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Abstract—This paper proposes an optimal bidding strategy
in the day-ahead market of a microgrid consisting of intermit-
tent distributed generation (DG), storage, dispatchable DG, and
price responsive loads. The microgrid coordinates the energy
consumption or production of its components, and trades elec-
tricity in both day-ahead and real-time markets to minimize
its operating cost as a single entity. The bidding problem is
challenging due to a variety of uncertainties, including power
output of intermittent DG, load variation, and day-ahead and
real-time market prices. A hybrid stochastic/robust optimization
model is proposed to minimize the expected net cost, i.e., expected
total cost of operation minus total benefit of demand. This for-
mulation can be solved by mixed-integer linear programming.
The uncertain output of intermittent DG and day-ahead mar-
ket price are modeled via scenarios based on forecast results,
while a robust optimization is proposed to limit the unbalanced
power in real-time market taking account of the uncertainty of
real-time market price. Numerical simulations on a microgrid
consisting of a wind turbine, a photovoltaic panel, a fuel cell,
a micro-turbine, a diesel generator, a battery, and a responsive
load show the advantage of stochastic optimization, as well as
robust optimization.

Index Terms—Market bidding strategy, microgrid, mixed-
integer linear programming (MILP), robust optimization,
stochastic optimization, uncertainty.

NOMENCLATURE

The main symbols used in this paper are defined below.
Others will be defined as required in the text.

Indices

i Index of dispatchable generators, running from
1 to NG.
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j Index of responsive demands, running from
1 to ND.

s Index of battery storage devices, running from
1 to NS.

t Index of time periods, running from 1 to NT .
p Index of stage 1 scenarios of day-ahead market

prices, running from 1 to NP.
w Index of stage 2 scenarios of wind and photo-

voltaic (PV), running from 1 to NW .
m Index of energy blocks offered by generators

(demand), running from 1 to NI (NJ).

Variables

Binary Variables:
uipwt 1 if unit i is scheduled on in stage 1 scenario p

stage 2 scenario w (scenario pw for the rest of
this paper) during period t and 0 otherwise.

ujpwt 1 if demand j is scheduled on in scenario pw
during period t and 0 otherwise.

uC
kpwt 1 if battery k is scheduled charging in scenario

pw during period t and 0 otherwise.
uD

kpwt 1 if battery k is scheduled discharging in scenario
pw during period t and 0 otherwise.

Continuous Variables:
pipwt(m) Power output scheduled from the mth block of

energy offer by dispatchable unit i in scenario
pw during period t. Limited to pmax

it (m).
djpwt(m) Power consumption scheduled from the mth

block of energy bid by demand j in scenario pw
during period t. Limited to dmax

jt (m).
Pipwt Power output scheduled from dispatchable unit i

in scenario pw during period t.
Djpwt Power consumption scheduled for demand j in

scenario pw during period t.
PA

pt Purchased (if positive) or sold (if negative)
power in the day-ahead market in scenario p
during period t.

PR
pwt Purchased (if positive) or sold (if negative)

power in the real-time market in scenario pw
during period t.

λR
pwt A random variable of real-time market price in

scenario pw during period t.
PC

kpwt Charging power of battery k in scenario pw
during period t.
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PD
kpwt Discharging power of battery k in scenario pw

during period t.
SOCkpwt State of charge of battery k in scenario pw during

period t.

Constants

λit(m) Marginal cost of the mth block of energy offer
by dispatchable unit i during period t.

mcjt(m) Marginal benefit of the mth block of energy bid
by demand j during period t.

ckpwt Degradation cost of battery k in scenario pw
during period t.

λA
pt Day-ahead market price in scenario p during

period t.
λ

R
pwt Expected real-time market price in scenario pw

during period t.
δpwt Deviation from the expected real-time market

price in scenario pw during period t.
Ai Operating cost of dispatchable unit i at the point

of Pmin
i .

Bj Consumption benefit of demand j at the point
of Dmin

j .
Pmax

i Maximum output of dispatchable unit i.
Pmin

i Minimum output of dispatchable unit i.
Dmin

jt Minimum power consumption of demand j dur-
ing period t.

DF
jt Fixed component of demand j during period t.

�pw Control parameter of the robustness level during
scenario pw.

πp Probability of scenario p.
πw Probability of scenario w.
PW

wt Wind turbine power output in scenario w during
period t.

PP
wt PV power output in scenario w during period t.

PC,max
k Maximum charging power of battery k.

PD,max
k Maximum discharging power of battery k.

SOCmax
kt Maximum SOC of battery k during period t.

SOCgmin
kt Minimum SOC of battery k during period t.

η Battery efficiency factor.
Opt Order of price scenario p during period t.

