
 
 
 
 
 
 
 
 
 

OPTIMAL BIDDING STRATEGIES: AN EMPIRICAL CONJECTURAL APPROACH  
 
 
 

Tengshun Peng and Kevin Tomsovic 
 

School of EECS, Washington State University, Pullman, WA 
 

 
Abstract: The optimal bidding strategy for a generation company is a complex decision 
making problem involving numerous uncertainties. Generally, all market participants 
attempt to refine their strategies to earn greater profit. Success in the market requires not 
only successful forecasting of demand and other market conditions but also anticipating 
rival behaviours. The main objective of this paper is to suggest one use of historical data 
for purposes of strategic bidding. A conjectural model based on the market clearing 
process is presented. In this model, participants estimate a mark-up function for their 
competitors in the market. Based on these estimates, an optimal bid is found. Numerical 
examples highlight the methodology. Copyright © 2003 IFAC 
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1. INTRODUCTION  
Due to the complexity of a real market with 
numerous participants, most of these theoretical 
models are too unwieldy to apply to a representative 
system model.  Instead, numerous simplifications are 
needed to make application possible. For example, 
frequently there are no pure Nash equilibrium points 
and instead a mixed strategy is introduced (Mas-
Colell, et al. 1995). Under mixed strategies, the 
optimal solution should be a probability density 
function. Unfortunately, this is difficult to apply as 
guidance to bidding activity.  A deterministic 
decision is needed despite the underlying risks and 
various probabilistic outcomes. 

 
The optimal bidding strategy problem is a complex 
decision making problem involving numerous 
uncertainties. Generally, all market participants 
attempt to refine their strategies to earn greater 
profit. Success in the market requires not only 
successful forecasting of demand and other market 
conditions but also anticipating rival behaviours. As 
a result, many researchers have proposed a game 
theoretic model to address this problem (Ferrero, et 
al., 1997; Hobbs and Kelley, 1992; Bai, et al., 1997; 
Peng and Tomsovic, in press). 
 
There is evidence to suggest that the energy market 
acts mostly like an oligopoly market (David and 
Wen, 2000). Game theory is often applied in 
oligopoly markets and certainly gaming has taken 
place in real markets. In an oligopoly market, a 
market participant’s behaviour will affect the market 
clearing price (MCP).  The participant’s bidding 
strategy problem is to determine the bids to 
maximize one’s own benefit.  

 
A conjecture model can be used to consider market 
participants interactions. The conjecture model acts 
as a generalized Cournot model in that each market 
participant attempts to guess a rival’s activity 
corresponding to the price change (Song, et al. 
2003). Since many power markets have now been in 
operation for some time (albeit with frequent changes 
in the market rules), there exists significant historical 
data that can be analyzed to help participants 
understand likely competitor behaviour. At a 
minimum, market participants forecast energy prices 
based on historical prices. Beyond this, individual 
market bids are made publicly available in many 
markets, e.g., in California, all public bids are posted 
online by the ISO 6 months after the day of 
submission. Such information provides valuable 
information about a rival’s likely behaviours. Thus, it 
is feasible to apply a conjecture model to address 
bidding strategies. 

 
In the typical electric power market, market 
participants submit bids and the intersection between 
the aggregate supply and aggregate demand curve is 
the market equilibrium point that determines the 
MCP and the winning bids. According to economics 
theory, there are several ways to consider strategic 
market interactions, including: pure competition, 
Cournot strategy, Stackelberg model, conjectural 
model, and so on. Particularly appropriate for the 
bidding problem here is the Cournot model (Day, et 
al., 2002).   

     



The main objective of this paper is to consider the 
best use of specific historical data. To begin, a model 
of the optimal bidding strategy problem is developed. 
Then, a statistical application method is introduced 
based on different price forecast technique.  
 

2. PROBLEM DEFINITION  
 
In economics, there are two types of conjecture 
models: the general conjectural variations (GCV) and 
the conjectured supply function (CSF). While both 
models require a “guess” of rival activities 
beforehand, the difference between these two 
conjectural models lies in the focus on a rival’s price 
or the rival’s supply function. The CSF model is 
adopted in this paper as the more appropriate for 
assessing bidding strategies in an electricity market. 
 
