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Chapter 1 Overview

This tutorial provides attendees with a comprehensive
overview of fuzzy logic applications in power systems.
Every effort was made to ensure the material was self-
contained and requires no specific experience in fuzzy logic
methods.  At the same time, this booklet includes
contributions, which are undoubtedly state-of-the-art
research.  Thus, it is hoped that practitioners at all levels will
find useful information here.  Fuzzy logic technology has
achieved impressive success in diverse engineering
applications ranging from mass market consumer products to
sophisticated decision and control problems [1].
Applications within power systems are extensive with more
than 100 archival publications in a recent survey [2,3].
Several of these applications have found their way into
practice and fuzzy logic methods are becoming another
important approach for practicing engineers  to consider .

In 1965, L.A. Zadeh laid the foundations of fuzzy set theory
[4] as a method to deal with the imprecision of practical
systems.  Bellman and Zadeh write:  "Much of the decision-
making in the real world takes place in an environment in
which the goals, the constraints and the consequences of
possible actions are not known precisely" [5].  This
"imprecision" or fuzziness is the core of fuzzy sets or fuzzy
logic applications. Fuzzy sets were proposed as a
generalization of conventional set theory.  Partially as result
of this fact, fuzzy logic remained the purview of highly
specialized and mathematical technical journals for many
years.  This changed abruptly with the highly visible success
of several control applications in the late 1980s.

Heuristics, intuition, expert knowledge, experience, and
linguistic descriptions are obviously important to power
engineers. Virtually any practical engineering problem
requires some “imprecision” in the problem formulation and
subsequent analysis.  For example, distribution system
planners rely on spatial load forecasting simulation programs
to provide information for a variety of planning scenarios [6].
Linguistic descriptions of growth patterns, such as close by
or fast, and design objectives, such as, prefer or reduce, are
imprecise in nature. The conventional engineering
formulations do not capture such linguistic and heuristic
knowledge in an effective manner.

Fuzzy logic implements human experiences and preferences
via membership functions and fuzzy rules.  Fuzzy
membership functions can have different shapes depending
on the designer's preference and/or experience.  The fuzzy
rules, which describe relationships at a high level (in a
linguistic sense), are typically written as antecedent-
consequent pairs of IF-THEN statements.  Basically, there

are four approaches to the developing fuzzy rules [7]: (1)
extract from expert experience and control engineering
knowledge, (2) observe the behavior of human operators, (3)
use a fuzzy model of a process, and (4) learn relationships
through experience or simulation with a learning process.
These approaches do not have to be mutually exclusive.
Due to the use of linguistic variables and fuzzy rules, the
system can be made understandable to a non-expert operator.
In this way, fuzzy logic can be used as a general
methodology to incorporate knowledge, heuristics or theory
into controllers and decision-makers.

This tutorial begins with a general section on fuzzy logic
techniques and methods.  Simplified examples are used to
highlight the fundamental methodologies. Control
applications are addressed in chapters 3 and 4. Chapter 3
provides fundamental analysis as well as a brief description
of a controller in field use. Chapter 4 presents more
advanced concepts, including both control design and
stability analysis, useful for the more experienced developer.
Approaches based on approximate reasoning in expert
systems are presented in Chapter 5, with a specific
application to diagnostic systems.  This is followed by two
extensive chapters on optimization problems. Chapter 6
presents applications in spatial load forecasting and in
scheduling. Applications on generation expansion planning
and optimal power flow in Chapter 7 highlight an alternative
approach to optimization The tutorial concludes with a
chapter on advanced applications including hybrid
applications of neural nets and fuzzy logic.
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Chapter 2 Fuzzy Set Fundamentals

A Fuzzy Sets

Zadeh makes a case that humans reason not in terms of
discrete symbols and numbers, but in terms of fuzzy sets [1].
These fuzzy terms define general categories, but not rigid,
fixed collections.  The transition from one category-concept,
idea, or problem state-to the next is gradual with some states
having greater or less membership in the one set and then
another.  From this idea of elastic sets, Zadeh proposed the
concept of a fuzzy set.  Fuzzy sets are functions that map a
value that might be a member of the set to a number between
zero and one indicating its actual degree of membership.  A
degree of zero means that the value is not in the set, and a
degree of one means that the value is completely
representative of the set.  This produces a curve across the
members of the set.  There are many books that have been
written on the subject of fuzzy sets since Zadeh introduced
the fuzzy set concept in 1965 [1-19].

A.1 Membership Functions – Fundamental Definitions

Let X be a set of objects, called the universe, whose elements
are denoted x.  Membership in a subset A of X is the
membership function, mA from X to the real interval [0,1].
The universe is all the possible elements of concern in the
particular context.  A is called a fuzzy set and is a subset of X
that has no sharp boundary.  mA is the grade of membership x
in A.  The closer the value of mA is to 1, the more x belongs
to A. The total allowable universe of values is called the
domain of the fuzzy set.  The domain is a set of real numbers,
increasing monotonically from left to right where the values
can be both positive and negative.  A is completely
characterized by the set of pairs

A = {(x, mA(x)), x Î X)} (1)

Support of a fuzzy set A in the universal set X is the crisp set
that contains all the elements of X that have a nonzero
membership grade in A.  That is
  

( ){ }suppA x X xA= Î >m 0 (2)

With a finite support, we’ll let xi be an element of the
support of fuzzy set A and that mi a grade of membership in
A.  Then A is written by convention as

A
x x x

n

n

i

ii

n
= + + =

=
å

m m m1

1 1
K (3)

When X is an interval of real numbers, a fuzzy set A is
expressed as

( )
A

x

x
A

x= ò
m

(4)

An empty fuzzy set has an empty support which implies that
the membership function assigns 0 to all elements of the
universal set.
A technical concept closely related to the support set is the
alpha-level set or the “a-cut”.  An alpha level is a threshold
restriction on the domain of the fuzzy set based on the
membership grade of each domain value. This set, A• , is the
a-cut of A which contains all the domain values that are part
of the fuzzy set at a minimum membership value of a.
There are two kinds of a-cuts:  weak and strong. The weak
a-cut is defined as Aa = {x Î X, mA(x) ³ a} and the strong • -
cut as Aa = {x Î X, mA(x) > a}.  Also, the alpha-level set
describes a power or strength function that is used by fuzzy
models to decide whether or not a truth value should be
considered equivalent to zero.  This is an important facility
that controls the execution of fuzzy rules as well as the
intersection of multiple fuzzy sets.

The degree of membership is known as the membership or
truth function since it establishes a one-to-one
correspondence between an element in the domain and a
truth value indicating its degree of membership in the set.  It
takes the form,

mA(x) ¬ f(x Î A) (5)

The triangular membership function is the most frequently
used function and the most practical, but other shapes are
also used.  One is the trapezoid which contains more
information than the triangle.  A fuzzy set can also be
represented by a quadratic equation (involving squares, n2,
or numbers to the second power) to produce a continuous
curve.  Three additional shapes which are named for their
appearance are:  the S-function, the pi-function, and the Z-
function.

A.2 Set Operations

Union and Intersection of Fuzzy Sets

The classical union (È) and intersection (Ç) of ordinary
subsets of X are extended by the following formulas for
intersection, A Ç B, and union, A È B:
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" x Î X, mAÈB(x) = max(mA(x), mB(x)) (6)

" x Î X, mAÇB(x) = min(mA(x), mB(x)) (7)

where mAÈB and mAÇB are respectively the membership
functions of AÈB and AÇB.