I. INTRODUCTION

THE INCREASING installation of distributed renewable
and/or nonrenewable energy resources, emerging utility-

scale energy storage, rapid growth of plug-in hybrid electric
vehicles, and the maturing demand response in the distribu-
tion systems bring unprecedented opportunities and challenges
to utilities, end users, manufacturers, and other participants in
distribution system operations. A microgrid can be defined
as a low voltage distribution network comprising various dis-
tributed generations (DGs), storage devices, and responsive
loads that can be operated in both grid-connected and islanded
modes [1]. From the point of view of the grid, a microgrid
can be regarded as a controllable element which is connected
to the main distribution network at the point of common
coupling. Power may be imported from, or exported to the

main distribution network under different market tariffs and
microgrid operational conditions. In addition, a microgrid can
provide ancillary services, such as, voltage support and regula-
tion service, to the main distribution grid that a conventional
end-user system cannot [2], [3]. From the point of view of
customers, a microgrid cannot only provide energy, but also
improve local reliability, reduce emissions and contribute to
lower cost of energy supply by taking advantage of distributed
energy resources (DERs), storage devices, and responsive
loads [4]. Furthermore, a microgrid can improve power qual-
ity by supporting voltage and reducing voltage dips [5]. Due
to such benefits, the microgrid has attracted growing attention
from both academia and industry [6].

In order to fully achieve these benefits and supply energy
in a reliable, economical, and environmentally friendly way,
multiple DERs, storage devices, and responsive loads within
the microgrid must be operated in a coordinated and coherent
fashion. To that end, a scheduling system for the microgrid
is fundamentally important. The scheduling system must con-
sider forecasted output of renewable DG and demand, market
tariffs or forecasted electricity and fuel prices and the techni-
cal constraints on devices so as to plan and schedule within
the microgrid as well as the relationships with the main grid
in terms of market participation. Considerable efforts have
been devoted to optimal scheduling and management of micro-
grids [7]. In [8], a dynamic optimal scheduling method for a
microgrid in grid-connected and islanded modes is proposed.
The proposed method is based on dynamic programming com-
bined with equal λ algorithm with a short time interval so
as to consider the frequent fluctuation of renewable genera-
tion. In [9], an energy management system based on a rolling
horizon strategy for a renewable-based microgrid is proposed.
A mixed-integer optimization problem based on the latest
updated forecast results is solved for each sliding window,
and provides schedules for generators and responsive demands.
A central controller based on mixed-integer linear program-
ming (MILP) is developed to solve the optimal dispatch of an
islanded microgrid in [10]. The cost of emissions is considered
in [11].

In the above literature, the scheduling models are all built
on deterministic optimization, which assumes a microgrid par-
ticipates in the real-time market or is isolated. The forecast
errors of renewable resources are neglected. However, the
uncertainty of renewable energy is an important issue for eco-
nomic and secure operation of a microgrid. For this reason,
stochastic optimization and robust optimization, which can
make informed decisions considering these uncertainties, has
been proposed recently [12]–[14]. In [15], a day-ahead market
bidding model for a virtual power plant (VPP) consisting of
an intermittent source, a storage facility, and a dispatchable
power plant is proposed. The bidding problem is formulated
as a two-stage stochastic MILP model which maximizes the
VPPs expected profit by selling and purchasing electricity in
both day-ahead and balancing markets. The uncertain param-
eters, including the power output of the intermittent source
and the market prices, are modeled via scenarios based upon
historical data. However, the risk of lower expected profit is
not considered. The reliability of fuel cells is considered in
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the scheduling of a microgrid by introducing stochastic pro-
gramming in [16]. In [17], a robust optimization-based bidding
strategy for the combination of wind farm and onsite storage in
a deregulated electricity market is proposed. This bidding strat-
egy takes account of uncertainty in both wind power forecasts
and electricity price forecasts.

While [15]–[17] tackle the market bidding problem by
either stochastic optimization or robust optimization, a uni-
fied stochastic and robust unit commitment model is proposed
in [18]. This model can achieve a low expected total cost while
ensuring system robustness by introducing weights for the
components for the stochastic and robust parts in the objective
function. In [19], a hybrid two-stage fuzzy-stochastic robust
programming model is developed and applied to the planning
of an air-quality management system. In the proposed model,
some uncertainties are quantified as probability distribution
functions, whereas the others are modeled by fuzzy member-
ship functions. Various forms of uncertainties are incorporated
within a general framework. In [20], a similar methodology is
used to support an energy trading company to devise con-
tracting strategies. These hybrid models leverage robust and
stochastic optimization to achieve a low expected total cost
while ensuring system robustness.

