability, economic 
efficiency and environmental protection.  Few have looked 
carefully at the interplay between the economic, technical, 
social and environmental factors that influence the 
production, transmission and consumption of electric 
energy. Further, no one has carefully investigated the long 
term dynamics of the process that includes an 
understanding of the necessary engineering. Our research 
is developing models to study the long terms effects of 
deregulation, including interactions between regulatory 
policy, investor behavior, environmental impact and 
system engineering.  
 
Figure 1 shows the spatial and temporal boundaries of our 
research on modeling the electric system. The system 
security modeling is represented by the 1st of three boxes 
located at the base of the diagram. The security model 
represents the power flow and system dynamics, which 
operate in seconds on a spatially complex grid system. 
Loads are described at the level of sub-stations, while the 
scope of the model extends to cover the entire WECC. The 
model calculates power flows, real and reactive reserves 
and system limits for a specified scenario. The grid 
structure of the WECC is represented in explicit fashion, 
so the system security model provides the foundation for 
proposed research on power networks. We highlight the 
system security “box” in Figure 1 with a double boundary 

to emphasize the extra challenges of representing the grid 
network in explicit fashion.  
 
Our demand size research is depicted as the 2nd of three 
boxes. The research was launched to explain the response 
of California electricity consumers during 2000 and 2001. 
The study makes use of billing data from distribution 
companies to determine the extent and factors behind the 
surprising reduction in electricity consumption in the 
summer of 2001. Figure 1 depicts the spatial dimension 
ranging from individual service areas to cover an entire 
state. This work is not being expanded under EPNES but is 
shown here for completeness.  
 
The 3rd box in Figure 1 depicts the WSU model of the 
western electricity market. The model operates with load 
and resource data from the four regions of the WECC. The 
model simulates hourly operations for a typical 24 hour 
day in each quarter of a year. We assume adequate 
interconnections between all loads and all resources in the 
west, so the wholesale market is treated as a single market. 
The simulations begin in 1998 and run for a decade or 
more to allow sufficient time to see the patterns of power 
plant construction. These models are being constructed 
using basic concepts from system dynamics, a simulation 
method pioneered by Forrester [1] and explained in texts 
by Ford [2] and Sterman [3]. System dynamics has its 
origins in control theory and has been defined by [4] as 
that branch of control theory which deals with socio-
economic systems and that branch of management science 
which deals with problems of controllability. Such an 
approach is valuable in a rapidly changing electric industry 
with high uncertainty and high risk [5]. 
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eport focuses on recent results related to 
nties in such long term modeling for power plant 
tion, including wind units. This report contains 
 from [6,7]. Further, details can be found in [8-10]. 

ECENT RESEARCH RESULTS 
arket Feedback for Bounding Future 
ncertainties in Power System Planning 

erhaps the beginning of power system planning, it 
n recognized that long term planning entails a great 
of uncertainty about future conditions. The earliest 
 to address the uncertainties focused on analyzing 
scenarios. Such scenario analysis remains the 

ion of power system planning at most utilities 
robabilistic techniques, such as, probabilistic load 

1], and sensitivity methods [12], were introduced 
ars ago. While these are an important step forward 
 of complexity, they have not been widely adopted 
ice. Part of the difficulty arises from determining 
iate parameters for probabilistic models. In fact, 
lem may be more fundamental since many of the 
nties are not probabilistic in nature. 
phically, probability assumes repeatable events and 
ifficult to apply to future conditions 10 or 20 years 
ture. Both sensitivity and probabilistic approaches 

rom separating the input uncertainty models from 
sion-making process.  
vacuum has led researchers to introduce fuzzy sets, 
al methods, to approximate uncertainties [13] and 

rate expert decision-making. This has led to such 
ng decision models as minimizing regret [14]. 

These types of approaches can be thought of as a 
generalization of sensitivity type calculations leading to a 
range of possible outputs based on a range of possible 
inputs coupled with criteria for choosing design options. 
The authors have developed a fundamental tool for 
fuzzy/interval analysis termed the boundary load flow 
(BLF) [15-17]. This tool allows for determining a range of 
possible power flows given uncertainties in the nodal 
demands. Still, there are two major drawbacks in these 
fuzzy set approaches. Notably: 
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                                   Figure 1.  Spatial and temporal dimensions of previous research at WSU.  
 