For each element x in the universal set, the function in (6)
takes as its argument the pair consisting of the element’s
membership grades in set A and in set B and yields the
membership grade of the element in the set constituting the
union of A and B. The disjunction or union of two sets
means that any element belonging to either of the sets is
included in the partnership which expresses the maximum
value for the two fuzzy sets involved.

The argument to the function in (7) returns the membership
grade of the element in the set consisting of the intersection
of A and B.  A conjunction or intersection makes use of only
those aspects of Set A and Set B that appear in both sets
which expresses the minimum value for the two fuzzy sets
involved.

Complement of a Fuzzy Set

The complement of A, ~A, which is the part of the domain
not in a set, can also be characterized by Not-A.  This is
produced by inverting the truth function along each point of
the fuzzy set and is defined by the membership function

" x Î X, mA (x) = 1-mA(x)      (8)

The complement registers the degree to which an element is
complementary to the underlying fuzzy set concept.  That is,
how compatible is an element’s value [x] with the assertion,
x is NOT y, where x is an element from the domain and y is a
fuzzy region.  A fuzzy complement is actually a metric.  It
measures the distance between two points in the fuzzy
regions at the same domain.  The linear displacement
between the complementary regions of the fuzzy regions
determines the degree to which one set is a counter example
of the other set.  We can also view this as a measure of the
fuzziness or information entropy in the set.

A.3 Defining Fuzzy Sets

The steps below give general guidelines in defining fuzzy
sets [1].

(i) Determine the type of fuzzy measurement.  Fuzzy sets can
define

· orthogonal mappings between domain values and
their membership in the set (“ordinary fuzzy set”)
· differential surfaces which represent the first
derivative of some action, degree of change between

model states, or the force of control that must be applied
to bring a system back to equilibrium
· a proportional metric which reflects a degree of
proportional compatibility between a control state and a
solution state
· a  proportionality set which reflects a degree of
proportionality between a control state and a solution
state

(ii)  Choose the shape (or surface morphology) of the fuzzy
set.  The shape maps the underlying domain back to the set
membership through a correspondence between the data and
the underlying concepts.  Some possible shapes are
triangular, trapezoidal, PI-curve, bell-shaped, S-curves, and
linear.  Every base fuzzy set must be normal.

  
(iii)  Select an appropriate degree of overlap.  The series of
individual fuzzy sets, associated with the same solution
variable, are converted into one continuous and smooth
surface by overlapping each fuzzy set with its neighboring
set.  The degree of overlap depends on the concept modeled
and the intrinsic degree of imprecision associated with the
two neighboring states.

(iv) Ensure that the domains among the fuzzy sets associated
with the same solution variables share the same universe of
discourse.

B Expert Reasoning and Approximate Reasoning

B.1 Fuzzy Measures

The fuzzy measure assigns a value to each crisp set of the
universal set signifying the degree of evidence or belief that
a particular element belongs in the set.  For example, we
might want to diagnose an ill patient by determining whether
this patient belongs to the set of people with, pneumonia,
bronchitis, emphysema, or a common cold.  A physical
examination may provide us with helpful yet inconclusive
evidence.  Therefore, we might assign a high value, 0.75, to
our best guess, bronchitis, and a lower value to the other
possibilities, such as .45 to pneumonia, .3 to a common cold,
and 0 to emphysema.  These values reflect the degree to
which the patient’s symptoms provide evidence for one
disease rather than another, and the collection of these
values constitutes a fuzzy measure representing the
uncertainty or ambiguity associated with several well-
defined alternatives.

A fuzzy measure is a function [7]

[ ]g : ,B ® 0,1
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where ( )B PÌ X , called a Borel field,  is a family of

subsets of X such that:

1. Æ Î ÎB Band X ;

2.  If A then AÎ ÎB B,

3 It is closed under the operation of set union, that is,
if A ÎB  and B ÎB , then also A BÈ ÎB .

SinceA B AÈ Ê andA B BÈ Ê , then due to monotonicity

we have ( ) ( )[ ] ( )max ,g A g B g A B£ È . Similarly since

A B AÇ Í andA B BÇ Í , ( ) ( ) ( )[ ]g A B g A g BÇ £ min , .

Two large classes of fuzzy measures are referred to as belief
and plausibility measures which are complementary (or
dual) in the sense that one of them can be uniquely derived
from the other.  Given a basic assignment m, a belief
measure and a plausibility measure are uniquely determined
by the formulas

( ) ( )Bel A m B
B A

=
Í
å    and    ( ) ( )Pl A m B

B A
=

Ç ¹Æ
å

which are applicable for all ( )A XÎB .  Also m(A) refers to

the degree of evidence or belief that a specific element of X
belongs to the set A alone. The belief measure, Bel(A),
represents the total evidence or belief that the element
belongs to the set A as well as to the various special subsets
of A.  The plausibility measure, Pl(A), represents not only
the total evidence or belief that the element in question
belongs to set A or to any of its subsets but also the
additional evidence or belief associated with sets that
overlap with A.  There are also three important special types
of plausibility and belief measures, probability measures and
a pair of complementary measures referred to as possibility
and necessity measures [7].

B.2 Approximate Reasoning

The root mechanism in a fuzzy model is the proposition.
These are statements of relationships between mode
variables and one or more fuzzy regions. A series of
conditional and unconditional fuzzy associations or
propositions is evaluated for its degree of truth and all those
that have some truth contribute to the final output state of the
solution variable set.  The functional tie between the degree
of truth in related fuzzy regions is called the method of
implication.  The functional tie between fuzzy regions and
the expected value of a set point is called the method of
defuzzification.  Taken together these constitute the
backbone of approximate reasoning. Hence an approximate

reasoning system combines the attributes of conditional and
unconditional fuzzy propositions, correlation methods,
implication (truth transfer) techniques, proposition
aggregation, and defuzzification [1].

Unlike conventional expert systems where statements are
executed serially, the principal reasoning protocol behind
fuzzy logic is a parallel paradigm.  In conventional
knowledge-based systems pruning algorithms and heuristics
are applied to reduce the number of rules examined, but in a
fuzzy system all the rules are fired.

B.3 The Role of Linguistic Variables

Fuzzy models manipulate linguistic variables.  A linguistic
variable is the representation of a fuzzy space which is
essentially a fuzzy set derived from the evaluation of the
linguistic variable.  A linguistic variable encapsulates the
properties of approximate or imprecise concepts in a
systematic and computationally useful way.

The organization of a linguistic variable is

{ } { }L q q h h fsn nvar ¬ 1 1K K (9)

where predicate q represents frequency qualifiers, h
represents a hedge and fs is the core fuzzy set.  The presence
of qualifier(s) and hedge(s) are optional.  Hedges change the
shape of fuzzy sets in predictable ways and function in the
same fashion as adverbs and adjectives in the English
language.  Frequency and usuality qualifiers  reduce the
derived fuzzy set by restricting the truth membership
function to a range consistent with the intentional meaning
of the qualifier.  Although a linguistic variable may consist
of many separate terms, it is considered a single entity in the
fuzzy proposition.

B.4 Fuzzy Propositions

A fuzzy model consists of a series of conditional and
unconditional fuzzy propositions.  A proposition or
statement establishes a relationship between a value in the
underlying domain and a fuzzy space. A conditional fuzzy
proposition is one that is qualified as an if statement.  The
proposition following the if term is the antecedent or
predicate and is an arbitrary fuzzy proposition.  The
proposition following the then term is the consequent and is
also any arbitrary fuzzy proposition.

