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Congestion Influence on Bidding Strategies
in an Electricity Market

Tengshun Peng and Kevin Tomsovic, Senior Member, IEEE

Abstract—Much of the research on bidding strategies in an
electricity market has focused on idealized situations where par-
ticipants have limited market power and the transmission system
is not constrained. Yet, congestion may act to effectively give a
bidder market power, and consequently the ability to influence
the market clearing price. In such a noncompetitive situation,
the bidding strategies of market participants will change. In this
paper, the electrical power market is modeled as an oligopoly
market and the Cournot quantity model is applied to the bidding
strategy problem. The bidding process with congestion manage-
ment is modeled as a three level optimization problem. A statistical
methodology is then proposed as a solution for large systems.

Index Terms—Auctions, bidding strategies, congestion manage-
ment, market clearing price, mixed strategy equilibrium, Nash
equilibrium.

I. INTRODUCTION

UNDERSTANDING how market participants bid into the
electricity market is of fundamental importance for de-

signing electricity markets. Generally, the objective of market
participants is to maximize their expected profit. Since the ex-
pected profit of each participant depends upon the joint actions
of others, effective decision-making requires that each partici-
pant evaluate the effects not only of their own actions, but also of
the actions undertaken by the others. The complexity of these in-
teractions make it difficult to determine ahead of time the strate-
gies that market players will employ in bidding.

There have been numerous attempts to model bidding
strategies using optimization methods. For example in [1],
a Lagrangian relaxation method was used to determine the
utilities’ optimal bidding and self-scheduling, and based on the
New England ISO, a closed form solution was found assuming
a simple bidding model. In [2], the power market was treated as
an oligopoly, and by “guessing” competitor’s bidding curves, a
stochastic optimization model was built. Richter and Sheble ap-
plied a genetic algorithm to GENCO strategies and schedules,
in which an intelligent bidding strategy was developed using a
GP-Automata algorithm [3]. In [4], the combination of different
pricing systems and curtailment methods was analyzed so as
to understand methods to prevent taking advantage of network
congestion. Hao studied the bidding strategies in a clearing
price auction [5]. Based on the clearing price auction, the
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author drew the conclusion that the market participants have
incentives to mark up their bids above their production cost
and the amount of mark up depends on the probability of how
frequently they win the bid.

Ni, et al., presented a unified optimization algorithm for the
bidding strategy problem given a mix of hydro, thermal and
pumped storage units [6]. Their algorithm manages bidding risk
and self-scheduling requirements. Gan and Bourcier modeled
the market as a single-period auction oligopoly market and
examined the influence of suppliers’ capacity constraints [7].
Shrestha,et al., analyzed the effect of minimum generator
output [8]. Others, such as Ferrero,et al. [9], applied game
theory to analyze transactions. In their work, spot price was
used to calculate the payoff matrix and both Nash equilibrium
and characteristic functions were applied to the bidding anal-
ysis. Congestion charges were not considered in their work.
Hobbs and Kelley applied game theory to electric transmission
pricing [10]. Bai, et al. applied the Nash Game equilibrium
concept to the transmission system [11]. Yu,et al. [12] in-
vestigated transmission limits and the influence of wheeling
charges on competitive and gaming behavior. It was shown that
wheeling charges and transmission line limits stimulate gaming
phenomena.

While providing valuable insight into transmission system
impacts, none of these efforts have fully incorporated transmis-
sion constraints into the bidding strategies. In practice, conges-
tion management is separate from the bidding process and as
such difficult to analyze in a single bidding framework. When
congestion occurs, a noncompetitive situation (i.e., deviation
from price-taking behavior) is far more likely to occur. Much
of the literature has ignored congestion or included it as part of
the bidding process, as in [13]. That is, most researchers have in-
cluded the congestion as constraints within the market clearing
process. This is not representative of typical market rules.

In this paper, the bidding strategy problem is modeled as a
three level optimization problem, and the congestion’s influ-
ence is explicitly expressed in the profit function. Game theory
is applied to the optimal bidding strategies problem based on a
U.K. pricing system. Congestion’s influence is modeled and the
curtailment due to congestion is calculated via a separate least
curtailment method [14]. Numerical examples clarify conges-
tion’s influence on price and bidding strategies. Subsequently,
these results are modified to reflect behavior based on a statis-
tical study of bidding in the California market.