2. Demand Response 
Research 

Explains the reduction of 
electricity demands in 
California in the year 
2000-2001. Data from 

individual service 
territories combined for 

state-wide impact, both on 
energy consumption and  

peak demand. 

3. Wholesale Market Model 
 

Calculates construction of new generating 
capacity over a 10-15 year period,  

long enough to see the cycles of boom and 
bust in construction. 

 
Loads, generation and market prices are 

simulated for 24 hours in a typical day for 
each quarter.  The four areas of the WECC 

are combined into a single market for 
electric energy and ancillary services. 

1.  System Security Model  
Calculates power flows, real and reactive reserves, and system limits  

given a scenario on loads and resources.  

 
• Interval uncertainties tend to accumulate, so that, for 

large systems, or longer-term studies with greater 
uncertainties, the output intervals become so large as 
to be meaningless (if solutions can be found at all). 
The typical approach is to either reduce the 
uncertainties to narrower intervals or to relegate the 
uncertainties to specific subsystems.  

• Future conditions are assumed a priori and do not 
account for the more practical considerations of how 
those conditions will evolve over time. For example, if 
one assumes a relatively small number of generators 
will come on-line while at the same time load growth 
remains strong, it is clear the system reliability will 
decrease. Still in practice, when such conditions 
develop, it is likely that various remedial measures or 
new plans will be put in place to address the 
reliability. Thus, the more extreme conditions will not 
arise. 

 
We take our inspiration for this work from natural 

systems. It is well known, in studies of ecosystems, 
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Figure 2. A simple model of construction of CC power plants [19]. 

financial markets and control theory, that feedback can act 
to limit future uncertainties [2]. So, for example, one can 
predict future species populations in a relatively narrow 
range given that in a limited habitat large populations will 
reduce survival rates. These modeling studies are often 
performed using techniques from the field of “system 
dynamics” [3]. This is a top-down modeling approach 
where the emphasis is on including the relevant inputs and 
understanding the overall system behavior rather than the 
detailed understanding of the subsystems.  

With the introduction of electricity markets, it has 
become clear that the power system planning must be 
considered a dynamic process, particularly with regards to 
understanding investments in new transmission lines and 
power plants [18]. The authors have recently introduced a 
hybrid approach combining system dynamics modeling 
with the more traditional power system planning [10].  A 
framework for uncertainty is presented in the following. 
 
2.1.1 Simulation Study of Investor Behavior 

Considering Uncertainties  
This section briefly summarizes the modeling approach in 
our overall studies and presents some simple simulation 
studies. The initial wholesale market model was 
constructed to help one understand if power plant 
construction would appear in waves of boom and bust. 
Such boom/bust patterns arise commonly in industries 

from commercial real-estate to commodities. The salient 
feature tends to be wherever markets face long lead times 
to bring new capacity to market [18]. Historically, the 
construction of new power plants has also appeared in such 
waves and there is concerned that these will be 
exacerbated by deregulation. These cycles could be 
devastating due to dependence of the modern economy on 
a reliable electric supply. 

 

Modeling the investment process for new generating 
capacity, includes the long delays for permitting and 
construction. Investors weigh the risks and rewards of 
investing in new plants, primarily gas-fired combined 
cycle (CC) capacity based on estimates of future market 
prices. The models have been tested on the Western 
Electric Coordinating Council (WECC) system and found 
to be successful in explaining the under-building that 
occurred in 1998-1999 and the over-building that appeared 
in 2000-2001 [18]. The boom and bust in this case arose 
from a combination of the delays in power plant 
construction and the limitations on investor’s ability to 
anticipate the future trends in the wholesale market. The 
simple model of investor behavior as shown in Figure 2 is 
used. While the model is conceptually simple, simulations 
based on this model match historical data well. 