Another method of handling market bidding problem of
flexible loads/generation, e.g., microgrid is by market redesign.
In [21] and [22], a decision support algorithm and market
participation policy for a load aggregator (LA) managing the
charging of plug-in electric vehicles connecting at the same
distribution network feeder is developed. As a prerequisite, a
power market structure allowing for symmetric availability of
information represented by the joint probability distribution of
clearing prices conditional upon the current state of the sys-
tem is assumed. In [23]–[25], a decentralized optimization of
residential demand to minimize the cost to the utility company
and customers while maintaining customer satisfaction is pro-
posed. The modified market rules allow the market to clear
and discover the socially optimal equilibrium prices. A dis-
tribution locational marginal price based market is proposed
for a distribution network feeder in [26], the day-ahead mar-
ket clearing prices and quantities for real and reactive power
consumed/produced at each load/generation in the network
are determined by minimizing distribution utility cost minus
distributed participant utility subject to full ac load flow rela-
tions and voltage magnitude constraints. These methods are
all involved with market redesign and policy changes, which
are not likely to happen in the near term. For this reason, we
propose a new microgrid bidding strategy, which can directly
fit into the current Independent System Operator (ISO) market
structure.

It should be noted that related bidding strategies have been
proposed in the context of LAs. A stochastic linear pro-
gramming model with scenarios for day-ahead and balancing
market prices and load prediction errors is proposed for a small
price taker agent’s strategy [27]. The purchaser must arrange
purchase for an uncertain demand that occurs the following
day. Deviations from the day-ahead purchase are bought in a
secondary market at a price that differs from the day-ahead
price by virtue of regulating offers submitted by generators.

A game-theoretic assessment of how a large buyer with mar-
ket power should adapt to an electricity pool market with a
day-ahead structure is found in [28]. In [29], the problem of
optimal energy purchases in a deregulated California energy
market is studied considering the uncertainties of demand
and market prices. A stochastic dynamic optimization model
with three sequential markets is formulated. In [30], the price
volatility is explicitly considered in purchase allocation prob-
lems and the sequential nature is modeled by conditional
stochastic characteristics. An analytical solution for the opti-
mal allocation is derived with given demand and statistical
characteristics of the market prices. A genetic algorithm based
optimal bidding strategy for an electricity retailer who pur-
chases power in the wholesale market and supplies it to end
users is proposed in [31]. These efforts do not take into
account distributed renewable resources. In [32], a day-ahead
optimization process for LAs including dispatchable DG and
distributed storage has been proposed assuming deterministic
consumption profiles. The randomness of renewable sources is
considered in [33] and the day-ahead bidding strategy is for-
mulated as a generalized Nash equilibrium problem. Compared
to these existing approaches, the proposed hybrid stochas-
tic/robust optimization model in this paper aggregates adjacent
loads (fixed and responsive loads), micro sources (wind tur-
bine, PV panel, fuel cell, micro turbine, diesel generator,
etc.) and energy storage (batteries) as a controllable cell and
submits buying/selling bids into the day-ahead market. The
uncertainties of renewable sources and market prices in both
day-ahead and real-time horizon are considered explicitly. The
flexibility of responsive demand and energy storage are also
taken into consideration. To the best of our knowledge, no sim-
ilar hybrid model for LA has been proposed in the literature.

The main contribution of this paper is to propose a new
hybrid stochastic/robust optimization model for the microgrid
bidding problem. The objective is to minimize the expected
net cost, i.e., expected total cost of operation minus total bene-
fit of demand. Since the buying prices for generation shortage
in real-time market are usually higher than the day-ahead mar-
ket prices, while the selling prices for generation surplus in
real-time market are normally lower than the day-ahead mar-
ket prices, microgrid should maximize its expected profit from
trading in the day-ahead market, while minimizing as much
as possible the need for resorting to the real-time market
to amend its energy deviations. In addition, real-time mar-
ket prices largely depend on unpredictable market conditions,
making it difficult to capture its underlying stochastic process.
For these reasons, the uncertain output of intermittent DG and
day-ahead market price are modeled via scenarios based on
forecast results, while a robust optimization is proposed to
limit the power unbalance in real-time market taking account
of the uncertainty of real-time market price. The proposed opti-
mization model is solved by MILP and its outputs are hourly
bidding curves to be submitted to the day-ahead market.

The rest of this paper is laid out as follows. In Section II,
a bidding strategy based on pure stochastic programming is
developed. Based on this model, robust optimization is intro-
duced and the hybrid stochastic/robust optimization model is
formulated in Section III. Results of numerical simulations on
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Fig. 1. Schematic of three stages.

a microgrid composed of a wind turbine, PV panel, fuel cell,
micro-turbine, diesel generator, battery, and responsive load
are presented in Section IV. Finally, the conclusion is given in
Section V.

