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Considering Network Operational Constraints

Benyamin Moradzadeh, Student Member, IEEE, and Kevin Tomsovic, Fellow, [EEE

Abstract—This paper suggests a decentralized optimization of
residential demand to minimize the cost to the utility company and
customers while maintaining customer satisfaction. As an impor-
tant feature, distribution system constraints such as equipment ca-
pacity, line flow limits, and phase balance constraints are taken into
account. Due to the large amount of uncertainty in the residen-
tial demand, a two-stage pricing is considered. In the first stage,
day-ahead prices as well as residential appliance scheduling are
determined through interaction of the utility company and res-
idential customers. Uncertainty of the customer demand is also
considered in the day-ahead pricing. In the second stage, on the
other hand, prices will be updated based on the actual residential
loads. Similar to locational marginal price (LMP) in transmission
system, customers on different nodes are charged with different
prices. Performance of the approach is shown on a sample distri-
bution system.

Index Terms—Decentralized optimization, demand response
(DR), dual decomposition, real-time pricing (RTP).

I. INTRODUCTION

HILE DIRECT load control of end-user loads has ex-

isted for decades, price driven response programs are
only beginning to be explored at the distribution level. These
programs utilize a price signal as a means to control the de-
mand [1]. Implementing RTP in transactive markets requires
distributed controllers and a centralized auction to create an in-
teractive system which can limit demand at key times on a dis-
tribution system and decrease congestion [1].

Due to high utilization of plug-in hybrid electric vehicle
(PHEV), there will be a considerable potential for congestion
in distribution systems. Congestion can happen in distribution
lines and cables or in the form of overload in transformers
[2]. The challenge in the DR management is to converge to
a solution across the numerous customers while ensuring the
utility distribution system satisfies operational and reliability
constraints. Much of the literature in this area fails to account
for these network constraints.

There exists extensive literature on demand response
[3]-[12]. In [3] and [4], residential response management
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is performed only on selected types of appliances. In [5], the
authors extend the study to include different appliances in a typ-
ical household and propose a method for customers to schedule
their available distributed energy resources to maximize net
benefits in a day-ahead market. Scenario-based stochastic opti-
mization and robust optimization approaches are developed in
[6] to explore optimal real-time DR management decisions with
respect to time varying electricity price uncertainties. Authors
in [7] proposed a robust linear programming-based approach
to schedule the load in presence of real-time price uncertainty.
In [8] the electricity price is modeled as a Markov chain with
unknown transition probabilities. This model features implicit
estimation of the impact of future electricity prices and current
control operation on long-term profits. The mentioned papers
only optimize the energy consumption of a single smart house
to reduce electricity bill for residential customers. However,
this may not solve the peak demand issue in residential feeders.
For example, if every household desires to shift its load to
off-peak times, the energy provider will face a new on-peak
period. In other words, it shifts in time rather than limits the
peak.

In [9]-[12], researchers include both energy provider and
customer benefits. The authors in [9] consider a power network
where customers choose their daily schedules of household
appliances/loads by playing games among themselves and
the utility company tries to adopt adequate pricing tariffs that
differentiate the energy usage in time and level to make the
Nash equilibrium minimizes the energy costs. However, cus-
tomer satisfaction is not explicitly represented in the problem
formulation. A decentralized optimization based on social
welfare maximization is proposed in [10] and [11]. Although
customer satisfaction is considered in the optimization, these
papers fail to develop appropriate customer utility functions
based on different residential appliances. In order to deal
with uncertainty of the residential demand, the authors in [13]
propose a stochastic sub-gradient algorithm for the day-ahead
energy procurement. Nevertheless, due to the large number of
residential customers and numerous scenarios associated with
random behavior of the customers, stochastic programming is
very challenging to implement.

This paper offers a two-stage pricing approach to encourage
residential customers to participate in the DR program. The
pricing mechanism is similar to the wholesale power market
at the transmission level in which there are two markets (day-
ahead and real-time) for generation units and loads to partici-
pate.