To maintain simplicity, out of many possible uncertain 
parameters only one is assumed uncertain - demand 
growth rate. Demand uncertainty, in turn, makes future  
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In each case simulated, it was assumed that the demand 
growth rate follows uniform distribution in the interval 
from 2.5% to 3.5% annually. The resultant variable, the 
CC power plants under construction, follows a different, 
time-dependent distribution, which can be obtained 
numerically from a set of various percentiles. The results 
presented here show the boundaries at 50%, 75%, 90%, 
and 100% percentiles. 
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It can be seen from these figures that there is much more 
variation in the results, i.e. much more uncertainty, when 
development is considered statically. The graph ‘strips’ 
that show different percentiles are much broader for non-
sequential simulations than those from sequential 
simulations, which include uncertainty in the dynamics. 
This, in turn, shows that a real market would inherently 
bound the uncertainties one would have to consider in 
power system planning. Note that the investors’ risk 
profile does not affect the uncertainty as much as one may 
have expected. The levels of CC under construction do 
change, in this case the amplitudes of the cycles, but the 
breadth of the variation is very similar for the two extreme 
cases, when all of the investors are risk-averse or all are 
risk-takers.  

 
Figure 3. Risk profiles according to the Utility Theory 

 
reserve margins and market prices uncertain. As a result, 
profits are uncertain and investors face risky decisions. 
Investors’ behavior when facing risky decisions is modeled 
according to the Utility Theory (for example, [19]). This 
theory states that there are three main types of risk 
profiles: risk-averse, risk-neutral and risk-taker. Figure 3 
shows one possible model for risk-averse and risk-taking 
persons. What is important is the shape of the functions: 
concave for risk-averse and convex for risk-taker. The 
risk-neutral player is modeled as a straight-line in the 
utility vs. profit plane. 

Note also the time shift in the resultant pattern of 
behavior in non-sequential simulations. In other words, the 
variation is stretched across the time axis as well. In 
sequential simulations, investors perceive uncertainty 
dynamically and there is no time delay in their actions. As 
a result, the variation is across the y-axis only. If some of 
the other parameters in the model are adjusted, then a 
fundamental change in the performance can be seen. For 
example, assume one, the levelized cost for a new CC 
plant is decreased from 32 $/MWh to 28 $/MWh, and two, 
the factor of accounted for plants concurrently in 
construction is increased from 50% to 100%. Under these 
conditions, the plant constructions no longer exhibit boom 
and bust cycles. Figures 8-11 repeat the earlier results for 
this situation. It can be seen that, although the pattern of 
behavior has changed, the same comments apply as from 
before. 

The model of investors’ behavior under uncertainty 
from Figure 3 was integrated in the model of plant 
construction shown in Figure 2 and various simulations 
were performed. In the simulations, uncertainty was 
simulated in two different ways. First, it was assumed that 
the demand growth is a random variable with some 
distribution whose value changes during the course of each 
simulated run. That is, the demand growth is a continuous 
stochastic process. The simulations performed correspond 
to ‘sequential simulations’ used in reliability evaluations. 
Second, it was assumed that the random variable follows 
the same distribution from one simulation to another, but 
within a simulation run it remains constant. Thus, the 
demand growth is fixed in time although its realization is 
uncertain and follows the given distribution. This is 
equivalent to sensitivity analysis. 

 
2.1.2 Comments  
Power systems are both dynamic and uncertain in nature. 
Such is the process of power system planning. Although 
market operations are a source of additional uncertainty in 
the system, this paper demonstrates that future 
uncertainties are bounded as a consequence of feedback. 
The investors take into account the past and current market 
conditions and make decisions accordingly. When facing 
risky decisions investors take actions in line with their risk 
profile. Contrary to what may be expected, this paper also 
shows that risk-averse investors do not necessarily reduce 
uncertainty by their decisions, nor do risk-taking investors 
necessarily increase uncertainty. While they determine the 
overall level of activity, this tends to influence the 
expected value more so than the variance, which is the 
measure of uncertainty or risk. 