II. BIDDING STRATEGY BASED ON

STOCHASTIC OPTIMIZATION

This section describes a day-ahead market bidding strat-
egy for microgrid based on pure stochastic optimization. The
microgrid operator performs the stochastic optimization to
determine the optimal production and consumption schedules
of dispatchable generators and responsive loads, purchasing
and selling electricity in the day-ahead market, as well as the
charging and discharging schedules of the battery. The day-
ahead and real-time market prices and power output of the
intermittent sources, such as wind and PV are modeled via
scenarios based on forecast results or historical scenarios. An
effective scenario reduction method is essential for reducing
the number of scenarios and the computational burden of the
problem [34].

The optimization problem is formulated as a three-stage
stochastic MILP problem. In the first stage, the microgrid
submits bidding curves into day-ahead market before the day-
ahead and real-time market prices and power output of the
intermittent sources become known. In the second stage, the
day-ahead market is cleared and the day-ahead market prices
are assumed to be known. The power outputs of intermittent
sources are realized by different scenarios right before the real-
time market clearance at each hour. The microgrid schedules
the production and consumption of dispatchable generators
and responsive load as well as storage devices to guaran-
tee feasible operation for each realization of the intermittent
resources. This step happens before the real-time market is
cleared. In the third stage, the real-time market price is real-
ized, and the unbalanced power is absorbed by the real-time
market. It should be noted that both day-ahead and real-time
market prices are forecasted values based on historical data
and other factors. The microgrid is generally a price-taker in
the markets due to its limited capacity. A diagram of these
three stages is shown in Fig. 1. The lighter color stages indicate
decreasing uncertainty. Since the real-time market price will be
known right after the uncertainties of intermittent resources are

realized. It can also be understood as the uncertainties of inter-
mittent resources realized in real-time, but before the real-time
market prices become known. From this point of view, no deci-
sions are made at stage three in the model and the three-stage
model reduces to a two-stage stochastic optimization.

The objective function maximizes the expected benefit of
the microgrid, or equivalently minimizes the expected net
cost, which means expected total cost of operation minus total
benefit of demand. It is formulated as follows:

min
NP∑

p=1

πp

(
NT∑

t=1

λA
ptP

A
pt

+
NW∑

w=1

πw

{
NT∑

t=1

NG∑

i=1

NI∑

m=1

[
λit(m)pipwt(m) + Aiuipwt

]

−
NT∑

t=1

ND∑

j=1

NJ∑

m=1

[
mcjt(m)djpwt(m)

+ Bjujpwt
]

+
NT∑

t=1

NS∑

k=1

ckpwt

(
PD

kpwt + PC
kpwt

)

+
NT∑

t=1

NG∑

i=1

Sipwt
(
uipwt, uipw,t−1

)

+
NT∑

t=1

E
(
λR

pwt

)
PR

pwt

})
. (1)

In the above formulation, the objective (1) is to minimize
the expected net cost, including purchasing/selling electricity
in the day-ahead market (line 1), production cost of dispatch-
able generators (line 2), minus benefit of responsive demand
(line 3 [35]), battery degradation cost (line 4), startup cost
of generators (line 5), and purchasing/selling electricity in
the real-time market (line 6). The degradation cost of battery
is estimated as a linear function of the battery charging/
discharging power [36]. All terms are in mixed-integer linear
form except the startup cost of generators (line 5), which can
be recast into mixed-integer linear form as in [37]. The shut-
down cost of generators can also be included similarly. They
are neglected in this paper due to the small size of generators.

The objective function is subjected to the following con-
straints:

Pipwt =
NI∑

m=1

pipwt(m) + uipwtP
min
i ∀i, ∀t, ∀p, ∀w (2)

Djpwt =
NJ∑

m=1

djpwt(m) + ujpwtD
min
jt ∀i, ∀t, ∀p, ∀w (3)

0 ≤ pipwt(m) ≤ pmax
it (m) ∀i, ∀t, ∀p, ∀w, ∀m (4)

0 ≤ djpwt(m) ≤ dmax
jt (m) ∀j, ∀t, ∀p, ∀w, ∀m (5)

NG∑

i=1

Pipwt + PW
wt + PP

wt + PA
pt + PR

pwt +
NS∑

k=1

PD
kpwt

−
NS∑

i=1

PC
kpwt =

ND∑

j=1

(
Djpwt + DF

jt

)
∀t, ∀p, ∀w (6)
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uipwtP
min
i ≤ Pipwt ≤ uipwtP

max
i ∀i, ∀t, ∀p, ∀w (7)