In the first stage of the proposed DR management, day-ahead
prices are calculated based on social welfare maximization. This
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is a decentralized approach in which home area network man-
agement systems (HAN) and distribution utility company ex-
change information on energy consumption and price. When the
optimization converges, the day-ahead prices as well as residen-
tial appliance energy consumption patterns are determined. In
order to include network operational constraints, nodal pricing
is proposed in this paper. This is similar to locational marginal
price (LMP) at transmission level. In real-time, the price is cal-
culated based on the actual residential load. Another impor-
tant consideration of the proposed approach, and frequently ig-
nored in the literature, is to avoid overly sophisticated deci-
sion-making at the customer level. Most customers will have
limited capacity or need for elaborate scheduling where actual
energy cost savings will be modest. Demand uncertainty is an-
other important challenge which will be addressed in the present

paper.

II. SYSTEM MODEL

Currently, the independent system operators (ISOs)/ regional
transmission organizations (RTOs) have visibility into transmis-
sion substations, but may have visibility into large sub-trans-
mission substations where large commercial and industrial cus-
tomer DR programs are located, but generally does not have
visibility into the distribution network where most of the small
commercial and the main residential DR takes place. Other en-
tities, such as utility distribution companies (UDCs) and load-
serving entities (LSEs) interact directly with consumers on the
one hand and the ISO/RTO operator on the other hand. They
play an important role in bundling the DR from their subscribed
customers into products used in the ISO/RTO markets [2]. The
utility company purchases electricity from wholesale market
and sells it to the customers in the retail market. The system
model is described in the following section.

A. Utility Distribution Company

A small representative section of a residential feeder, in-
cluding part of the substation is exhibited in Fig. 1[14].

The utility company tends to minimize its cost while ensuring
that the distribution system operational constraints are satisfied.
The cost function can be expressed as a convex function based
on the aggregated residential load supplied by the utility [9]:

Ny
C' =Y a(P})? +bP! +c (1)

i=1

where C* is the cost of providing energy at time #; P} is the ag-
gregated load on lateral i at time #; N; is the number of laterals;
and a, b, and ¢ are constants.

In order to improve system reliability and reducing customer
disturbances, the utility company needs to make sure that the
network operational constraints such as equipment capacity, line
flow limits, and voltage level are not violated. In addition to the
mentioned constraints, current and voltage imbalance are the
most severe power quality problems in low voltage (LV) dis-
tribution networks [15]. An increase in the voltage imbalance
can result in overheating and de-rating of all induction motor
types of loads and also the distribution transformers [16], [17].
As shown in Fig. 1, residential loads are mostly single-phase.
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Fig. 1. A small section of a residential feeder.

Therefore, the electric utilities usually try to distribute the res-
idential loads equally among the three phases of distribution
feeders [18]. Phase balancing of a 3-phase residential feeder
will be very challenging due to the random nature of residen-
tial loads. Besides, the magnitude of neutral current of the res-
idential feeders will be very stochastic and may cause random
tripping of feeders due to neutral current constraint. Therefore,
it is very important for the utility company to mitigate the phase
imbalance problem. In this paper, distribution system opera-
tional constraints such as equipment capacity, line flow limit,
and phase balance constraints are considered in the DR manage-
ment. The optimization problem (2) minimizes the cost to the
utility company subject to the distribution system constraints.

T
min Z ct 2)
t=1
s.t
Ny
z .a b < Y (3)
P 4)
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0< Pl < pmes @)
0 S Plt S Pl'ma,;n (8)

where N,, Ny, and N, are number of An, Bn, and C'n phase
laterals, respectively. P, P!,, and P} are residential loads
on phases a, b, and c, respectively. + is the maximum level of
acceptable phase imbalance. A is the node-incidence matrix;
and P} and P/ are vectors of line flows and loads on the buses
at time ¢, respectively.

Constraints (3)— (5) state that the phase imbalance should stay
in a standard range set by the utility company (7). For example,
the utility company can set v based on over-capacity of un-
balanced transformer (OCUT) index used in [15]. It is worth
mentioning that the formulation can easily include 3-phase and
2-phase laterals as well.