Clearly, the sequential simulation is how a real power 
market will unfold. This is what careful investors should 
consider in their analyses. They may still speculate in 
different ways on future market conditions but they 
constantly readjust their position according to the past and 
current situation. Figures 4-7 show the results of investors’ 
decisions to construct new CC capacity. The results are 
given for the two different perceptions of uncertainty and 
two different risk profiles. The results from sequential 
simulations when all of the investors are risk-averse and 
risk-takers are shown in Figures 4 and 6, respectively. 
Figures 5 and 7 show the same results from non-sequential 
simulations. 
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2.2 Impact of Wind Generation Uncertainty 
on Generating Capacity Adequacy 

 
Wind generation has become increasingly popular choice 
of technology for new capacity additions in power systems 
worldwide. Several factors have contributed to this trend. 
Environmental concerns and a constant increase in fossil 
fuel prices are central to these factors. Moreover, recent 
legislative moves for green-house gases limitation in the 
EU and similar laws currently under consideration in the 
US and other parts of the world make wind economically 
more competitive with other, traditional sources of energy. 
There are also other factors, such as, advances in the 
manufacturing and control technology, which also add to 
the attraction of wind as a ‘green’ source of energy. 

Unfortunately, more than any other renewable source, 
wind is stochastic, and, unlike the other most important 
renewable source, water, it cannot be stored in its primary 
form for later use. The operational difficulties that this 
creates have been recognized for some time now and a 
number of papers and studies address this topic (for 
example, [21]). Still, wind uncertainty will impact power 
systems in a more fundamental manner when wind 
generation contributes a significant portion of the 
generation mix. 

This paper addresses the issue of generating capacity 
adequacy in power systems with a considerable share of 
wind generation. It is one of the scenarios considered in 
our research project that deals with complex interacting 
issues in the long term investment dynamics of the WECC 
system (western US interconnection) [6, 10, 22]. For this 
purpose, the popular LOLP - loss of load probability is 
used as an objective, probability based, index. Other two 
popular, deterministic indices are reserve margin and 
largest unit reserve. It is well known that these indices are 
inconsistent in terms of risk. Risk in this context is the 
probability of not being able to serve the load. Two 
systems with the same reserve margin or largest unit 
reserve can have very different risks. We investigate how 
wind penetration in the generation mix affects these 
relations in a hypothetical example derived from the 
WECC system. 

Wind uncertainty is modeled by adjusting the wind 
generation units FOR – forced outage rate. This parameter 
is uncertain itself and adjusting for wind uncertainty makes 
it even more so. The usual approach to modeling FOR 
uncertainty is to use a random variable with some 
probability distribution. Any distribution could be used 
but, unless it is normal, the result will be analytically 
intractable and Monte Carlo simulation has to be used. 
Thus, normal distribution is usually assumed and the 
LOLP index can also be assumed normally distributed 
with resultant mean value and variance. Mean value 
calculation is straightforward and not much different from 

the ‘crisp’ case. However, resultant variance calculation is 
complex and involves finding equivalent covariance 
matrix. Here, a different approach is used. Instead of 
assuming probability distribution, we assume an interval of 
possible values for the FORs. This corresponds to a 
rectangular possibility distribution of a fuzzy/interval 
number. The calculation of the resultant LOLP in this case 
is much simpler. 

Another source of uncertainty in generating capacity 
adequacy assessment is the load profile. The load forecast 
is always uncertain and this uncertainty can considerably 
affect both LOLP’s expected value and its variance, if 
probabilities are used. Still, this uncertainty is easier to 
include in calculations than the FOR uncertainty. Here, we 
use the same approach for modeling load uncertainty as 
FOR uncertainty. Load curve is assumed to consist of 
intervals of possible values. When such an uncertain load 
model is convolved with the uncertain generation model, 
the resultant risk index is the uncertain LOLP. 

 
2.2.1 LOLE Index 

Loss of load expectation (LOLE) is one of the oldest 
and probably the most frequently used index in generating 
capacity adequacy analysis and power system reliability 
[23]. It is usually referred to as LOLP (loss of load 
probability) although this is a misnomer, as it almost 
always represents the expected value of unserved load. It 
can be defined as [24]: 

1 1
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i j ij
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i j
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where: 

 T - the total time length of the load curve; 
 Li - the ith load level; 
 Pi - the probability of Li (fraction of total time when 

the load is equal or bigger than Li); 
NL - number of load levels in the discretized load curve; 
Gj - the jth generation capacity level; 
 Pj -  the probability of Gj; 
NG - number of generation capacity levels in the 

generation capacity probability table; 