If   w   is  Z  then  x  is Y

interpreted as
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x is a member of Y to the degree that w is a member of Z

An unconditional fuzzy proposition is one that is not
qualified by an if statement.

x is Y

where x is a scalar from the domain and Y is a linguistic
variable.  Unconditional statements are always applied
within the model and depending on how they are applied,
serve either to restrict the output space or to define a default
solution space.  We interpret an unconditional fuzzy
proposition as

X is the minimum subset of Y

when the output fuzzy set X is empty, then X is restricted to
Y, otherwise, for the domain of Y, X becomes the min(X,Y).
The solution fuzzy space is updated by taking the
intersection of the solution set and the target fuzzy set.

If a model contains a mixture of conditional or unconditional
propositions, then the order of execution becomes important.
Unconditional propositions are generally used to establish
the default support set for a model.  If none of the
conditional rules executes, then a value for the solution
variable is determined from the space bounded by the
unconditionals.  For this reason, they must be executed
before any of the conditionals.

The effect of evaluating a fuzzy proposition is a degree or
grade of membership derived from the transfer function,

( )m ¬ Îx Y (10)

where x is a scalar from the domain and Y is a linguistic
variable.  This is the essence of an approximate statement.
The derived truth membership value establishes a
compatibility between x and the generated fuzzy space Y.
This truth value is used in the correlation and implication
transfer functions to create or update fuzzy solution space.
The final solution fuzzy space is created by aggregating the
collection of correlated fuzzy propositions.

B.5 Fuzzy Implication

The monotonic method is a basic fuzzy implication
technique for linking the truth of two general fuzzy regions.
When two fuzzy regions are related through a simple
proportional implication function,

if x is Y then z is W

functionally represented by the transfer function,

( )( )z f x Y W= , , (11)

then under a restricted set of circumstances, a fuzzy
reasoning system can develop an expected value without
going through composition and decomposition.  The value of
the output is estimated directly from a corresponding truth
membership grade in the antecedent fuzzy regions.  While
the antecedent fuzzy expression might be complex, the
solution is not produced by any formal method of
defuzzification, but by a direct slicing of the consequent
fuzzy set at the antecedent’s truth level.  Monotonic
reasoning acts as a proportional correlating function between
two general fuzzy regions.  The important restriction on
monotonic reasoning is its requirement that the output for
the model be a single fuzzy variable controlled by a single
fuzzy rule (with an arbitrarily complex predicate).

Implication space generated by the general compositional
rules of inference is derived from the aggregated and
correlated fuzzy spaces produced by the interaction of many
statements.  In effect all the propositions are run in parallel
to create an output space that contains information from all
the propositions.  Each conditional proposition whose
evaluated predicate truth is above the current alpha-cut
threshold contributes to the shape of the output solution
variable’s fuzzy representation.  There are two principal
methods of inference in fuzzy systems:  the min-max method
and the fuzzy additive method.  These methods differ in the
way they update the solution variable’s output fuzzy
representation.

For the min-max inference method the consequent fuzzy
region is restricted to the minimum of the predicate truth.
The output fuzzy region is updated by taking the maximum
of these minimized fuzzy sets. The consequent fuzzy set is
modified before it is used to set each truth function element
to the minimum of either the truth function or truth of the
proposition’s predicate.  The solution fuzzy set is updated by
taking, for each truth function value, the maximum of either
the truth value of the solution fuzzy set or the fuzzy set that
was correlated to produce the minimum of consequent.
These steps result in reducing the strength of the fuzzy set
output to equal to the maximum truth of the predicate and
then, using this modified fuzzy region, applying it to the
output by using the OR (union) operator.  When all the
propositions have been evaluated, the output contains a
fuzzy set that reflects the contribution from each proposition.

The fuzzy additive compositional inference method updates
the solution variable’s fuzzy region in a slightly different
manner.  The consequent fuzzy region is still reduced by the
maximum truth value of the predicate, but the output fuzzy
region is updated by a different rule, the bounded-sum
operation. Instead of taking the [ ] [ ]( )iBiA yx mm ,max  at each
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point along the output fuzzy set, the truth membership
functions are added.  The addition is bounded by [1,0] so
that the result of any addition cannot exceed the maximum
truth value of a fuzzy set.  The use of the fuzzy additive
implication method can provide a better representation of the
problem state than systems that rely solely on the min-max
inference scheme.

B.6 Correlation Methods

The process of correlating the consequent with the truth of
the predicate stems from the observation that the truth of the
fuzzy action cannot be any greater than the truth of the
proposition’s premise.  There are two principal methods of
restricting the height of the consequent fuzzy set:
correlation minimum and correlation product. The most
common method of correlating the consequent with the
premise truth truncates the consequent fuzzy region at the
truth of the premise.  This is called correlation minimum,
since the fuzzy set is minimized by truncating it at the
maximum of the predicate’s truth.  The correlation minimum
mechanism usually creates a plateau since the top of the
fuzzy region is sliced by the predicate truth value.  This
introduces a certain amount of information loss.  If the
truncated fuzzy set is multimodal or otherwise irregular, the
surface topology above the predicate truth level is discarded.
The correlation method, however, is often preferred over the
correlation product (which does preserve the shape of the
fuzzy region) since it intuitively reduces the truth of the
consequent by the maximum truth of the predicate, involves
less complex and faster arithmetic, and generally generates
an aggregated output surface that is easier to defuzzify using
the conventional techniques of composite moments
(centroid) or composite maximum (center of maximum
height).

While correlation minimum is the most frequently used
technique, correlation product offers an alternative and, in
many ways, better method of achieving the correlation.
With correlation product, the intermediate fuzzy region is
scaled instead of truncated.  The truth membership function
is scaled using the truth of the predicate.  This has the effect
of shrinking the fuzzy region while still retaining the original
shape of the fuzzy set.  The correlation product mechanism
does not introduce plateaus into the output fuzzy region,
although it does increase the irregularity of the fuzzy region
and could affect the results obtained from composite
moments or composite maximum defuzzification.   This lack
of explicit truncation has the consequence of generally
reducing information loss.  If the intermediate fuzzy set is
multimodal, irregular, or bifurcated in other ways this
surface topology will be retained when the final fuzzy region
is aggregated with the output variable’s undergeneration
fuzzy set.

B.7 Aggregation

The evaluation of the model propositions is handled through
an aggregation process that produces the final fuzzy regions
for each solution variable.  This region is then decomposed
using one of the defuzzification methods.

B.8 Methods of Defuzzification

Using the general rules of fuzzy inference, the evaluation of
a proposition produces one fuzzy set associated with each
model solution variable.  Defuzzification or decomposition
involves finding a value that best represents the information
contained in the fuzzy set.  The deffuzification process
yields the expected value of the variable for a particular
execution of a fuzzy model.  In fuzzy models, there are
several methods of defuzzification that describe the ways we
can derive an expected value for the final fuzzy state space.

Defuzzification means dropping a “plumb line” to some
point on the underlying domain.  At the point where this line
crosses the domain axis, the expected value of the fuzzy set
is read.  Underlying all the defuzzification functions is the
process of finding the best place along the surface of the
fuzzy set to drop this line.   This generally means that
defuzzification algorithms are a compromise with or a trade-
off between the need to find a single point result and the loss
of information such a process entails.