Constraint (6) expresses active power balance on every node
(for the sake of simplicity the active power loss on the line is
not considered). Constraints (7) and (8) formulate the line flow
limit and distribution transformer capacity limit, respectively.

B. Residential Loads

In every household, HAN schedules the appliances to
minimize the utility bill while mitigating the impact on the
user’s comfort. The loads within the residence can be cat-
egorized based on whether they can be scheduled to later
times. These will be labeled schedulable and non-schedulable
loads. For instance, lighting and computer usage are generally
non-schedulable loads; while washing machines, heating and
air conditioning systems are considered as schedulable loads.
Obviously, the agents can only manage schedulable loads. Note
some loads can be reduced, such as, lighting, for periods of time
at the cost of convenience and would normally be done at times
of extreme shortage. For simplicity, these are not modeled here.
In this paper, residential loads are divided into five classes. In
the following section, the detailed model of a smart home is
presented.

1) Class 1: This class includes non-schedulable appliances
such as refrigerator-freezer, electric stove, lighting, TV, com-
puter, etc. As mentioned before, one of the important features
of the pricing algorithm is to avoid burdening the customers.
Since it will be very inconvenient for the customers to forecast
their usage of the appliances in this class, it is assumed that the
HANSs will estimates the energy consumption of this class based
on statistic data and parameters such as number of people in the
house, day of the week, and season. This information can be
estimated based on the customer behavior during the last few
days. Note that the information can also be entered by the cus-
tomers if they want to. Because of the inaccurate prediction of
the energy usage of class 1 appliances, a normal distribution
function is used to model uncertainty of the forecast. Normal
distribution function has been widely used in load forecasting
in power systems [19]. Suppose that £} is the estimated energy
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consumption of class 1 appliances in a house. Then, the actual
energy consumption of non-schedulable loads is obtained by:

Et=FE{+6. 6 =%(0,07) )
where E? is the actual load and § is the forecast error with zero
mean and variance o2,

2) Class 2: This class contains devices which have a pre-
scribed energy requirement, &, that has to be completed over T
time slots, starting from time ¢;. An example is charging of a
PHEYV, where the user may specify the time for charging to start
and required completion time. For example, a PHEV sedan for
a 40-mile daily driving range needs £ = 16 kWh in the battery
[20]. The PHEV utility function considered in this paper is as
follows:

Ulq) = apy (E—¢)’ (10)

where ¢“"¢ is the total energy given to the battery by the end
of charging period, and a gy is the weighting factor determined
based on customer preference. The charge level at each time slot
is given by:

q(T) = q'init + Z Db (t)t
t=t;

T < ph < ppeT (11)

where p! is the charging rate at time ¢. pj**"* and py"*'"* are min-
imum and maximum charging rates, respectively.

3) Class 3: This class includes thermal loads such as heating,
ventilation and air-conditioning (HVAC), water heater, and
cooled water reservoir, with temperature profile § , which must
be kept within minimum and maximum temperature limits,
Omin and fh.x. The temperature of the heat store evolves
according to:

B(t) = 6(t — 1) + a(8*™"(t) — 6(t — 1)) + BE*  (12)
where 4™ (t) is the ambient temperature profile; £ is the en-
ergy consumption of the thermal load at time ¢; and « and /3
are parameters that specify the thermal characteristics of the ap-
pliance and the environment where it operates. This formula-
tion models the fact that the current temperature depends on the
current power draw as well as the temperature in the previous
time-slot [21], [22].

The utility function is developed based on the deviation of
the temperature from customer setting as follows:

e (6(8) = 6°)°
S g(t) S efm,a,:lz

Omin (13)
where .. is the determined based on how customer cares about
the temperature.