II. HIERARCHICAL MODEL OF BIDDING PROCESS

In a power clearing market, each participant submits a bid-
ding curve to a power exchange, or similar organization. The
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exchange will decide the market clearing price (MCP) based
on these bids. The security coordinator then checks to ensure
that the resulting bidding schedule is feasible. When there is
a security problem, curtailment will be performed. If the uni-
form price and least curtailment algorithm are used, the bid-
ding problem can be represented by a hierarchical optimization
problem developed in this section. Other congestion manage-
ment approaches will require a slight modification to this devel-
opment but the approach is similar.

The electricity power market is in practice an oligopoly [15].
In an oligopoly market, competition among the market partici-
pants is inherently a setting of strategic interaction. Thus, the ap-
propriate tool for analysis is game theory. In the electric power
market, the participants submit their bids first, and then the MCP
is found by matching the aggregate demand to the aggregate
supply. The bidding strategies have a clear influence on the MCP
and price cannot be treated as a simple function of demand. The
Cournot quantity model [16] is applied to the bidding strategy
decision problem here. Other oligopoly market models, such as
Bertrands price competition model, may be more appropriate in
specific situations. The Cournot model assumes that generators
compete more by quantity than by price and generally holds well
when capacity changes more slowly than price.

A. Market Clearing Price

To determine MCP, the exchange looks at the aggregated
supply bid curve and the aggregated demand curve with the
highest accepted bid the MCP. Assume for simplicity, the
bidding curves are given as continuous curves of the form

(1)

where is the incremental price for generating atby
the th generator, and and are the bidding coefficients.
Here, we further assume that these two parameters have the fol-
lowing relations with the generator costs:

(2)

where and are parameters from the generator’s actual
cost function. The true costs are given by

(3)

Thus, the bidding parameter represents the proportion
above (or below) marginal cost that a generatordecides
to bid (i.e., the markup). Certainly, more complex functions
for strategies are possible (e.g., the use of random variables
[17]). Here, the focus is on the congestion’s influence and
mark-up provides more insight to the direct impact. Further,
the strategies that might pursued by consumers are ignored
and instead a simple demand benefit function is used to
model their role as

(4)

where is the load consumed at bus. The market clearing
problem is represented by the following social welfare maxi-
mization problem (ignoring losses):

s.t.

(5)

where and represent the set of loads and generators, respec-
tively, and is the load in megawatts theth player delivers or
receives in the bidding. The cost function here is derived
from bidding curves

(6)

Solving (5) yields the MCP, the generator outputsand de-
mands that provides maximum benefit. The MCP is simply

(7)

B. Congestion Management

When the bidding process is finished, the system security is
analyzed. If there exists a security problem, curtailments must
be carried out, either by modifying the generation dispatch or
reducing load. While there are many different kinds of curtail-
ment algorithms, here, the separate curtailment algorithm [14]
is applied. Assuming a dc load flow model [18] (those equations
are omitted for brevity) and no load curtailment (since demand
side bidding is not considered here), this is formulated as

s.t.

(8)

where is the vector of the sup-
plier’s curtailment, so that means the th supplier
must increase its output, the are the line flows; and is
a diagonal weight matrix whose elements denote the partici-
pant’s willingness to pay to avoid curtailment. In this paper, the
weights are set to 1, (i.e., the objective of curtailment is the least
curtailment). When a generator’s output is reduced, it should be
compensated for possible lost profits by receiving some pay-
ment. This is found here as

(9)

The supplier is compensated based on the philosophy that
their bid represents their actual costs and so this payment will
account for the actual loss of profit. Again, there are other ap-
proaches to compensation but the approach here can accommo-
date such methods. The assignment of costs to consumers and
the transmission company is not germane to the development
here.
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C. Bidding Strategy

When uniform pricing is applied in the system, all power orig-
inally purchased and actually run is paid at MCP. Thus, the profit
function of participant is

(10)

MCP used here is the solution to (5), is the curtailment
due to the congestion from (8) and is found from (9) and

is the generator’s production cost. For participant
, the best strategy is the bidding parameterthat will maxi-

mize profit. When the congestion problem is taken into account,
the th player’s problem is represented by the following maxi-
mization problem:

(11)

while satisfying (5)–(8). Note, the true production costs from
(3) should be used in the solution.