0 ≤ PC
kpwt ≤ PC,max

k uC
kpwt ∀k, ∀t, ∀p, ∀w (8)

0 ≤ PD
kpwt ≤ PD,max

k uD
kpwt ∀k, ∀t, ∀p, ∀w (9)

uC
kpwt + uD

kpwt ≤ 1 ∀k, ∀t, ∀p, ∀w (10)

SOCkpwt = SOCkpw,t−1 + PC
kpwtη − PD

kpwt
1

η
∀k, ∀t, ∀p, ∀w

(11)

SOCmin
kt ≤ SOCkpwt ≤ SOCmax

kt ∀k, ∀t, ∀p, ∀w (12)

PA
pt ≤ PA

p�t ∀t, ∀p, p� : Opt + 1 = Op�t. (13)

Constraints (2) and (3) approximate the production cost of
dispatchable generators by blocks [38], [39]. Similarly, the
benefit of responsive demand is linearized and approximated
by (4) and (5). The energy balance is enforced by (6). The
total of the electricity produced by dispatchable generators,
wind, PV, storage, and electricity purchased in day-ahead and
real-time markets has to be equal to the amount of respon-
sive demand and fixed demand in the microgrid. The output
limits of dispatchable generators are defined by (7). The
charging/discharging power limits of the battery are enforced
by (8)–(10). The battery SOC is defined by (11) and the
limit of SOC is enforced by (12). Constraint (13) ensures
that the microgrid bidding curve is monotonously decreasing.
Opt denotes the order of price scenario p in each hour t. The
price scenarios are ordered in each hour from the lowest price
value to the highest one. Additionally, each unit or demand is
subject to its own operating constraints, including minimum
up and down time, initial condition, capacity limits, and ramp
limits (see [40] for details about mathematical formulations of
these constraints).

It should be noted that the network configuration of the
microgrid is neglected in our proposed optimization model. We
believe there are two justifications for this simplification. First,
a microgrid practical size may be limited to a few MVA [1].
IEEE draft standard P1547.4 specifies an upper limit of 10
MVA [41]. Due to the limited capacity and the proximity of
load and generation in a microgrid, the network is typically
not the limiting constraint. Second, the network model greatly
complicates the day-ahead bidding model without much likely
benefit. Consideration of the network in the short-term or
real-time horizon, where most of the uncertainties have been
realized, strikes us as more appropriate [42].

III. HYBRID STOCHASTIC/ROBUST OPTIMIZATION

In this section, a hybrid stochastic/robust optimization
model is proposed and formulated to minimize the expected
net cost while limiting the unbalanced power in the real-time
market and taking account of the uncertainty in real-time mar-
ket price. The proposed model expands on the stochastic model
in Section II.

We believe the proposed hybrid stochastic/robust optimiza-
tion is preferable to pure stochastic optimization for two
reasons. On the one hand, the proposed hybrid optimization
model gives the microgrid operator an opportunity to choose
different risk levels according to their system configuration

Fig. 2. Schematic of proposed hybrid stochastic/robust optimization.

and tolerance for risk. Given the high risks and the volatil-
ity in real-time pricing, the profitability and competitiveness
of a microgrid may deteriorate rapidly by relying on the
real-time market to mitigate deviations in energy needs [14].
Through the robust control parameter �, we can actually
control the extent of uncertainty in real-time prices taken
into account; thereby force the bidding strategy to be risk-
preferred, risk-neutral, or risk-averse. On the other hand, the
probability distribution of real-time market prices is not pre-
cisely known and may vary greatly with operating conditions.
This probability distribution function is necessary for stochas-
tic optimization, but not required for robust optimization.
Therefore, instead of using the expected real-time market price
E(λR

pwt) as in (1), we propose a robust optimization counterpart
to control the power imbalanced in the real-time market.

Although the real-time price λR
pwt is hard to estimate and

subject to large fluctuations as mentioned before, one can still
determine some reasonable range for λR

pwt based on statistical
data. Based on this range, each λR

pwt is modeled as an indepen-
dent, symmetric and bounded random variable (with unknown
distribution) which takes a value in [λ

R
pwt − δpwt, λ

R
pwt + δpwt]

with δpwt ≥ 0.
To formulate the robust optimization counterpart, we intro-

duce an integer control parameter �pw, which takes values in
the interval [0, |Jpw|], where Jpw = {(pwt) | δpwt ≥ 0}, i.e.,
λR

pwt is subject to uncertainty for all (pwt) ∈ Jpw. The param-
eter �pw controls the level of robustness in the objective. We
are interested in finding an optimal solution that optimizes
against all scenarios under which a number �pw of real-time
prices can vary in such a way as to maximally increase the
objective function. If �pw = 0, the uncertainty of real-time
prices is completely ignored, while if �pw = |Jpw|, all uncer-
tainties in real-time prices are fully considered, leading to the
most conservative solution [43].