4) Class 4: This class of appliances includes deferrable
loads. These loads must consume a minimum amount of power
over a given interval of time, which is characterized by the
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constraint ), pi(t) > E, where £ is the minimum total
consumption for a certain period of time. In some cases, such as
dishwasher and cloth washer/dryer, the load can only be turned
on or off in each time period. These appliances consume more
or less fixed power while they are on. The primary interest of
customers is that the work is done by a certain time. Therefore,
based on the electricity price and the resident’s comfort, the
HAN decides when to turn the device on.

5) Class 5: This class of appliances includes battery storage
units which can be used to maximize the utilization of the resi-
dential renewable energy resources such as rooftop solar panels.
The utility function of a battery is considered as follows:

Ulg) = an(Py)* — aa Py Py (14)
where o1 and ay are positive constants and Py is the battery
output power at time £. The first term captures the damaging
effect of fast charging and discharging; and the second term pe-
nalizes charging/discharging cycles. The charge/discharge con-
straints are formulated as follows:

(15)
(16)

—(1-SciThHe, < Pit < (SC — Dy)Gy
— fchymax <P lf < Ptfl)c,v'n,a,;n
where S, is the state of the charge of the battery, D, is the min-
imum acceptable energy in the battery, and C} is the capacity
of the battery. In order to preserve battery’s life, (6) guarantees
shallow discharge.

III. PRICING MECHANISM

We are looking for a decentralized DR in which HANs at
the residences communicate with the utility company through
Advanced Metering Infrastructures (AMI). HANs receive the
prices for the next 24 hours from the utility company and
schedule residential appliances based on the hourly prices and
customers’ utility functions. Then, the day-ahead prices are
updated based on the messages sent to the utility distribution
company by the HANS. As mentioned earlier, even though
uncertainty of the demand is considered in the day-ahead
optimization, due to the highly unpredictable behavior of the
customers day-ahead prices do not exactly reflect the actual
residential loads. Therefore, the prices need to be updated
in real-time. This paper offers a two-stage pricing approach
to encourage residential customers to participate in the DR
management program. In the first stage, day-ahead prices are
calculated based on social welfare maximization. The second
stage determines the real-time prices based on the actual resi-
dential loads.

A. Day-Ahead Pricing

From a social fairness point of view, it is desirable to mini-
mize the cost to the energy provider while mitigating the impact
on the user’s comfort. The social welfare maximization is math-
ematically formulated as follows:

T [N N, N; N

Ny
min Y [SePH+3Y S > D, an
=1

t=1 i=1j=1k=1
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s.t
N; N
SN EBp ;i< PV (18)
J=1 k=1
(3)-(®) (19)
class(2) — (5) constraints (20)

where P is the aggregated load on node i; D, ; ; and £} ; ; are
disutility (discomfort) function and energy consumption corre-
sponding to the k" appliance in j** house which is located
on node i. Equation (18) guaranties the supply-demand bal-
ance on every node. Equation(19) includes the network oper-
ational constraints (3)—(8). Equation (20) includes constraints
corresponding to different classes of residential loads explained
in Section II-B. where P/ is the aggregated load on node i;
Dj, ;. and Ej ;, are disutility (discomfort) function and en-
ergy consumption corresponding to the k" appliance in 5*"
house which is located on node . Equation (18) guaranties the
supply-demand balance on every node. Constraint (19) includes
the network operational constraints (3)—(8). Constraint (20) in-
cludes constraints corresponding to different classes of residen-
tial loads explained in Section II-B.

When load uncertainty exists due to the stochastic behavior
of the residential customers, the optimization problem (17) be-
comes minimization of the expected value of the objective func-
tion (stochastic optimization model). In order to avoid sophis-
ticated algorithms at the residence, we only consider the un-
certainty associated with class 1 appliances in the day-ahead
market. The uncertainty of the other load types will be addressed
in the real-time price adjustment program. Since no utility func-
tion is considered for class 1 appliances, the uncertainty only af-
fects constraint (18). Different uncertainty models can be con-
sidered. In this paper, a normal distribution is used to model
uncertainty of the demand forecast for class 1 appliances. The
energy provider guarantees to supply the residential demand. In
other words, the probability of power shortage should be small.
Mathematically,