The two most frequently used defuzzification methods are
composite moments (centroid) and composite maximum.
The centroid or center of gravity technique finds the balance
point of the solution fuzzy region by calculating the
weighted mean of the fuzzy region.  Arithmetically, for
fuzzy solution region A, this is formulated as
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(12)

where d is the ith domain value and m(d) is the truth
membership value for that domain point.  A centroid or
composite moments defuzzification finds a point
representing the fuzzy set’s center of gravity.

A maximum decomposition finds the domain point with the
maximum truth. There are three closely related kinds of
composite maximum techniques:  the average maximum, the
center of maximums, and the simple composite maximum.
If this point is ambiguous (that is, it lies along a plateau),
then these methods employ a conflict resolution approach
such as averaging the values or finding the center of the
plateau.
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Also there are other techniques for decomposing a fuzzy set
into an expected value.  The average of maximum value
defuzzification finds the mean maximum value of the fuzzy
region.  If this is a single point, then this value is returned;
otherwise, the value of the plateau is calculated and returned.
The average of the nonzero region is the same as taking the
average of the support set for the output fuzzy region.  The
far and near edge of the support set technique selects the
value at the right fuzzy set edge and is of most use when the
output fuzzy region is structured as a single-edge plateau.
The center of maximums technique, in a multimodal or
multiplateau fuzzy region , finds the highest plateau and then
the next highest plateau.  The midpoint between the centers
of these plateaus is selected.

C Fuzzy Optimization

C.1 Initial Considerations

In the real world, it is not an easy task to find a useful
optimal solution of a given problem because many
constraints and limitations must be taken into account during
this process. Usually, only the most important constraints
and limitations are chosen to be used during the solution
search process. Another problem is that the solution may not
be unique and it depends directly on the weight of each
constraint. Hence, many optimization processes have been
developed in the last decades to achieve the best solution in
this search process. In addition, one of the most important
points in this process is the computational cost to find the
best solution. Sometimes, this cost may comprise the use of
a technique to solve a problem. Number of constraints,
number of variables (involved to describe the problem) and
poor convergence speed are some examples of
computational cost. In other words, the computational
problems are related to hardware processor speed, memory
capacity and numerical techniques. However, the highly fast
evolution of the computational world (hardware and
software) allows optimization techniques, that  could not be
used before to solve a specific problem, to be applied
successfully now. Specifically for power system problems,
decomposition techniques, partitioning techniques and
parallel processing are examples of recent evolution of
computational techniques.

In many power system problems, the use of optimization
techniques has been important to reduce costs and losses of
the system. Unit commitment, economic dispatching, and
optimal power flow are some areas where these techniques
have been extensively used. For example, minimization of
active power losses is one of the biggest challenges for
power control operators. The achievement of this goal in
real-time is a critical task. A possible solution for this
problem is to use the Dantzig and Wolfe decomposition

algorithm to partitioning the power system in many
subsystems according to a geographic basis. The
optimization process is applied to these subsystems, and the
constraints are limited to local constraints and coupling bus
constraints.

An optimization process can be defined as a maximization
(or minimization) of an objective function, f(x), subject to
constraints of the problem, g(x). These constraints define a
feasible region R, i.e., a region that contains possible
solutions of the problem. Two popular techniques have been
developed for optimization process, they are linear
programming and quadratic programming. Examples of
these techniques, for two variables x1 and x2, are shown in
Figure 1, where there are 4 linear inequality constraints,
gi(x), that define the feasible region R, and the optimal

solution is denoted by x* .

x1

x2
f(x)

g1(x)g1(x)

g4(x)
g2(x)

g3(x) x*

R

(a) Linear Programming.

x1

x2

f(x)
g1(x)g1(x)

g4(x)
g2(x)

g3(x)

x*

R

 (b)  Quadratic Programming

Fig.1 - Example of Techniques.

It can be verified that in the linear programming the optimal
solution occurs always at an extreme point (a “corner” point)
of the feasible region; while in the quadratic programming
this solution can be located on the interior or boundary of the
feasible region.

The two major drawbacks of these current optimization
methods are: speed/convergence problems and correct
representation of constraints. Usually, methods with fast
speed present poor convergence, while slower methods have
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less convergence problems. On one hand, for example,
Newton-Raphson (or other parallel tangent methods)
presents a very good answer when the starting point is near
the solution point; however, this methods performance can
be very dependent on the shape of the involved functions.
On the other hand, bisection methods (e.g., Fibonacci, cubic,
and quadratic searches) are slower than tangent methods but
they are more reliable. Hybrid system schemes have been
proposed. Initially, the procedure starts with a bisection
method until the vicinity of the optimal point; then, the
procedure changes the method to a parallel tangent method.

The second drawback, correct representation of constraints,
is related to the difficulty to evaluate the correct value to be
incorporated in the constraint equations. Sometimes, these
constraints are not well-defined by crisp functions, and the
use of fuzzy values is recommended. Many fuzzy
optimization methods have been proposed in the literature,
where they can be classified according to the introduction of
fuzzy set theory in: (a) representation of the constraints, and
(b) solution method. A typical fuzzy optimization process is
described in the next sections.

The main applications of fuzzy optimization in power
system problems are: expansion planning [21-25],
maintenance scheduling [26,27], unit commitment [28],
multi-objective coordination [29-31], and optimal power
flow [32-34].

C.2 Fuzzy Optimization by Pseudogoal Function

Description of the Process

Usually, optimization problems with a single-real variable
are solved using bisection methods, where the main idea is
to reduce an initial interval until a required minimum.
Different from the classical optimization methods, the main
idea in fuzzy optimization is to optimize objective function
and constraints, simultaneously. In order to determine the
optimal point (solution point), both objective function and
constraints must be characterize by membership functions
and they must be linked by a linguistic conjunction: “and”
(for maximization) and “or” (for minimization).

Fuzzy optimization by pseudogoal was proposed by Bellman
and Zadeh [41] and the main idea is to satisfy a fuzzy
objective function and fuzzy constraints that receive the
same treatment, i.e., there is no difference among the
objective function and constraints.  The first step is a
fuzzification process of the objective function, this
procedure converts the objective function f(xj) into a
pseudogoal F(xj) by the following fuzzification process

mF

f
( )

( )
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x I

S - Ij

j=
-

(13)

where S and I are the maximum and minimum possible
values in the feasible interval for the function f(xj),
respectively.

The constraints may also receive the same fuzzification
process as above, or they are previously defined as a
membership function. In the latter possibility, this definition
can represent an expertise (or a linguistic value). For
example, using a crisp function, a possible constraint can be
x £ 3. The same constraint can be expressed as “the good
value is equal or less than 3”. A possible complement of this
statement may be “it is also acceptable for a value to be not
so larger than 3”. A possible membership function to
represent this linguistic value can be
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where k represents how acceptable is the value larger than 3.
If the value of k is small (usually, k < 1), only values very
close to 3 are acceptable; otherwise (k >1), k can represent
bigger values for the membership functions. Figure 2
presents an example of these values. The constant a is only a
parameter for level adjustment and it is used to turn the
membership function to a continuous one.

x is quite close to 3

x is close to 3

X is very close to 3

3 x

m(x)

1

k < 1

k  =1

k  > 1

Fig. 2. - Possible Membership Functions for a
Generic Constraints.

Another usual procedure is the use of fuzzy numbers to
define constraints. In classical optimization, intervals define
the region to be explored. In fuzzy optimization, this region
can be expressed using fuzzy numbers. An example of this
procedure is shown in Figure 3, where d1 and d2 can be

defined as the fulfillment (or relaxation) of the constraint.