2.1 CSF Model 
 
Assume there are market participants, let denote 
market participant i ’s decision. Both the market 
clearing price and the quantity are a function of all 
market participants’ decision variables denoted here 
by  and , 
respectively. Assume without loss of generality the 
bidding decision for individual market participant 1 
is desired. The conjecture variation is defined as the 
belief of the i
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rivals. Here, we are interested in the bidding strategy 

, and the conjecture variation can be represented 
by . This means that market participant 1 will 
guess all other decision variables  as the function 
of one’s own activity, that is, 
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Since it is not possible to know a rival’s actions 
precisely, it is necessary to represent the deviation of 
the ith firm’s behaviour from this forecast. Here, the 
error is represented as: 
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where  are the forecast functions, which are 
static functions given the current market situation, 
and   are random variables representing the error 
in the forecast process.  Since this function arises 
from historical data analysis, it represents the belief 
that these market participants will continue to bid in 
the same manner. Absent other information, the 

 are assumed to normally distributed since this 
is the most tractable mathematically.  Then 
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It follows that e , since given a market 
situation  is determininistic.  The decision 

problem is to maximize profit by choosing the 
decision variables  such that: 
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where is the generation cost function,  
represents the MW output awarded in the auction and 

is the market clear price in $/MWhr for the 
time period of interest.  
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2.2 Decision Variable  ik
 
Let the generation cost be represented by a quadratic 
function as  
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2
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Since the constant term a  will not affect the 
maximization result (assuming a unit will be 
committed), let 

i

0a  with the marginal generation 
cost function of the form: 
 

iii bpcMC +=      (7) 
 
In an electrical power market, the market participants 
submit bidding curves that provide the energy price 
for different levels of generation output. The market 
operator will determine the winning bids and the 
MCP according to the particular set of market rules. 
The decision problem of interest here is the optimal 
bidding curve that the market participant submits to 
the market. Normally, a staircase bidding curve is 
adopted, and for simplicity here, the linearization 
process as depicted in figure 1 is applied. This 
bidding curve is represented by the following linear 
function: 
 

iii pIC βα +=   (8) 
 
Variables iα and iβ  represent the bidding 
coefficients participant i  submits, which form the 
decision vector [ ]iik βα  for problem (5). We 
make a further assumption that both iα  and iβ  are 
directly related to the MC by a constant level of 
mark-up. Thus, (5) simplifies to determination of a 
scalar, . That is let: ik
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Then it is easy to see that: 
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Fig. 1 Linearized Bidding Curve 
)()( iiiiiiii bpckppIC +=+= βα        (10) 
 where  represents the maximum acceptable risk 

determined a priori by the market participant. Those 
wishing to minimize the risk subject to achieving a 
specified level of return are essentially solving the 
dual of the above.  
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.3 Conjecture Process 

 
hile each market participant may have more than 

ne bidding strategy, in the development here we 
onsider only one bidding strategy, and then 
ubsequently address multiple bidding strategies in 
he numerical examples. Under a single strategy 
ssumption, there are m  forecast functions 
eeded by each decision maker to reach a decision 
ith m market participants.   
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Now since the cost function is quadratic and noting 
that the third and forth moments of  are  

, simple algebraic manipulation yields: 
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ith the linearized bidding curve and market 
learing process assumption, it follows that  

and 
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ince the are random variables, the  and 
 are random variables as 

ell. Thus, the profit maximization problem is a 
aximum expected profit problem.  
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variance of ,  and  are the variance 
and mean of MCP, respectively. The following 
section introduces a price forecasting approach to 
determine the necessary inputs for solving this 
problem.  The expect profit and variance can be 
found by standard optimization routines given the 
statistics for errors in the prediction process.  

.4 Risk 

ince the rival behaviour is not deterministic and 
nowledge of their behaviours is imperfect, there is 
isk in any bidding strategy. From a decision stand 
oint, it is necessary to consider the consequence of 
ompetitors’ actions that deviate significantly from 
he forecast function. In general, each market 
articipant is willing to take a certain amount of risk 
o earn more in return. A related problem arises in 
nvestment where risk is often represented by the 
tandard deviation in the expected profit. Then risk is 
ddressed by the so-called Portfolio Selection 
roblem (Farrell, 1983), which is adopted widely in 
nalysis of stock investments.   

 
3. PRICE ESTIMATION MODEL 

 
This section places the preceding development in the 
context of an electricity market. Assume all other 
exogenous variables, including the load level, 
transmission limits, and fuel price, are known. The 
energy price is determined by the market 
participants’ bidding strategies. Using a linear model 
forecast, the expected price can be represented by: 

ortfolio management can be best characterized as 
btaining the highest long-run return at the lowest 
isk (Farrell, 1983).  There are two common 
ormulations of portfolio selection: one, to minimize 
ariance (risk) subject to achieving a specified level 
f return; and two, to maximize return subject to 
chieving a specified level of variance. Here, the 
ormer form is applied.  Rewrite (5) as follows 
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Where  are the sensitivity coefficients between 
price and bidding strategies,  is a constant term 
corresponding to the exogenous variables, and 

is
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( )2,~ mcpmcpe σ0N  represents the error from the price 
estimation model. Rearranging 
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with an independent random variable. Now, 
separating the deterministic and the random 
variables, and defining the deterministic term 
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and the stochastic term,  
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We have the following: 
 