Since the load chronology is usually not of interest, it is 
advantageous to consider the load duration curve (LDC) 
instead. In this case, the relative LDC becomes the load 
probability distribution and the above formula describes a 
convolution of the two random variables of load 
occurrence and available generation capacity. Depending 
on the load curve used, the LOLE index holds various 
meanings. If the individual hourly load values are used, 
which is the usual meaning of LDC, the value of LOLE is 
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in hours. If only individual daily peak load values are used, 
arranged in descending order to form a cumulative load 
model known as daily peak load variation curve (DPLVC), 
the value of LOLE is in days. Weekly and monthly peak 
load variation curves can also be defined, although that is 
not usual.  

Calculating the equivalent generation capacity table (the 
discrete probability distribution of available capacity) is an 
extensive computational task, especially if there are a large 
number of units, each with multiple operating states. There 
are various approximating techniques that can be used in 
order to simplify and speed up this process [23]. 

A somewhat different approach is to convolve the load 
probability distribution with individual generation 
distributions one unit at a time, instead of building the 
equivalent generation distribution first and then 
convolving it with the load curve [25-26]. To illustrate 
this, let’s assume that we are given an LDC, a set of n 
generation units with their corresponding capacities, 
Forced Outage Rates (FORs), and their loading order. For 
simplicity, we’ll assume that each unit i has only two states 
and can be either fully available or fully unavailable with 
probabilities pi = 1−FORi and qi = FORi, respectively. The 
production of the k+1 unit in the order, Wk+1, depends on 
whether the previous unit, k, is available or not: 

1
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where Dk(P) is the equivalent inverse LDC, obtained after 
convolving the kth unit. The integrals in the above 
expression can be combined if they have the same lower 
and upper limits. For that purpose, the integrand of the 
second integral is shifted to the right along the x-axis for 
the capacity of kth unit, Pk. The result is: 

 W D  (3) 
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From (3), we finally get: 
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where: 

1( ) ( ) ( )k k k k kD P D P p D P P q+ = ⋅ + − ⋅               (5) 

is the equivalent inverse LDC, obtained after convolving 

the unit k+1. It accounts for the actual load and the forced 
outages of all units up to k. 

 This process is illustrated on 12. The curve 
after convolving unit k, Dk+1, is obtained as a sum of the 
curve before convolving unit k, Dk, multiplied by unit k 
availability, pk, and the shifted Dk(P-Pk), multiplied by unit 
k unavailability, qk. In this particular case, Pk is 200 MW 
and qk is 0.2. 

Figure 1

Figure 1

Figure 12. Convolving equivalent inverse LDCs in the 
process of LOLE and EENS calculation. Curve before 
convolving unit k, Dk – dashed line; shifted Dk – dotted 
line; Curve after convolving unit k, Dk+1 – solid line; Final 
convolved curve Dn+1 – thick solid line; LOLP = 
Dn+1(1300) = 0.0123. 

Equation (5) gives the recursive formula for calculating 
the equivalent inverse LDC. At the beginning, D0 is the 
original inverse LDC, obtained from the load profile. 
Proceeding in loading order, each unit’s equivalent curve 
and production can then be calculated. After convolving all 
n units, the final curve Dn+1 contains the information about 
the LOLE and the expected energy not served (EENS, also 
known as expected unserved energy, EUE): 

1
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In the example shown in 2, the final curve is 
obtained after convolving 9 units with total installed 
capacity of 1300 MW. Thus, the LOLE in this particular 
case is Dn+1(1300) = 0.0123. The EENS is the area under 
Dn+1, starting from 1300, and is equal to 1.2 MWh. 
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2.2.2 Windpark Modeling 
The power of wind is harnessed in windparks that can 
contain hundreds of individual units. The installed capacity 
of each unit is typically between 0.5 MW and 2 MW. The 
large number of units in one “wind plant” distinguishes 
this type of power plant from conventional thermal power 
plants. In addition, the FOR of wind units is typically 
several times less than that of thermal units. For the 
former, the FOR is somewhere around 1% or 2%, while 
for the latter the FOR is on average around 10%. This 
means that, unlike thermal plants, a windpark has nearly 
zero probability of being completely outaged and is always 
ready for service, at least to some extent. 