The proposed robust counterpart of (1) is (14), as shown
at the bottom of the next page, where microgrid has to pur-
chase/sell balancing power in the real-time market at the
highest/lowest real-time price. Thus, δpwt|PR

pwt| can be inter-
preted as the penalty for resorting to the real-time market to
mitigate its energy deviations. By maximizing this penalty, the
worst scenario of real-time market price is found, and then this
scenario is improved by the outer minimization.

By strong duality theory, the proposed hybrid stochastic/
robust optimization can be recast as (15)–(20). A detailed
description of how to convert the nonlinear objective
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function (14) into mixed-integer linear form as (15) can be
found in the Appendix [13]. Variables Zpw and qpwt are dual
variables of the inner level maximum optimization problem
in (14) while ypwt is an auxiliary variable used to obtain an
equivalent linear expression

min
NP∑

p=1

πp

(
NT∑

t=1

λA
ptP

A
pt

+
NW∑

w=1

πw

{
NT∑

t=1

NG∑

i=1

NI∑

m=1

[
λit(m)pipwt(m)

+Aiuipwt
]

−
NT∑

t=1

ND∑

j=1

NJ∑

m=1

[
mcjt(m)djpwt(m)

+ Bjujtpwt
]

+
NT∑

t=1

NS∑

k=1

ckpwt

(
PD

kpwt + PC
kpwt

)

+
NT∑

t=1

NG∑

i=1

Sipwt
(
uipwt, uipw,t−1

)

+
NT∑

t=1

[
λ

R
pwtP

R
pwt + qpwt

]}

+ Zpw�pw

)
(15)

s.t. (2)–(13)

Zpw + qpwt ≥ δpwtypwt ∀t, ∀p, ∀w (16)

qpwt ≥ 0 ∀t, ∀p, ∀w (17)

ypwt ≥ 0 ∀t, ∀p, ∀w (18)

−ypwt ≤ PR
pwt ≤ ypwt ∀t, ∀p, ∀w (19)

Zpw ≥ 0 ∀p, ∀w. (20)

The schematic of proposed hybrid stochastic/robust opti-
mization is shown in Fig. 2. The first stage takes account of
the stochasticity of day-ahead market price. The variables in
this stage are the buying or selling quantities under different
day-ahead market price scenarios. These price-quantity pairs
will form the basis for the bidding curves for each hour. The
stochasticity of wind and PV is introduced in the second stage.
The variables in this stage include the unit status and output of
dispatchable units, consumption of responsive load and charg-
ing or discharging power of battery. The third stage ensures the

TABLE I
PARAMETERS OF DISPATCHABLE GENERATORS

result is robust to uncertain real-time price for each scenario.
The variables at this stage are the unbalanced power across all
scenarios. Note that all these variables are linked through the
power balance equality constraint (6) which unifies the three
stages into a single optimization problem.

IV. CASE STUDIES

A. Test System Data

The proposed hybrid stochastic/robust optimization model
is demonstrated on the modified Oak Ridge National
Laboratory (ORNL) Distributed Energy Control and
Communication (DECC) Laboratory microgrid test sys-
tem as shown in Fig. 3. The modified system includes
various DERs, including a wind turbine, PV panel, fuel cell,
microturbine, diesel generator, and battery. The parameters
for the dispatchable generators are shown in Table I [44].
For simplicity, the quadratic cost curves are converted into
three-piece piece-wise linear cost curves. Due to the small
capacity of resources, the minimum up and down time as
well as the ramping rates are neglected.

The 60 kW wind turbine model is from [45]. Based on the
wind speed forecast result, 15 wind speed scenarios are gen-
erated and the corresponding wind generation power outputs
are calculated and shown in Fig. 4. The generation cost of a
wind turbine is assumed to be zero. The 60 kW PV model
is from [46]. The solar irradiance and temperature data is
measured data from [47]. The standard deviations of forecast
errors of solar irradiance and temperature are assumed to be
10% and 3%, respectively. Fifteen scenarios of solar irradiance
and temperature are generated and the corresponding PV out-
put power is calculated. The capacity of the battery is 50 kWh
with a maximum charging/discharging power of 25 kW. The
battery efficiency is assumed to be 0.9.