0exp )( pMCPEmcp ==µ   (19) 
 
and 

( 2
1

2

22
1

22 1)( mcp

m

i
iiimcp kfs σσσ +










= ∑

+

=

 (20) 

 
 

4. NUMERICAL EXAMPLE  ERICAL EXAMPLE  
  
4.1 Numerical Example 1 4.1 Numerical Example 1 
  
First, consider a system with four market 
participants. The forecast error variances and 
coefficients are given by:  

First, consider a system with four market 
participants. The forecast error variances and 
coefficients are given by:  
  

25.02
3

2
3

2
2 === σσσ 25.02

3
2
3

2
2 === σσσ ,  ,  1002 =mcpσ 1002 =mcpσ

  
Assume that using statistical data analysis for a given 
market operation situation, participant 1 forecasts 
that the rivals have split strategies as given by the 
following bidding functions: 

Assume that using statistical data analysis for a given 
market operation situation, participant 1 forecasts 
that the rivals have split strategies as given by the 
following bidding functions: 
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Further assume the expected price function can be 
represented by the following linear function: 
Further assume the expected price function can be 
represented by the following linear function: 
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4.2 Discussion 
 
If there is no risk constraint, the higher the market 
participant 1 bids, the higher the expect profit. Thus, 
the optimal solution is (where we assume 

that 3.0 is the bidding cap.). Notice the risk will 
increase as the expected profit increases and this 
occurs particularly rapidly at the higher bidding 
prices. In the worst case, there could be significant 
losses. Worse from the generation company point-of-
view, the expect profit changes very little beyond say 
k

0.3*
1 =k

1=1.2 while the risk increases rapidly. It is 
advantageous to sacrifice some marginal profit to 
reduce the risk. The optimal decision depends on the 
risk level a firm would like to take. For example, if 
the risk tolerance is about 80% of the maximum risk 
level (shown as the black dashed line in Fig. 2), then 
the optimal solution is .  2.1*

1 =k

2 
k1

l 

 
Intuitively, another method to reduce risk is to 
employ a split bidding strategy, i.e., bid different 
type of generators at different strategies. For 
example, one may choose to bid low cost generators 
at a fairly low price (say, marginal cost) to ensure 
some profit while bidding some at a higher cost (so-
called economic withholding). By doing so, risk 
should decrease. For simplification, here assume that 
market participant 1 employs such a split strategy 
labelled for convenience as the main and minor 
bidding strategies. Figure 3 shows the results of such 
an approach. Since the split strategy is used, the 
figure is no longer a two-dimensional figure. To 
simplify the figure, only the main strategy is shown 
along the x-axis. The corresponding expected profit 
is the optimal value given this major bidding strategy 
that market participant 1 found by choosing different 
levels of the minor bidding strategy.  
 
In this case, if there are no risk constraints, the 
optimal bidding strategy is k11=1.2 (major) and 
k12=3.0 (minor). Again, if the maximum risk level is 
added as a constraint, there are two new optimal 
bidding strategies. Shown as  and 

 with in both case k

75.0*
11 =k

8.2*
11 =k 12=3.0. By withholding 

some generation economically, expected profit does 
not increase as rapidly but risk has been reduced.  
 
4.3 Numerical Example 2: Simplified two market 
participant example  
 
In practice, it is difficult to estimate all competitors’ 
strategies accurately and it may not be particularly 
profitable to do so. That is, it is unnecessary to 
distinguish the different market participants when 
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Fig. 3. Example 1 showing expected profit with 
a split strategy. 
    

ey are all acting as rivals. Further in our 
ramework, several high order moments are needed 
 find the optimal mark-up and these will not be 

eadily available. Accordingly, consider a single 
pponent with this forecast function: 
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ll variances are as before. The profit results are 
hown in Fig. 4. Again, when there is no risk 
onstraint, the optimal solution is . When 
0% risk tolerance is applied, the optimal solution is 

. For this simple case, there is a significant 
ifference between these two models simply due to 
e selection of the expected rival’s bidding strategy 

nd other expected variables. In practice, it should be 
ossible to obtain similar results with a two 
articipant example. 

0.3*
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4.2*
1 =

5. CONCLUSION 

his paper presents an approach for determining an 
ptimal bid into the market as a mark-up over actual 
osts. It requires as input an estimate of competitors’ 
ids in terms of price and possible variation. The 
olution then maximizes profit while maintaining a 
lerable financial risk. Our related work has shown 
e possibility of forecasting competitor behaviour 

uggesting the approach is practical. Currently, we 
re applying these techniques to data from the 
alifornia market. 
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