2-8

x2 + d2

m(x)

x1 x2x1 - d1

Classical

Fuzzy

Fig. 3. - Classical and Fuzzy Intervals: [x1,x2] and
[x1 + d1, x2 + d2], respectively.

After the fuzzification process, the membership of the
optimal function can be found by the aggregation of all
constraints and the pseudogoal. In the computation of the
fuzzy maximum function, all membership functions are
initially merged by the conjunction “and” (intersection of all
function, operator: minimum) and then the optimal value
(solution) x*  is computed by the operator maximum (i.e., the
maximum-minimum value of the membership function).
This procedure can be presented by the following sequence,
where G(x) represents the decision function, and mG(x) is its
associated membership,

mG min C F( ) ( , )x =
x x* = max G{ ( )}m

In fact, this last operation (maximum) is a defuzzification
process, i.e., x*  is the optimal value in the original scale.

In the same way, for the fuzzy minimum function, a
sequence can also be structured. Initially, all membership
functions are merged by the conjunction “or” (it means the
union of all membership functions, operator maximum) and
then the optimal value x*  is computed by the operator
minimum, as defined by the following sequence

mG max C F( ) ( , )x =
x x* = min G{ ( )}m

In the fuzzy optimization process, it is possible to
incorporate weights for each constraint and pseudogoal.
These weights can represent linguistic hedges in order to
modify a membership function (as a linguistic value). Also,
other operators (than maximum and minimum) can be used
to define relations among constraints and pseudogoal.
Sometimes, composite operators must be used for a better
definition of the relations [42].

Numerical Example

This section presents a numerical illustrative example on the
use of fuzzy optimization for one-single variable. Let f(x) be
an objective function that represents the following linguistic
statement “x must be around 4” and the two constraints: C1 =
“x must be equal or greater than 2 and equal or less than 6”,
and C2 = “a good value for x is equal or less than 3 and an
acceptable value is not much greater”. In this example, the
former constraint is a crisp function, while the latter
constraint is a fuzzy value. Let’s consider the example below.

Maximize               f(x) = 10 -x - 25/x²

subject to

C1(x) =

0 for x < 2

1 for 2 x 6

0 for x > 6

£ £

ì

í
ï

î
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C2

1
1

3

2( )x
for x  3

x
for x >  3=
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The initial step is to compute the pseudogoal F(x) using the
minimum and maximum values of f(x):

f(x=2) = I = 1.75 (minimum value in the interval [2,6])

f(x=3.68) = S = 4.47 (maximum value in the interval [2,6])

Thus,

F
f

( )
( )

.
.

x
x I

S- I

x

2.72 x2=
-

= - -303
919

As the constraints have been defined as membership
functions, the next step is compute the membership of the
decision function G(x). This computation is performed using
the linguistic conjunction “and” because the objective
function and the constraints must be satisfied simultaneously.
The result is shown in Figure 4, where the minimum
operator has been used. The bold curve is the decision
membership function.

The final step is the computation of the optimal value of x*

by the maximum relation of G(x). In this case, the maximum
value (optimal value) is located in the intersection between
the second part of constraint C2 and the pseudogoal F(x).

Equating the two functions, the final value of x* is equal to
3.2.
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0

1

2 2.5 3 3.5 4 4.5 5 5.5 6

m(m(m(m(x))))

F(x)
C( x)

G(x)

x* = 3.2

Fig. 4 - Computation of Membership Functions.

C.3 Fuzzy Programming

Fuzzy Linear Programming

Classical linear programming can be defined by an
optimization of a linear objective function and linear
constraints. Usually, this procedure can be represented by
the following statements

maximize f(x) = cT.x

subject to Ax £ b
x ³ 0

where c(n´1), b(m´1), A(m´n) and m<n. The inequality
constraints form a feasible region.

The fuzzy linear programming has the same structure as the
classical linear programming. The difference between these
two approaches is that in the classical approach values and
operators are crisp, while, in the fuzzy approach values
and/or operators may assume fuzzy characteristics.
Examples of this fuzzy transformation may be:

· the operator “maximize” cannot specifically be a
search for the optimal but only a “improving of quality”,
· the operators £ and ³ can express functions as
shown in Figure 2, where for the “belong” crisp region
the value of membership is equal to 1, and outside this
region, an exponential function defines the membership
values, and
· the elements of the vectors b and c and the matrix A
can also be a fuzzy definition for a better representation
of the real world.

Many contributions have been made in this field, composing
the above features [43] and defining new fuzzification and
inference processes [44]. Other developments, including

duality theory, sensitivity analysis, and integer fuzzy
programming can be found in [45].

Fuzzy Dynamic Programming

The idea in classical dynamic programming is to decompose
a main problem into several subproblems (one for each
variable). Thus, the optimization of each subproblem is
divided into a multistage decision process. Here, all
operators and values have a crisp meaning. In the same way,
a fuzzy dynamic programming can be defined as a
fuzzification of all (or part of) these elements. In a well-
known fuzzy dynamic programming method, Bellman and
Zadeh [41] have proposed to work with fuzzy constraints
and fuzzy goals to determine the subgoals of each step of the
process, while the transformation function is maintained
crisp. An excellent example of the application of fuzzy
dynamic programming to power systems is presented in [35].

C.4 Fuzzy Multi-Criteria Analysis

Description of the Problem

During any decision making process, many different factors
must be taken into account. These factors can be heuristic or
arising from numerical analysis. Usually, the heuristic
factors are due to the planner's previous experience and have
a non-numerical structure, i.e., they can be better expressed
by linguistic values. The problem that planners face in their
daily job is how to incorporate these linguistic values into
numerical analysis. Commonly, the computational packages
do not include the possibility to use non-numerical values.
Thus, planners have two possibilities when using this kind of
knowledge. One is to put the linguistic numbers in numbers.
The other possibility is to forget this knowledge during the
numerical analysis and then, after getting the final result,
modify it so as to make an adaptation to take into account
the planner expertise.

The problem is that both approaches are not good. In the
first one, where planner tries to transform linguistic
knowledge into numerical values, much information is lost
during this process. For example, if the following statement
is to be incorporated: "The distribution feeder A is quite
loaded." What is a good numerical value for "quite loaded" ?
Two possible ways can be taken; that is, the planner uses a
number to define it, for example, 0.80 pu, or he/she can use
a percentage, say 90%. Here we also lose information in
both transformations. In the first one (the worst
transformation), if 0.80 pu relates to a 0.85 pu feeder
capacity, the statement does not include information about
other numbers around 0.80 pu, for example: 0.78, 0.82, and
so on. Each of these expresses the same knowledge and have
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the same result. On the other hand, the number 0.80 alone
can not represent "quite loaded feeder", for example, if the
feeder capacity is 1.30 pu.

The second representation of the statement, using a
percentage or a range, has the same lost of information
problem. Let us assume a "small change" in the percentage
number; for a long-term decision-making process, it may
result in the same final decision. The problem is that it is
very hard to quantify 'what is a small change' in a
conventional computational tool.

The other possible approach is to modify the final result in
order to take into account the planner expertise. This
approach has been commonly used in practical analysis;
however, planners have had difficulty in explaining why
they need to modify a final value, mainly, if this
modification can change the final result order given by the
decision process.