For example, let’s consider a windpark with 100 
identical units each with 1 MW of installed capacity and 
1% FOR. It’s easy to show by using binomial distribution 
that the probability of having in service less than 76 MW 
(i.e. 76% of its installed capacity) is smaller than 10-4. This 
is 1000 times less than the probability of a thermal unit 
with 10% FOR being completely shut down. If the FOR of 
wind units is 2% then the threshold with 10-4 probability 
drops down by not much to 63 MW. 

Therefore, the unit FOR is much less of an issue with 
wind generation than it is with thermal technologies. It can 
be taken into account simply by appropriately adjusting the 
installed capacity of the entire windpark. Here, we should 
make two important comments. First, we neglect network 
issues in this paper, following tradition in   generating 
adequacy analysis but, of course, an entire windpark can 
occasionally be in outage due to a network failure. Second, 
ready for service does not mean that the windpark will be 
in service. That depends on the availability of the wind. 

The last comment points out the most important thing in 
defining the availability of a windpark. Due to wind 
stochasticity the production from a windpark is stochastic 
and intermittent. Different studies [21] show that the 
average capacity factor from a windpark is somewhere 
around 1/3. The capacity factor is defined as the ratio of 
the time ready for service and the actual time in service. 
An equivalent FOR for the entire windpark, equal to 1 – 
capacity factor, is used to model its stochastic production. 

 
2.2.3 Parameter Uncertainty 

The LOLE and EENS indices are probabilistic in their 
nature but, thus far, we have assumed that the load profile 
and units FOR are known with complete certainty (i.e., 
with 100% probability). In practice, this assumption, of 
course, is never true. Even for the present time these 
parameters are never precisely known and their uncertainty 
only grows as we project them further in the future. As 
said previously, the usual approach to take these 
uncertainties in account is to use random variables with 
some probability distributions, usually Gaussian [23]. The 
use of a normal distribution makes the results analytically 

tractable. In every other case, Monte Carlo simulation is 
the only feasible approach. 

Here, we propose the use of interval numbers to model 
these uncertainties. There are two reasons to pursue this 
approach. First, we argue that using a probability 
distribution to model a future system’s parameters violates 
the underlying assumption in probability theory of 
repetition of events. The future system will most likely be 
different and operate under different conditions in different 
environment. Second, interval arithmetic is almost always 
more straightforward and much simpler than dealing with 
random variables, even normal ones. 

Extending the calculation of LOLE and EENS to 
interval numbers is simple. The recursive formula for 
calculating the equivalent inverse LDC in (5) is to be 
applied according to the rules of interval arithmetic. The 
LDC in this case is an interval value function, i.e., at any 
given time the load is described by not just one, but by an 
interval of values. Thus, Dk is a “thick” curve, has multiple 
values along the x-axis for the same probability. This, in 
turn, renders Dk+1 and all subsequent curves “thick” as 
well. Finally, applying expressions (6) and (7) on a “thick” 
Dn+1 results in interval values for LOLE and EENS. 

Since interval numbers are just a special case of fuzzy 
numbers, which can be seen as lumped and nested 
intervals, we can easily extend further calculation of LOLE 
and EENS to the fuzzy case. Thus, we can calculate these 
indices with different possibilities representing different 
degrees of belief. This opens an interesting perspective in 
the planning process where one can calculate possibilities 
of different risks for various alternatives and weigh 
outcomes of different decisions accordingly. 

 
2.2.4 Case Studies 

Let’s show a hypothetical example derived from the 
WECC system how different percentages of wind 
penetration affect generating capacity adequacy. The 
current thermal generation in this system consists of a 
large number of units utilizing different technologies. We 
will assume that they can be classified in 5 categories with 
maximum available capacities given in . The 
maximum available capacity, P

Table I

Table I

TABLE I  WECC THERMAL GENERATION CATEGORIES 

max, is obtained from the 
total installed capacity reduced by the capacity on 
scheduled maintenance. Also, we will define an average 
unit capacity for each category, Pavg, and we will assume 
that all units within a category are the same and have that 
capacity. These data are also given in . 

Thermal 
Technology Nuclear Coal Comb. 