D. Problem Formulation

The bidding strategy problem is now seen more clearly as a
hierarchical optimization problem. For simplicity, the generator
capacity limits are omitted at first. The inner solution for (7) is

(12)

Simple algebraic manipulations show

(13)

with

(14)

The revenue from curtailment simplifies to

(15)

The individual’s bidding problem (11) can be solved directly
by substituting (12)–(15) if is known. Unfortunately,
will not be known until after congestion management. In many
power markets, the power transfer distribution factor (PTDF)
[19] is used to decide the curtailment/redispatch. Here, we use
the GSF generation shift factor (GSF) [19], which is essentially
the same except the focus is on the sensitivity between the gen-
eration and transmission line. Assume the GSF is denoted by

(16)

where is the flow change on line- , and and are
the initial bus and terminal bus of the line. When the dc power
flow is employed, the GSFs are constants related to the system
topology parameters. The curtailment of each generator can be
represented as a linear function of overflow of the congested line

Fig. 1. Example system 1.

and the GSFs. Let’s take one congested path as an example, as-
sume there is only congested path with , (8) can be
solved and rewritten as (the derivation is given in Appendix A):

(17)

Without congestion, there is no curtailment (i.e., the ),
so we can rewrite (17) in general form as

(18)

III. SOLUTION METHOD

The difficulty in this problem stems from the conditional con-
straint (18). This differs from an “either-or” type constraint that
can be modeled as mixed integer problem since the existence of
the constraint depends on the solutions of the problem. Here, a
method similar to branch and bound is employed. Given the ri-
vals response, a series of ranges that divide a player’s response
into congestion and noncongestion situations are found. Thus,
the problem divides into a series of relaxations. A simple ex-
ample illustrates the approach.

Consider the system from [13], there are two supplies and one
demand whose parameters are shown in the Fig. 1. The power
flow on the only line will be . With a limit of power
flow on this line of (MW), then the conditional constraint
can be written as

(19)

For player 1, simple substitution (11) in (12) yields

(20)

If , then there is a congestion problem; otherwise,
there is no congestion problem. Solving , yields

(21)

This function divides the problem into the con-
gested and noncongested strategies. That is, if ,
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then there is congestion. Thus, the bidding problem is now the
following two optimization problems:

s.t.

(22)

s.t.

(23)

Given player 2’s bidding parameters, both (22) and (23) can
be solved. The more profitable solution of these two solutions is
player 1’s best response. Repeating for all of player 2’s possible
strategies will determine player 1’s optimal responses. If this is
duplicated for determine player 2’s optimal strategies, then the
market equilibrium point can be found by comparing solutions.
While this procedure appears to be viable, even for larger sys-
tems with many players, complex relationships in may
arise that render finding market equilibrium points extremely
difficult.

IV. NUMERICAL RESULTS

To analyze congestion’s influence on the bidding strategy and
price, we first look at the situation when no congestion man-
agement is included. Subsequently, transmission system limits
are included in the calculation. Comparing these two results
highlights the influence of congestion on the optimal bidding
strategy.

A. Example 1

Consider the system as shown in Fig. 1 but neglecting trans-
mission line capacity. Figs. 2 and 3 plot the optimal values for

vs. , with and without transmission constraints, respec-
tively. The maximum for and is assumed to be 3. A max-
imum value acts similarly to a price cap and is needed since
the demand is relatively inelastic leading to unbounded mark
up without the constraint. With no transmission constraints, the
pure Nash equilibrium is for both players choose to bid at 1.15
times marginal cost. When an 80-MVA transmission line ca-
pacity is included, the optimal strategies change radically.

As the constraint comes into force, this translates into sudden
changes in strategy (i.e., a large variation in bothand ). A
pure Nash equilibrium does not exist. For player 1, values of
in result in identical profit when player 2 chooses
to play at . Similarly, for player 2, values of in

Fig. 2. Example 1—optimal strategies without transmission limit.

Fig. 3. Example 1—optimal strategies with transmission limit.

result in identical profit when player 1 chooses to
play at . This is similar to the result in [1]. Thus,
one should consider the possibility of mixed strategy equilibria.
The mixed strategy for this problem is: player 1 will choose to
play at with probability 0.53 and with
probability 0.47, and player 2 will choose to play at
with probability of 0.80 and with probability of 0.20.
An approach to computation of the mixed strategy equilibrium
point is given in Appendix B.