The analysis is conducted for a 24-h scheduling horizon and
each time interval is set to be 1 h. The forecast total demand
and day-ahead market prices are shown in Table II [44]. The
demand forecast error is neglected for simplicity since it can

min
NP∑

p=1

πp

⎛

⎝
NT∑

t=1

λA
ptP

A
pt +

NW∑

w=1

πw

⎧
⎨

⎩

NT∑

t=1

NG∑

i=1

NI∑

m=1

[
λit(m)pipwt(m) + Aiuipwt

]−
NT∑

t=1

ND∑

j=1

NJ∑
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[
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+
NT∑

t=1

NG∑

i=1

Sipwt
(
uipwt, uipw,t−1

)+
NT∑

t=1

NS∑

k=1

ckpwt

(
PD

kpwt + PC
kpwt

)

+
NT∑

t=1

λ
R
pwtP

R
pwt+max{Spw|Spw⊆Jpw,

∣∣Spw

∣∣≤
∣∣�pw

∣∣}
∑

t∈Spw

δpwt
∣∣PR

pwt

∣∣

⎫
⎬

⎭

⎞

⎠ (14)
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Fig. 3. Modified ORNL DECC microgrid test system.

Fig. 4. Fifteen wind power scenarios.

TABLE II
FORECAST LOAD AND DAY-AHEAD MARKET PRICES

be folded into other uncertainty. The standard deviation of
day-ahead market price forecast error is assumed to be 10%.
Twenty scenarios of day-ahead market prices are generated as
shown in Fig. 5. The magenta line is the average of the red
envelope.

Demand is divided into two parts: 1) fixed; and 2) price
elastic with a proportion of 80% and 20%, respectively.
The price elasticity is set at 0.001 cent/kW2h. The maxi-
mum and minimum price responsive demand is set to be

Fig. 5. Twenty day-ahead market price scenarios.

100 and 0 kW, respectively. Based on these parameters, the
benefit function of responsive demand is calculated, and then
linearized into three-piece piece-wise linear segments. All
numerical simulations are coded in MATLAB and solved using
the MILP solver CPLEX 12.2. With a prespecified duality gap
of 0.1%, the running time of each case is about 5 min on a
2.66 GHz Windows-based PC with 4 GB of RAM.

B. Microgrid Bidding Curves in the Day-Ahead Market

The bidding curves of microgrid in the day-ahead market
for selected hours are shown in Fig. 6. As can be seen, the
bidding quantity decreases as the market price increases for
all hours. Comparing the bidding curves between different
hours, at high price hours, such as hour 14, the bidding quan-
tities are small, but with high bidding prices. While at low
price hours, such as hours 2 and 20, the bidding quantities
are large, but with low bidding prices. This indicates that dur-
ing high price hours, the microgrid increases the output power
of dispatchable units and discharges power from the battery,
while during low price hours, the microgrid reduces its out-
put and charges the battery. In this way, the operating cost is
minimized.
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Fig. 6. Microgrid bidding curves for selected hours.

Fig. 7. Transaction amount in day-ahead and real-time market with microgrid
bidding in day-ahead market.

C. Comparison of Results With and Without Microgrid
Bidding in the Day-Ahead Market

The expectation and standard deviation of transaction
amounts in the day-ahead market and real-time market are
shown in Fig. 7. The vertical bars show the standard devia-
tions and the marks on each bar shows the expectations for
transaction amounts. By participating in the day-ahead market,
the microgrid obtains most of the energy from the day-ahead
market, while the unbalanced power in real-time market is
very small in both expectation and standard deviation. As a
comparison, the transaction amount of microgrid in day-ahead
and real-time market without bidding in day-ahead market is
shown in Fig. 8. As can be seen, the microgrid gets less energy
from the main grid when it can only get energy from real-
time market. This is because the microgrid can only purchase
energy at a higher price than the day-ahead market price with
�pw = 24 for all p and w. In this situation, the microgrid
increases its self-production to reduce the cost. By bidding
into the day-ahead market, the expected cost is reduced from
$361.4 to $237.5 (about 34.28%). The benefits of microgrid

Fig. 8. Transaction amount in day-ahead and real-time market without
microgrid bidding in day-ahead market.

TABLE III
VSS OF DAY-AHEAD MARKET PRICE AND WIND AND PV

bidding in the day-ahead market are twofold. First, the micro-
grid reduces its economic risk by obtaining most of the energy
it imports from the day-ahead market instead of real-time mar-
ket. Second, a lower real-time balancing capacity is needed for
the utility or ISO.

D. Calculation of the Value of Stochastic Solution

To show the advantage of stochastic optimization over
deterministic optimization (which can be found by replac-
ing corresponding random variables by their expected values),
we calculate the value of stochastic solution (VSS). First, we
replace corresponding random variables by their expected val-
ues and solve the deterministic optimization. Second, we test
this deterministic solution with the possible scenarios of the
random variables and find the expected cost of using the deter-
ministic solution. This expected cost measures how well the
deterministic solution performs. The difference between this
expected cost and stochastic solution is the VSS. As shown
in Table III, considering the stochasticity of the day-ahead
market price reduces the expected operating cost of the micro-
grid by 2.39%. Similarly, considering the stochasticity of wind
and PV output, the expected operating cost of microgrid is
reduced by 0.66%.