Classification of Fuzzy Multi-Criteria Analysis

The classification of fuzzy multi-criteria problems is divided
in two main types: multi-objective decision-making and
multi-attribute decision-making. In general, the difference
between these two approaches is located in the decision
space. For the former approach, this space is continuous, and
the problem is solved by mathematical programming. For
the latter approach, the decision space is discrete, and other
approaches have been developed [36,46]. The next
subsection presents an algorithm to treat this problem.

Presentation of a Multi-Attribute Decision-Making
Algorithm

This algorithm is an extension of Dhar's algorithm, proposed
in [37]. Some aspects of data structure representation,
inclusion of a new matrix composition and a different fuzzy
decision-making process are some modifications and
extensions proposed in this algorithm. The original
algorithm divides the structure of the problem into
alternatives, scenarios and criteria, and its matrix

representation. Several facilities are included in the user-
interface for an easy accomplishment of the tasks.

The steps of the proposed algorithm are presented as
follows:

Step 1: Choose the alternatives to solve the problems and the
criteria that will be used in the decision-making process.
Step 2: Create scenarios with fuzzy weights for each
criterion and give the conjunctions to compose them.
Step 3: Create a matrix by the combination between
scenarios and alternatives for each decision criterion. These
matrices must contain information about the relation
between each scenario and each alternative in the light of
each criterion.
Step 4: Create the fuzzy conditional statements to represent
possible data-base knowledge.
Step 5: Obtain, for each matrix of Step 3, the fuzzy set Zi
that is formed by the input weights, according to

Z x pi i j k j k= m ( ) /, ,

where i, j and k represent criterion, alternative and scenario,
respectively; and pj,k is the weight assigned to the

alternative j for a scenario k in a given criterion i.
Step 6: Obtain the fuzzy set Li formed by the weights pj,k
that are assigned to the pertinence matrix which, in turn, is
given by the ratio between each weight and the largest value
among all weights of the same matrix. The following
equations express these value, where L represents the largest
weight of the matrix,

L x pi j k j k= mL ( ) /, ,

mL L( , ) /,j k pj k=

Step 7: Obtain from Zi and Li a matrix Ci that is expressed

by the equations,

C x pi C j k j ki
= m ( ) /, ,
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m m mC j k i j k j ki
x x x( ) ( ( ), ( )), , ,= min L

Step 8: Use max, min, and algebraic sum operators to
compose the fuzzy decision set, according to Step 2.
Step 9: Present the final decision set for each criterion, and
the total result.

The Steps 5 to 7 has been proposed by Dhar in his original
algorithm. More information about the algorithm to build the
fuzzy conditional statements to represent data sets can be
found in [38,39].

Illustrative Example

The expansion strategy of a generation system is to be

analyzed, at long term, for a given region. The generation
options are hydroelectric plants (H) and nuclear-type
thermoelectric plants (N), natural gas (NG), coal (C) and oil
fuel (OF). This expansion policy is also intended to be
associated to investments in electrical power conservation
programs trying to establish, within some scenes, an option
scale of generation and conservation measures.

The characterization of each plant, under quantitative and
qualitative stand point, is shown in Table 1. Some data have
been obtained from Brazilian Power System (Eletrobrás)
Internal Reports. These values are divided into two groups:
numerical values and linguistic values. For the generating
system there are construction and generation costs; for the
electric power there are the "demand reduction cost" and the
"saved energy cost", in (US$/kW) and (US$/kWh),
respectively. Tables 2 and 3 illustrate these costs for the

Table 1 - Quantitative and Qualitative Characteristics of the Generation Systems

Construct.
Cost

(US$/kW)

O&M Cost
(US$/km

/year)

Unity
Generation

Cost
(US$/kWh)

 Environmental
Costs

 Generation
Reliability

Ease of
Implementati

on

H 1500 7 0.032 Small Very High Small
N 1660 44 0.059 Very High High High

NG 1100 22 0.051 Small Regular Regular
C 1400 28 0.045 Regular Regular Regular

OF 1200 12 0.073 Regular Regular Regular

Table 2 - Electrical power conservation costs for industrial sector

Demand
Reduction Cost

(US$/kW)

Saved
Energy Cost
(US$/kWh)

Motors 200-1600 0.02-0.04
Direct Heating

(Furnaces)
200-1200 0.02-0.03

Indirect Heating 200-900 0.01-0.02
Electrochemical

Processes
200-600 0.01-0.03

Lighting 200-1300 0.02-0.04
Note: Indirect heating includes boiler and water heating.

Table 3 - Comparison of different lighting options

Kind of Lamp Power
(W)

Average
Operating Life

(hours)

Saved Energy Cost
(US$/kWh)

A                    B
Incandescent Economical (I1) 54 1000 0.027 0.026
Common Tubular Fluorescent

(I2)
20 6000 0.031 0.026

Fluorescent Compact (I3) 13 8000 0.060 0.049
Note: A - considering 3 hours/day operation

B - considering 10/hours/day operation
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industrial sector and final uses of electrical power [40].

For motors, main electrical power consumer in the industrial
sector, it is possible to work in programs of energy
conservation which seek, for example, a better used and
adaptation in the industrial process (MOTOR 1), the
employment of more efficient motors (MOTOR 2) or even
the use of varying speed controllers (MOTOR 3) applied to
varying torque motors. Each of these options presents
different saving energy costs, as shown in Table 4.

Based on the information that we can obtain from Tables 1
to 4, the several technologies aiming at electrical power
conservation can be quantitatively and qualitatively
characterized within a planning horizon.

Energy Conservation Scenarios and Characteristic Matrices

By attributing a weight from 0 to 10, for example, or a fuzzy
linguistic variable, that represents subjectively the
importance of each generation plant and the actions of
electrical power conservation in the final uses, scenes can be
established and the so-called characteristic matrices can be
constructed (Table 5).

The characteristic matrices are constructed for the following
analysis criteria:
- construction cost or demand reduction cost
- operation and maintenance (O&M) cost;
- generation cost or saved energy cost;
- environmental costs;
- generation reliability or action reliability;
- ease of implementation; and
- usefulness to the entrepreneur.

As an example of this kind of matrix, Table 6 shows the
O&M cost characteristic matrix.

Calculation of the Fuzzy Decision Set

By using the proposed methodology, the following decision
set D is obtained:

D = { (0.6073/H) , (0.4476/N) , (0.6223/NG) ,
(0.5867/C) , (0.5257/OF) , (0.5692/I1) , (0.5375/I2) ,

(0.5432/I3), (0.7165/M1) , (0.7032/M2) ,
(0.5272/M3) }

Thus, for the conditions stated above, the investment
strategy in conservation and generation of electrical power is
as follows:

1st option: To improve the use and suitability of the motor in
the industrial process.
2nd option: To employ more efficient motors in the motors
in the process.
3rd option: Hydroelectric generation
4th option: Natural gas thermoelectric generation
5th option: Coal thermoelectric generation
6th option: Nuclear thermoelectric generation

Consider, as an example, that the electric power
conservation potential through employment of the 1st option
is 8 (TWh) and with the 2nd option is 5 (TWh). Consider
also a prediction in the planning horizon of the electrical
power market in the order of 60 (TWh). Then, once the 2
first options of conservation are exhausted, there would be a
deficit of 47 (TWh). By using the policy of avoiding this
deficit only through generation and by considering
hydroelectric generation potentials of 25 (TWh), natural gas
thermoelectric generation of 10 (TWh) and coal generation
of 20 (TWh) yields the following strategy:

Conservation:
13 (TWh), representing 22% of the power demand

Generation:
47 (TWh), representing 78% of the power demand

Conservation actions:

Table 4 - Comparison of different costs of the electrical

Kind of Program Saved Energy Cost
(US$/kWh)

Motor 1 (M1) 0.01
Motor 2 (M2) 0.02
Motor 3 (M3) 0.04

Table 5 - Electrical Power Conservation Scene in the
Planning Horizon

Possible
States

Description Membership
Degree

HM Household Medium 0.3
IM Industrial Medium 0.4
IH Industrial High 0.8
CL Commercial Low 0.2

Table 6 - Characteristic Matrix - O&M Cost

Alternatives
States

HM IM IH CL

H 8 9 10 7
N 2 2 2 2

NG 3 3 4 3
C 2 2 3 2

OF 5 6 7 5
I1 VH H H VM
I2 H VM VM M
I3 H VM VM M
M1 VL VM VM VL
M2 VL VM VM VL
M3 VL M M VL
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Use 1st and 2nd options
Generation actions:

53% for hydroelectric generation, 21% for natural
gas thermoelectric generation, 26% for coal thermoelectric
generation

D Fuzzy Control

D.1 Initial Considerations
The use of Fuzzy Logic for solving control problems has
tremendously increased over the last few years. Thus, the
teaching of fuzzy control in engineering courses is becoming
a necessity. This section presents a computational package
for students' self-training on fuzzy control theory. The
package contains all required instructions for the users to
gain an understanding of fuzzy control principles. Training
instructions are presented via a practical example. The main
objective of the example is to park a car, approaching from
any direction, in a parking lot. A car parking problem has
been chosen because it is well-known to undergraduate
students. To accomplish this task the students must first
develop sets of fuzzy-control rules to define the trajectory of
the car. Many windows and numerical routines are available
in the program to give support to users during the
establishment of such fuzzy-control rules. Processes, such as
fuzzification and defuzzification of the variables, are
performed by the program without the interference of the
user. Illustrative examples of training sessions are described
in this section.

D.2 Brief Description of the Software
The basic problem of car motion has evolved into a more
specific task: the parking of a car in a lot. This problem
formulation can exhibit two characteristics: (a) the reduction
of the initial data, and (b) the creation of different control
zones. The first characteristic shows up because the final
position is always the same; the program user needs to enter
only the initial car position (coordinates); the final position
coordinates are internal data in the program. It is important
to note that this reduction does not limit the problem,
because all relative positions between the initial and final
positions can be maintained. The second characteristic
allows us to define fine and coarse control zones for the car
motion. For instance, if the current car position is far away
from the final position, a coarse output value can be
produced without a major implication in the final result.
However, if the car is close to the final position, a more
rigorous control must be made. The characteristics of fine or
coarse control can be represented by the number of rules in
each region (non-zero domain of the membership functions).
This is an important learning task for the student.

The main idea behind the proposed lab is to demonstrate to
undergraduate students that fuzzy logic control is very useful.

The strategy for controlling car parking can be the same for
many industrial processes [47]. In this lab, each student is
asked to built his/her own set of membership functions and
control rules. The inference process is performed by the
program directly. The problem is to drive the car backward
from a given initial position to a target area. The input
variables for this problem are: the position of the car trunk (x,
y); the car angle f; and the direction of motion d. The output
variable, q, defines the angle of the car front wheels.

D.3 Brief Description of the Software
A fuzzy inference process executes each rule, i.e., (a) the
input variables are transformed into the fuzzy statements,
and (b) an output value is computed. The execution of each
rule is made using modus ponens [10], which means that the
premise of the rule produces the degree of membership for
the conclusion of the same rule. This membership degree is a
function of the fuzzy values of the input variables, and of the
conjunctions used among them. Figure 5 shows the Rule
Editor Window.

Fig. 5 - Rule Editor Window

Fig. 6 - Typical Session - Main Window
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After the execution of all the rules, the defuzzification
process begins. The final actual output value is computed
using the center of gravity method [12]. In this method, all
areas formed by the consequence of each rule are added and
the centroid of the resultant area is computed. The value of
the abcissa found is the actual value of the output variable.

D.4 Illustrative Examples
This package allows the students to learn the fundamental
principles of fuzzy logic and fuzzy control and, at the same
time, to properly choose the number/position of rules for a
well-designed controller. A controller with an excessive
number of rules (or a lack of them) can compromise the
system performance; that is to say, too many correct rules
(information or knowledge) can not always be interpreted as
an improvement of the system performance as these may
worsen it.

A typical situation that may occur in a training session are
shown in Figure 6.
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Chapter 3 Control Applications

Abstract- The basic concepts of fuzzy systems, particularly
from the point of view of fuzzy logic based controllers, are
described in this Chapter.  State of the art of fuzzy control
for power systems is outlined and supported by a
bibliography of the literature in this area.  Application of the
fuzzy logic controller as a power system stabilizer is
illustrated by two examples - one fairly straightforward
application of fuzzy logic and one self-learning algorithm.

A Introduction to Power System Control

A.1 Motivation
A reliable, continuous supply of electric energy is essential
for the functioning of today's complex societies. Due to a
combination of increasing energy consumption and
impediments of various kinds concerning the extension of
existing electric transmission networks, these power systems
are operated closer and closer to their limits.

Deregulatory efforts will tighten the economical constraints
under which utilities have to operate their own network or
allow or prevent competitors from using it. This in turn will
require more precise power flow control which is made
possible by phase angle controllers being developed using
new power electronic equipment. However, it is to be
expected that these highly non-linear components will
introduce harmonics and require non-linear control in order
to prevent system destabilization.

This situation requires a significantly less conservative
power system operation regime which, in turn, is possible
only by monitoring and controlling the system state in much
more detail than was necessary previously.

A.2 Power System Control  Tasks
In electric power systems, [1], one can distinguish three
different control levels:

Generating Unit Controls which consist of prime mover
control and excitation control with automatic voltage control
(AVR) and power system stabilization (PSS). The first
controls generator speed deviation and energy supply system
variable like boiler pressure or water flow. Excitation control
aims at maintaining the generator terminal voltage and
reactive power output within its machine-dependent limits.

System Generation Control which determines active power
output such that the overall system generation meets the

system load. It further controls the frequency and the tie line
flows between different power system areas.

Finally Transmission Control monitors power and voltage
control devices like tap-changing transformers, synchronous
condensers and static VAR compensators.

In reality all controls affect both components and systems.
For example the AVR is known to introduce local mode
oscillations as well as inter-area oscillations which in turn
are counteracted by a well-tuned PSS.

From the viewpoint of system automation, Generating Unit
Control is a complete closed-loop system and in the last
decade a lot of effort has been dedicated to improve the
performance of the controllers. The main problem for
example with excitation control is that the control law is
based on a linearized machine model and the control
parameters are tuned to some nominal operating conditions.
In case of a large disturbance, the system conditions will
change in a highly non-linear manner and the controller
parameters are no longer valid. In this case the controller
may even add a destabilizing effect to the disturbance by for
example adding negative damping.

These problems provide an important motivation to explore
novel control techniques like fuzzy systems and their
potential in the area of prediction, approximation,
classification and control.

Power system control  consists of 4 steps:

1- System parametric or state-space modeling based on
physical components or assumed properties

2- System parameter identification based on component
data and measurements.

3- System observation of inputs and outputs by filtering,
prediction, state estimation etc.

4- Design of an open-loop or closed-loop system control
law such that the operating conditions are met.