The above simple example shows that generator 2 should bid
at the maximum feasible price most of the time. This means that
player 2 is willing to forego any sale in the first round bid and
take profits from the congestion round. Notice in this system,
only player 1 faces a congestion problem (i.e., since ),
the maximum output of generator 1 can only be . There
is no transmission limit for generator 2. Thus, no matter how
high generator 2 bids; it will finally win some bid when the cur-
tailment is taken into account. When generator 2 expects con-
gestion, the higher bid will tend to increase MCP. The system’s
potential congestion guarantees player 2 wins .
This “biased” congestion situation (i.e., the congestion imparts
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Fig. 4. Example system 2.

Fig. 5. Example 2—optimal strategies with transmission limit.

more constraints on certain players) gives player 2 significant
market power.

B. Example 2

In this example, both of the generators face transmission
limits. Let the parameters of generators and loads remain the
same, but the network is now the system [20] shown in Fig. 4.
When the transmission system limits are not included, the
system will have same Nash Equilibrium at as
the former system. The line flows will be

with limits of

The result of the response of a player versus its rival is shown
in Fig. 5. There is a jump in from 3 to 1.16 when player
1 plays at 1.18. Again, there is no pure Nash Equilibrium, so
a mixed strategy equilibrium point is sought. Sinceis con-
tinuous, with probability 1.0. The best response of
player 2 is to choose to play at 3 with probability of only 0.09,
and at 1.16 with probability of 0.91.

TABLE I
GENERATORCOST FUNCTIONS

Fig. 6. Example 3—IEEE-30-bus system with line limits.

Relative to the first example, both generators tend to decrease
their bidding price as they are both at risk of losing a sale due to
congestion problem. Both generators will increase their bidding
price if there is any possibility of congestion. Notice also that the
more serious the congestion, the higher the bidding price. When
the transmission system is “fair” to each market participant (i.e.,
there is no obvious congestion problem for some participants),
the market participants will have more incentive to bid at their
marginal cost.

C. Example 3

A modified IEEE-30 bus system from [9] is applied in this
example with two dominant market participants. System data
and line limits can be found in [21]. Table I lists the respective
cost functions.

For simplicity, the benefit function for all demands are as-
sumed to be identical. Specifically

When the congestion is not included in the bidding process,
there is a pure Nash equilibrium point at (1.27, 1.19). Consid-
ering congestion, the result is as shown in Fig. 6. Similar to the
previous examples, the pure Nash Equilibrium point disappears
with the introduction of the congestion’s influence. The mixed
strategy equilibrium point is that player A chooses to play at

with probability 1.0; player B chooses to player at
with probability equal to 0.23, and at with

probability 0.73.
Comparing these results with the simpler cases, player A has

more incentive to play high under the influence of congestion
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while player B tends to remain near the pure Nash equilibrium
point. An examination of the congestion at the Nash equilibrium
points shows that the transmission line (2–6) is overloaded. The
generator at bus 2 belongs to player A while bus 6 is an inter-
mediate bus, which connects with several load buses. Thus in
this situation, player A has more possibilities to force conges-
tion and incentive to increase mark up.

Understandably as the system becomes more complex,
finding the precise influence of congestion on the bidding
strategy becomes becomes more difficult. The possibility of
more than one mixed strategy equilibrium point arises and
other influences arise which make it is more difficult to apply
the results. Thus, Section V introduces a new bidding strategy
using statistics but following the basic form as the previous.

V. NEW BIDDING STRATEGY

The above examples show analytically how congestion in-
fluences the bidding strategy problem, and at least for these
scenarios, shows pure Nash equilibrium points are less likely.
Unfortunately, even for these idealized problems, the optimal
strategies are difficult to find. For a larger system with many
participants and where precise information about transmission
limits is more difficult to determine, it may not be feasible to
construct a practical formulation. The authors’ analysis of actual
bidding behavior in the California market will be used to modify
the approach in Section IV. Specifically, the optimal strategy
problem is simplified to reflect the information that would be
most readily available for all participants. A few observations
help clarify the approach.

• Due to the complexity and limited knowledge of the trans-
mission limits by most participants, congestion is modeled
as the probability of congestion. This probability is based
on the percentage of time that congestion exists during an
operating day. The participants are assumed to be aware
of this general risk of congestion, and in fact, this can be
determined from historical data.

• The generators have different relative locations to the con-
gestion zones. So a given congested path will tend to in-
fluence some generators more than others and that may be
reflected by either higher or lower bids.