E. Effect of Robust Optimization

A robust formulation is proposed in this paper to limit the
unbalanced power in real-time market. In order to show the
effect of robust control parameter �pw, we assume all �pw = �
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Fig. 9. Effect of robust control parameter �.

Fig. 10. Expectation of unbalanced power in real-time market with
different �.

without loss of generality and calculate the bidding curves
for different values of �. Then, we test these bidding curves
with possible scenarios of real-time market prices and find
the expected costs of these bidding curves calculated with
various values of �. Twenty scenarios of real-time market
prices are generated using a normal distribution. The gener-
ated real-time market prices has the same expectation as the
day-ahead prices, but higher standard deviation (15%). The
worst scenario costs and expected costs with different � are
shown in Fig. 9. As � increases, the expected cost mono-
tonically increases with �, while both cost of worst scenario
and standard deviation of cost decrease, i.e., the more robust
the solution, the higher the expected cost. This indicates the
tradeoff between risk and benefit. In order to show the effect of
� on unbalanced power in the real-time market, the expecta-
tions and standard deviations of unbalanced power in real-time
market with different � are shown in Figs. 10 and 11. With
higher �, both expectation and standard deviation of unbal-
anced power in real-time market decrease, the economic risk
is reduced and the solution becomes more robust. This gives
the microgrid operator an opportunity to choose different risk
levels according to their system configuration and tolerance
for risk.

Fig. 11. Standard deviation of unbalanced power in real-time market with
different �.

V. CONCLUSION

In this paper, a new bidding strategy for a microgrid in
the day-ahead market based on a hybrid stochastic/robust
optimization is proposed. The uncertain output of intermit-
tent DG and the day-ahead market price are modeled via
scenarios based on forecasts, while a robust optimization is
proposed to limit the unbalanced power in real-time mar-
ket taking account of the uncertainty in the real-time market
price. Compared to a pure stochastic optimization model, the
proposed hybrid model is robust against uncertain real-time
market price by limiting the unbalanced power in the real-
time market. Numerical simulations on a microgrid composed
of a wind turbine, PV panel, fuel cell, micro-turbine, diesel
generator, battery, and responsive load show the advantage
of stochastic optimization as well as robust optimization. In
particular, the proposed hybrid stochastic/robust optimization
model links the unbalanced power in real-time market with a
robust control parameter. In other words, by selecting different
values for the robust control parameter, the microgrid opera-
tor can choose different risk levels according to their system
configuration.

APPENDIX

DERIVATION OF ROBUST OBJECTIVE FUNCTION (15)

Since only the last term of (14) is nonlinear, we need to
convert it into mixed-integer linear form. The last term of (14)
can be expressed as

β = max{Spw|Spw⊆Jpw,|Spw|≤|�pw|}
∑

t∈Spw

δpwt

∣∣∣PR
pwt

∣∣∣

= max

⎧
⎨

⎩
∑

t∈Jpw

δpwt

∣∣∣PR
pwt

∣∣∣zpwt :
∑

t∈Jpw

zpwt ≤ �pw,

0 ≤ zpwt ≤ 1, ∀t ∈ Jpw

⎫
⎬

⎭. (21)

By the property of strong duality, we can formulate the dual
problem of (21) as (22), where Zpw is the dual variable of
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constraint
∑

t∈Jpw
zpwt ≤ �pw, qpwt is the dual variable of con-

straint zpwt ≤ 1, and ypwt is auxiliary variable used to obtain
equivalent linear expression

β = min

⎧
⎨

⎩
∑

t∈Jpw

qpwt + Zpw�pw : qpwt ≥ 0, Zpw ≥ 0,

Zpw + qpwt ≥ δpwt
∣∣PR

pwt

∣∣, ∀t ∈ Jpw

⎫
⎬

⎭

= min

⎧
⎨

⎩
∑

t∈Jpw

qpwt + Zpw�pw : qpwt ≥ 0, Zpw ≥ 0,

Zpw + qpwt ≥ δpwtypwt, ypwt ≥ 0

− ypwt ≤ PR
pwt ≤ ypwt, ∀t ∈ Jpw

⎫
⎬

⎭. (22)

Assume all λR
pwt are subject to uncertainty, substitute (22)

into (14), we obtain the objective function of robust UC in
mixed-integer linear form as (15).
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