Pr ZE};L —Pl>n| <eVi 20
k.j

where 7 is a specified threshold indicating the amount of supply
shortage and ¢ is a small positive value [23]. It is assumed that
6 is an independent variable for different houses. Therefore, the
aggregated ¢ over N, houses will be calculated as follows:

N;
Bagg =Y _6; ~N[0,> o (22)
Jj=1 J
Therefore, (21) turns into:
Pr|Y Epji+bagy— P 2n| <eVi (23)
k.j
(24)

ZEIZJL <Pl +n— \/ﬂ 0 '(e)
k. -
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where Q(z) = 1/V2r [~ exp(—u?/2)du. In addition to
the forecasted demand, evéry HAN needs to report its 6 to
the utility company. Despite the fact that the centralized
optimization problem (17) seems easy to solve, the commu-
nication overhead requirements create concerns. Moreover,
customers generally want to preserve their privacy and may
wish to withhold detailed information on energy consumption
to the utility company. Therefore, a decentralized optimization
method seems both preferable and more practical to implement.
This can be done through deployment of advanced metering
infrastructures (AMI) and HANS.

A global solution can be efficiently found for a convex opti-
mization problem. However, when the network is not convex,
even finding a feasible solution becomes difficult. The opti-
mization problem (17) is convex, except for class 4 residential
loads which are on/off devices. We simply relax the integer con-
straints (on/off) and convert the integer programming optimiza-
tion problem into linear programming. An approximate solu-
tion can be obtained by rounding the solutions of the relaxed
problem into the nearest integers.

The convex problem (17) has a separable structure. There-
fore, it can be solved in a decentralized way through dual de-
composition and sub-gradient method. Keeping the rest of the
constraints implicit, the Lagrangian function for (17) is given
by:

L (B, (R = S Yo+ 3 Y 0t

t=1i4.k
T N
L3S ) @3
t=1 =1
min L ({/\f}n {Elt”t} {Pi}) (26)

where BY = 5, 2, (0= PL D)=+ (/X;02) Q71(e).
At denotes the Lagrange multiplier corresponding to constraint
(18). The Lagrangian minimization (26), is easily seen to be
decomposed to optimizations at the utility level and residents.
Specifically, the dual decomposition method consists of the fol-
lowing iterations, indexed by £ = 1,2, ... and initialized with
arbitrary Al > 0, and 3; as the step size.

N, N,
min (Z (Pl = MWP! (1)) Vi (27)
5.t - -
(3)—(8) (28
min (D} (1) + A ES (D), Vi g,k (29)
5.t
class(2) — class(5) constraints. (30)

The Lagrangian multiplier for each node is updated according
to:
A(L+ 1) = max [AL (I) + 8, B!, 0] , Vi.

3

(€1))

The Lagrangian multipliers are considered as the nodal
prices. This is a similar concept to LMP in transmission system.
Through setting the nodal prices, the utility company can

2343

involve the customers in mitigating violations in network oper-
ational constraints. For example, when a transformer overload
happens, the customers on the corresponding lateral will be pe-
nalized with extra charge due to their exceeding energy usage.
The higher price encourages the customers to reduce their load
[according to (29)]. This concept will be demonstrated and
discussed in the simulation results.

The optimization problem (27) is performed by the utility
agent over £ = 1 : 7. Equation (27) maximizes the utility
company’s profit with respect to the distribution grid con-
straints. Optimization (29), which is performed by HANs at the
residence, minimizes the customers electricity bill as well as
disutility function. The Lagrangian multipliers, corresponding
to nodal prices, are updated in each iteration according to
(31). This process repeats until B! is smaller than a specified
threshold for every node i (a small positive number).

Convergence of iterative approach (27) can be obtained for
the following three step size rules: constant step size, non-sum-
mable but square-summable step size, and step size given by
harmonic series. Convergence of the subgradient method with
these step size rules is studied in the literature. The related re-
sults are summarized and discussed in [11].