Cycle 
Gas 

Steam 
Comb. 
Turbine 

Pmax [GW] 7.5 29.6 53.1 20.3 19.2 
Pavg [MW] 750 400 250 125 125 
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On the demand side,  shows “thermal load” 
profile for a summer day. This load is obtained from data 
for the total demand in the system reduced by the 
production from hydro units. In this particular case, hydro 
units cover 29% of the peak demand and 25.4% of the 
daily energy.   

Figure 

Figure 13.  WECC thermal load profile – summer day. 
 

We do not include the hydro portion of the system here 
for the sake of simplicity as this is a fairly complex 
problem by itself. Hydro units availability depend not only 
on equipment outages but also on the reservoir head and, 
therefore, on the level of reservoir depletion. The latter is a 
stochastic variable with seasonal variation and it can have 
a dominant effect on the unit availability, more than 
equipment outages which, on the other hand, are usually 
much less frequent in hydro units than in thermal. The 
usual approach is to deal with hydro production as a 
separate subproblem, obtain representative samples from 
its probability distribution with corresponding 
probabilities, and then solve the main problem with known 
hydro by using conditional probabilities. 

With hydro portion of the system left aside, we’ll 
introduce another category for wind units with average 
unit size of 100 MW. As explained in the previous section 
on windpark modeling, the average unit here represents an 
entire windpark not an individual unit. We assume an 
equivalent FOR that accounts for windpark’s stochastic 
production of 2/3. Thus, its capacity factor is 1/3. 

Let’s now increase the percentage of the wind 
generation in the total thermal generation mix of the 
system from 0% to 15%. In order to keep the same reserve 
margin, we proportionally increase the load at the same 
time. The results are displayed in 14. The system 
LOLE index increases from 8·10-18 to 8.7·10-6 with 
increased wind penetration in the generation mix. 
Although the change is significant the final value still 
seems rather small. This can be attributed to the very large 
number of units in the system. Thus, the probability of 
significant outage simultaneously involving a large 
number of units is very small. However, this small number 
can be misleading as we show next.  

Figure 

Figure 14. Dependence of the WECC LOLE index on the 
wind generation – constant reserve margin of 30.9%, 10% 
FOR for all thermal units. 

 

Let’s compare the results with the established planning 
reference value for LOLE of 1 day in 10 years. In other 
words, the target planning LOLE is usually set at 1/3650 = 
2.7·10-4. This value is calculated on the basis of the daily 
peak load variation curve. In our case, since we have data 
for only one day, we will calculate the single probability of 
not meeting the peak load in this day. Note that in this case 
it is correct to refer to this value as LOLP. 

The results of these calculations are shown on . 
The LOLP index for the peak summer load increases from 
1.8·10-16 to 2·10-4 with increased wind generation from 0% 
to 15%. If these results are extended to a 10 year period 
then the last value corresponds to 0.735, or 268 days a year 
the system will  not be able to  meet peak load! 

Figure 

Figure 15. Dependence of the WECC LOLP index for a 
single peak summer load on the wind generation – constant 
reserve margin of 30.9%, 10% FOR for all thermal units. 
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Figure 18. Upper and lower bound of the WECC LOLE 
index from Figure 14 with ±5% variation in load profile 
and unit FORs – reserve margin of 30.9%, 15% wind 
penetration. 

Figure 16. Dependence of the WECC LOLE index on the 
wind generation – constant reserve margin of 30.9%, 15% 
FOR for all thermal units. 

Figure 

 

 

Figure 17. Required reserve margin in the WECC system 
to meet the target LOLE of 0.1 day/year (dotted line), with 
15% wind generation, for two different values of thermal 
units FOR: 10% - solid line; 15% - dashed line.  

Figure 

All the results presented so far show that the system can 
not be left with the same reserve margin as the percentage 
of wind generation increases, or its reliability will suffer 
greatly. The more appropriate analysis is to determine the 
required reserve margin in order meet the reference LOLE 
of 1 day in 10 years, when the wind generation percentage 
is kept fixed at 15% of the total generation mix. Again, in 
the first approximation, we’ll assume that all days are 
equal. This sets the target LOLP at 7.5·10-8. The results of 
these calculations for two different values of FOR are 
shown on 17. The required reserve margins are 
45.1% and 35.4%, for the 15% and 10% values of FORs, 
respectively. If one takes into account the capacity from 
hydro units than the actual values are 32% and 25.1%, 
respectively.   