The analysis here looks at a base line when the possibility of
congestion is low and compares this to congested time periods.
The average bidding price is adopted as the index of bidding
strategy and then the correlation coefficient between this index
and congestion percent based on the day-ahead market are cal-
culated. This coefficient can then be used as the indicator of
adjustments due to the congestion. The details of this analysis
will be presented in future reports. Here, we assume that a par-
ticipant seeking to take advantage of congestion will modify
based on a linear function of the probability of congestion. For
the examples here this is given as

(24)

The following strategy is then employed. The bid will de-
crease for all those bids less than the optimal output and
increase for all those bids greater than . By doing do, the
bidding output (including MCP and ) without considering

Fig. 7. New bidding strategy.

congestion’s influence will remain unchanged (i.e., the optimal
strategy is chosen). When there is congestion, compensation
will increase due to the difference betweenMCP and the bid
price increase, and hence, there will be greater profit. Also,
since the higher the congestion possibility, the larger, greater
profits are realized at times of high congestion. Fig. 7 shows the
new bidding strategy. Notice the result has a similar character-
istic to the earlier example.

From the earlier examples, the original optimal point is seen
to be and the corresponding outputs are

MW. When the 80-MVA line power limit
is introduced and assuming a simple uniform distribution, the
probability of congestion in the system is

Thus

This new bidding strategy is compared with the theoretical
mixed Nash equilibrium and shown in Table I. The results show
that in the “biased” congestion case, when player 2 chooses to
bid at 3.0, the profits of both players will be significantly higher
than in the proposed probabilistic approach. This case also re-
quires a significant amount of load curtailment so the result is
not surprising. The statistical approach shows similar results to
that obtained in the “fair” congestion case (Table II).

VI. CONCLUSION

Congestion in the transmission system may allow some par-
ticipants to enjoy effective market power, resulting in higher
prices. This work analyzes this mechanism in the framework of
game theory. We show that the deviation from idealized price-
taker behavior is more serious when some market participants
suffer disproportionately from the congestion problem. Based
on this theoretical analysis, a probabilistic bidding methodology
is proposed that shows similar profits to the game theoretic ap-
proach. Due to the complexity of the calculations in the theo-
retical approach, the statistical analysis methodology has clear
advantages. We also believe these strategies reflect actual be-
havior in existing markets. Our ongoing research is focusing on
how bids change given the likelihood of congestion.
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TABLE II
STRATEGIES FOR ALLFOUR APPROACHESNOTE: WE LIST BOTH POSSIBILITIES FORPLAYER2 SINCE THEY HAVE VERY SIMILAR PROBABILITY IN CASE

2; WHILE IN CASE 4, THE BIDDING STRATEGY IS A DISCRETESTRATEGY

APPENDIX A

Equation (17) can be found as follows. Assuming equal
weightings rewrite (8) as

s.t.

(A.1)

With a dc power flow, the GSF is constant. So the power flow
on each line can be given by

(A.2)

where is the GSF. Then, the new flow is

(A.3)

where . Now rewrite the flow constraint as

(A.4)

Expanding the absolute value gives

(A.5)

Now applying the Kuhn-Tucker conditions to (8), the inner so-
lution will be

(A.6)

(A.7)

(A.8)

Note for line flows within limits, the must equal to zero. The
above can then be solved to find the . If the assumption of a
single line overflow is made with least curtailment, one obtains

TABLE III
PAYOFF MATRIX

(17) through simple algebraic manipulation. The quadratic
terms in (17) arise from substituting the linear solution of
(A.6)–(A.8).

APPENDIX B

Computing mixed strategy Nash Equilibriums can be a chal-
lenging task; however, there is a trick that can often greatly sim-
plify this task. Note that in a mixed strategy Nash Equilibrium,
the expected payoffs for any player will remain the same if he
or she switches to any pure strategy that has positive probability
of being picked by the equilibrium mixed strategy. Consider a
very simple example with the payoff matrix of Table III. There
is no pure Nash Equilibrium. To calculate the mixed strategy
equilibrium, player 2’s probability of play L and R areand

. Then player 1’s expected payoff if he chooses either U or
D must be equal. Let represents player 2’s best response, so

and

Solving , yields . Thus, the
Nash Equilibrium mixed strategy for player 2 is given by

. Similarly, player 1’s is found to be .
It is easy to apply this process to the problem in this paper.
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