In order to guarantee convergence, primal averaging is nec-
essary if the objective function is neither strictly convex nor fi-
nite. It should also be used when the objective is not a function
of all optimization variables [11]. In this problem, the primal
objective function is strictly convex and finite. However, it is
not a function of all optimization variables, which is a con-
sequence of considering different device classes (utility func-
tions are not defined for some appliance classes). Therefore,
running average method is applied for all the variables, e.g.,
Ejt e = 1/03° EJ’ .- Authors in [11] prove that the algorithm
finds near-optimal schedules even when AMI messages (up-
dated prices and residential load) are lost, which can happen
in the presence of malfunctions or noise in the communications
network. It is worth noting that when the primal objective func-
tion is not strictly convex and/or finite, the alternating direction
method of multipliers (ADMM) can be used to guarantee con-
vergence [24].

B. Real-Time Price Adjustment

As mentioned before, because of the highly random behavior
of the residential customers a price adjustment in real-time is
needed to reflect the actual residential load. Customers partic-
ipate in the day-ahead market and purchase electricity as dis-
cussed in the last section. In the real-time, the price is calculated
based on the actual residential load. This is similar to optimal
power flow (OPF) in transmission system.

For a resident who participates in day-ahead market, in case
that real-time price is higher than the day-ahead price, he will
pay the same price as the day-ahead price. However, if the resi-
dence consumes more energy as he promised in the day-ahead,
he has to pay for the extra energy with the real time price.
In other words, the customers participating in the day-ahead
market are charged with the minimum price between day-ahead
and real-time price.

In order to encourage customers to accurately/honestly report
their estimated energy consumption in day-ahead, a penalty can
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Fig. 2. Topology of the test system.

be set by the utility company to penalize large difference be-
tween day-ahead and real-time energy consumption of the resi-
dences which can be expressed by:

| Ean — Ere]| < (32)
where Fgj, is the hourly energy consumption scheduled by a
residential customer in day-ahead and F,; is the hourly demand
of the residence in real-time. ¢ is a threshold set by the utility
company.

Through encouraging the customers to participate in the day-
ahead market, utility company can have a better estimation on
the residential load and plan to cope with potential violation in
distribution system operational constraints such as transformer
overload and congestion.

IV. SIMULATION RESULTS

The simulations are performed on a 2.66 GHz, 4 GB RAM
PC. The software tools used for the simulations are MATLAB
2011b and ILOG CPLEX 12.2 under Windows 7 operation
system. Performance of the proposed algorithm is demonstrated
on a simple system with 30 residential customers.

Configuration of the test system is exhibited in Fig. 2 with 6
residential laterals and equal number of houses on each lateral.
It is assumed that the system two An, two In, and two Cn
phase laterals. In our simulation, " = ¢! = 0, and a’ = 0.5 are
considered for the utility company cost function in (1).

Different types of customers are considered in the simula-
tions. For example, some customers are out of their houses
during the working hours while some other stay in their house
the entire day. Each household is also assumed to have schedu-
lable appliances such as PHEV, air conditioner, washer/dryer,
and dishwasher. Different houses use different weighting
factors for utility functions corresponding to the residential
appliances.

The optimization is performed over 24 hours time horizon.
Fig. 3 shows the convergence of the approach on the feeder at
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Fig. 3. Convergence of the algorithm at the residential feeder.

6:00 p.M. Hourly nodal prices and residential appliance sched-
uling over 24 hours will be obtained at the point of convergence.
It is worth noting that different time intervals, e.g., 15 minutes,
can also be considered.

A small constant stepsize (J = 0.15) is chosen for the sub-
gradient updates, coupled with dual and primal averaging, in
order to obtain near-optimal dual and primal values in a finite
number of iterations. As observed in Fig. 3, the decentralized
optimization is converged after several iterations. Note that the
utility company and HANs exchange small size of information
(price and residential energy consumption). The power schedule
updates occur in parallel across all residential customers and
therefore the computation time per iteration is the maximum
time, over the utility company and all houses, to solve their opti-
mization problem. Therefore, speed of the process does not de-
pend on the number of the customers. Moreover, since simple
models of residential appliances are considered, the optimiza-
tion performed by HANSs is fast. In our test case, it takes 0.2
seconds for the algorithm to converge.