If there is no wind generation in the system, the target 
LOLP will be satisfied for reserve margins at 32.9% and 
23.2%, for the 15% and 10% values of FORs, respectively. 
Again, taking into account the hydro capacity, the real 
values are 23.3% and 16.5%, respectively. Thus with 15% 
wind generation, an additional 8.7% (8.6% for 10% FOR) 
of reserve margin is required to cover the uncertain 15% of 
wind. The amount of additional reserve is more than half 
the wind generation. If the system were purely thermal 
then an additional 80% reserve would be required. All 
these values, of course, depend on the specific case 
assumptions, units and system parameters, and cannot be 
strictly generalized. 

 
This is by no means acceptable. True, this result is 
exaggerated as peak daily loads throughout the year will be 
smaller than the peak summer day load. However, the real 
LOLE will still have the same order of magnitude as the 
result just calculated. 

In order to confirm the dramatic effect unit availabilities 
can have on system adequacy and further emphasize the 
impact of wind generation in such case, let’s assume that 
all thermal units in the system have FOR of 15%. The 
results for this case are displayed on 16. The system 
LOLE index increases from 4.6·10-8 to an extraordinary 
0.0159 hr/day with an increase of wind generation from 
0% to 15%. 

Let’s now see how parameter uncertainty affects 
adequacy of the system. Consider the same case as in 

14, but with ±5% variation in the load profile and 
unit FORs. In other words, one assumes the load to be 
defined as a set of intervals with upper and lower bounds 
at 95% and 105% of the values shown in 13, 
respectively. Thermal units FORs are given with the 

Figure 

 
Figure  
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interval number [9.5%, 10.5%] and wind units FORs with 
[63.3%, 70%].  shows the upper and lower 
boundary for the resultant LOLE in this case. It also shows 
the crisp case result from 14, which falls between 
the two boundaries. It can be seen that even a small 
uncertainty in parameters makes a significant difference. 
This is especially true for small values of LOLE at the 
extreme end of the D

Figure 

Figure 

n+1 curve. The range of values 
gradually shrinks as the LOLE increases and moves away 
from the tip of Dn+1. 

 
2.2.5 Comments 

A significant increase in wind generation in modern 
power systems will have a profound impact on their 
operation and planning. This paper addresses the 
fundamental problem of generating capacity adequacy in 
expansion planning. An approach is used where the entire 
windpark is modeled as a single unit with an equivalent 
FOR that accounts for wind uncertainty. 

It is shown on a hypothetical, but realistic example, that 
a considerable amount of additional, non-wind based, 
sources is needed to counteract wind stochasticity and 
maintain an acceptable level of risk. It is confirmed again 
that two systems with the same reserve margin or largest 
unit reserve can have very different risks levels. This 
discrepancy grows with the  wind penetration. 

The amount of additional reserves needed can range 
anywhere from more than half to more than 80% of the 
wind generation. These values, of course, depend on the 
particular case, units and system parameters. The 
tendency, however, is obvious and calls for careful 
planning of additional resources whenever wind units are 
to be a significant part of the system mix. 

Finally, the use of interval numbers is proposed for 
modeling future system parameter uncertainty. It is a 
simpler and, the authors believe a more appropriate 
approach. It can also be easily extended to the use of fuzzy 
numbers, which allows for a more intuitive approach to 
decision making under uncertainty in the expansion 
planning process. 

 
3 FURTHER WORK 
 
The proposed modeling approach needs further 
developments in several areas that will be supported by 
case studies in order to highlight the value of the work. 
Specifically, the following is planned: 
 
• studies of various transmission investment incentives 

and the impact on boom-and-bust cycles, 
• incorporation of uncertainty modeling into the system 

dynamics modeling tools, 
• detailed study of the benefits of the WAPP on electric 

power system development in West Africa, and 

• major modification of senior power systems analysis 
course in Electrical Engineering and graduate course 
modeling course in Environmental Science. 
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