Fig. 4—Fig. 7 show the effect of distribution system op-
erational constraints on nodal prices Fig. 4—Fig. 5 show
the change in nodal price (¢/kWh) on bus 6 due to distribu-
tion transformer capacity constraint. As shown in Fig. 4, the
aggregated load on node 6 is reduced to avoid transformer
overload. When distribution transformer overload happens, the
decentralized optimization approach automatically increases
the nodal price on bus 6 (Fig. 5). Therefore, some customers
prefer to reduce their energy consumptions. For example, if a
customer has not assigned a high weighting factor for HVAC,
the energy consumption of the HVAC will be reduced by HAN
(the temperature deviates from the set point but still remains in
the comfortable range). This is because the HAN minimizes the
customer’s utility bill as well as disutility function according to
(29). Similar situation will happen in case of line congestion.
For example, when a distribution line is congested, customers
on the downstream nodes will be penalized with extra charge
due to their exceeding energy consumption. The higher prices
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change the solution of (29) in such a way that the network
operational constraint violation is prevented.

Fig. 6—Fig. 7 show the effect of phase balance constraints
on the optimization results, i.e., residential load and nodal
prices. Fig. 6 exhibits the difference of loads on phases @ and ¢
( El\:l p— Z:\:l P/ .|) when the phase balance constraints
is included. As shown in Fig. 7, the nodal prices (¢/kWh) on
the phases change in such a way that (3)—(5) are satisfied. For
example, if phase ¢ has a higher load than phase ¢ in such
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Fig. 7. Effect of phase balance constraint on nodal prices.

a way that | SN P!, - SN Pl >~ (v = L7 kW in
the simulations), the nodal prices on the laterals connected
to phase ¢ will increase while the nodal prices on the nodes
supplied by phase « decrease. As the price changes, the result
of optimization problem (29) for the residences located on the
mentioned phases will change. Similar results will be obtained
for phases ¢ — b, and b — c.

It is worth noting that the distribution system operational con-
straints can also be included as soft constraints. In other words,
the objective function of the utility company can include these
soft constraints by assigning different weighting factors. There-
fore, the operational constraints such as phase balance can be
violated but the customers will have to pay more money de-
pending on the weighting factors set by the utility company. In
the second stage, the day-ahead prices are updated according
to the discussion in Section III-B. The customers who partic-
ipate in the day-ahead market have the advantage to pay less
for their promised energy consumption. Moreover, to encourage
the customers to honestly/accurately report their day-ahead de-
mand, a penalty function based on the difference between hourly
day-ahead and real-time demands can be set by the utility com-

pany.

V. CONCLUSIONS

In this paper, a two-stage pricing mechanism is proposed for
residential demand response management. In the first stage,
day-ahead prices and residential load schedule are obtained
through a decentralized optimization. Day-ahead pricing is
very important as it helps the utility company to have a good
estimation on the load for the next day. The decentralized
optimization is developed using dual decomposition and
sub-gradient method.

The objective of the day-ahead optimization is minimizing
the cost to the utility company and residential customers while
maintaining customer satisfaction. Five different classes of the
residential appliances are considered and detailed models are
developed accordingly. Since the energy consumption of non-
schedulable residential loads is challenging to forecast, a normal
distribution function is used to model the uncertainty of the es-
timation. As an important contribution of the paper, distribu-
tion system operational constraints such as equipment capacity,
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line flow limits, and phase balance are taken into account in the
pricing mechanism. Effect of the operational constraints on the
nodal prices are demonstrated and discussed.

Due to the highly random energy consumption at the resi-
dence, the second stage of pricing is used to adjust the price in
real-time. The real-time price reflects the actual residential load.
An extension to this work can be achieved through including
distributed renewable resources owned by the utility company
and/or residents. The demand response management program
should help to maximize the utilization of these stochastic en-
ergy resources.
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