In the case of electric power systems and electric machines,
individual components are modeled in terms of resistors,
inductors, capacitors, machine inertia etc. Their interaction
is modeled according to the laws of electro-magnetic circuits
and fields. The resulting set of differential equations then
defines a state-space model whose parameters, for example
the machine reactances have to be identified under steady
state and transient conditions. Voltage signals on the other
hand are modeled as a trignometric sum of sin and cos
functions without taking the underlying physical model into
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account. In this case the free parameters to be identified are
the signal amplitudes.

System identification may be defined as the process of
determining the parameters of the dynamic system model
using observed input and output data. Dynamic load
modeling attempts to model individual as well as composite
loads of the system. Identification of machine parameters is
another identification task.

System observation in power systems concerns off-and on-
line monitoring of directly or indirectly observable system
variables. Load forecasting, for example is an off-line
monitoring task, power quality monitoring an on-line
monitoring task. State estimation calculates the most likely
values for power system parameters like bus voltage and line
flow by giving a least-squares estimate of a set of redundant
measurements.

Closed-loop control attempts to counter-balance undesirable
effects like undamped frequency oscillations or voltage
deviations in a closed-loop feedback environment.
Excitation control, automatic voltage regulation and power
system stabilization fall in this category.

Assume that the plant has been modeled by the following
single-input, single-output noise-free continuos system and
the parameters of the non-linear plant model f and observer
model h have been identified.

dx(t)/dt =f(x,u, t)
y  = h(x, u, t)

where

x ÎÂ m is the state vector of the modeled plant

u ÎÂ is the control input of the system
y ÎÂ   is the observed output of the system
f is a non-linear state-space model of the plant
h is the non-linear observer model

Figure 1 shows an example of a simple continuous closed-
loop control system where r is a reference signal, f(e,t)
denotes the controller and e = r-y is the feedback error to be
minimized.

In the case of a power system stabilizer the reference signal
is the reference voltage Vref and the terminal voltage Vt, the

plant output is the angular speed deviation Dw, and the
control signal is the stabilizing voltage vs. The plant model
comprises excitation system, AVR and generator model.

So far the continuous system model has been considered.  If
the system in Figure 1 is discretized taking into account  k =
1...n time-steps t=kT, the control, output and error signals
will become higher -dimensional vectors, as for example

u = [u(k), u(k-1), ... u(k-m)]T

e = [e(k), e(k-1), ...e(k-n)]T

y(k) = hd(x(k), x(k-1), ..., u(k), u(k-1) ... )

In the case of feedback error minimization, task 4 of the
controller design consists in finding a function

     f: Â n -> Â  such that f(e) = u(k+1) and |e(k+1)| = min.

In the case of linear controllable and observable systems, a
controller f can be found through inversion of the system
transfer function and pole placement. In the case of non-
linear systems there is no general closed form of f.  How
fuzzy systems can provide an approximation of the
controller f is explored in the following sections.

B Fuzzy Systems

B.1 Review of Basic Concepts
Some of the basic definitions of fuzzy systems as outlined in

[2] are reviewed first. Let U  Í Â n denote the universe of
discourse, with fuzzy sets A Í U and fuzzy membership
functions mA: U -> [0,1] which may be labeled by a
linguistic term like cold, warm, positive or negative.

Fuzzy membership functions are characterized by their
shape and their localization in space. For example, if the
universe of discourse is the range of temperatures from 0 F
to 120 F, the membership function describing the fuzzy set
cold, warm and hot may be centered at a1 = 40 F, a2 = 70 F
and a3 = 100 F, have a triangular shape of slope and a

maximal width s of 40 F as shown in Figure 2.

Instead of defining center, shape and width of the

r uController 
u = f(e, t)

  Plant 
dx(t)/dt = f(x, u, t) 
 y = h(x, u, t)

ye
+

-

Figure 1: Closed-loop control system

4020 60 10080 120

1

mi(e) 
i = 1, 2, 3

Temperature e[F]
a1 a2 a3

30 50 70 90 110

Figure 2: Membership Function for Fuzzy Temperature Sets



3-3

membership function by empirical rules, one can choose a
more systematic approach using data analysis. For example,
in the case of load forecasting sampling of the load data
might indicate that the load exhibits 3 different behaviors
correlated with the temperature. A clustering algorithm
might have identified 3 typical temperatures ai and the width

of the cluster si defines the width of the membership

function mi, i=1, 2, 3.

In addition, one can choose a Gaussian function, which is
continuously differentiable, instead of the triangular (or the
sometimes used trapezoidal shape) without altering the
quality of the results significantly. (Note, however that the
support of the triangular function is finite whereas the
support of the Gaussian is the whole universe of discourse.)

mAi = si * exp (-0.5[(e- ai ) / si ]2

There are other continuously differentiable membership
functions available with finite support available, for ex. B-
splines. Whether one defines the membership function
empirically or systematically, one always has some degrees
of freedom, that is

N:  number of fuzzy sets and membership functions
aj:  the center of the mi
si: the width of mi or si: the slope of mi under the

      constraint that mi(e) Î [0,1].

In analogy to crisp sets one can define union, intersection
and complement of two fuzzy sets A and B by defining the
membership functions corresponding to union, intersection
and complement.

The most widely used definitions are the min-max operations

   Intersection: mA Ç B(e) = min( mA(e),mB(e))

   Union: mA È B(e) = max( mA(e), mB(e))

   Complement: mU\A(e) = 1-mA(e)

These definitions of union and intersection are not unique
and depending on the choices one can  define different fuzzy
systems with different rule inference mechanisms.  Another
popular choice of intersection and union is the algebraic
product and sum operations:

  Intersection:    mA Ç B(e) = mA(e)×mB(e)

  Union:             mA È B(e) = mA(e) + mB(e) - mA(e)×mB(e)

  Complement:  mU\A(e) = 1-mA(e)

Here these two types of intersection definitions are referred
to as minmax T-norm T and product T-norm T.

  Minmax:  T(mA,mB) (e) = min( mA(e), mB(e))

  Product:  T(mA,mB) (e) = mA(e)×mB(e)

The corresponding unions are called minmax T-conorm and
product T-conorm. Reference [3] gives examples of other T-
norms and their implications on rules and inferences.

As in the case of the choice of membership functions these
T-norms have different advantages. The minmax T-norm is
closer to the set-theoretic approach and generalizes the
concept of crisp union and crisp intersection in a rather
intuitive manner. The product T-norm implements the logic
AND and OR calculation for boolean values 0 and 1.

However, even for differentiable membership functions, the
membership function of the set intersections generated by
the minmax T-norm is, in general, not differentiable whereas
the membership functions of intersections generated by the
product T-norm remain differentiable.

The definition of intersection and union leads to the
definition of fuzzy compositions,  propositions and fuzzy
implication interpreted according to the chosen T-norm.  See
also Chapter 3.  The most important definitions are:

Fuzzy proposition
      e1 is A AND e1 is B  <==> e1 is AÇ B

Fuzzy composition
      e1 is A1 AND e2 is A2  <==> (e1, e2) are A1 ´  A2
with membership function
      mA1´ A2(e1, e2)  = T(mA1(e1), mA2(e2))

Fuzzy implication:
      mA ® B(e,u) = T((mA(e), mB(u))

Fuzzy rule inference:
      Let E1 and E2 be the fuzzy sets presenting the input
e = (e1, e2) then the rule IF e1 is A1 AND e2 is A2 THEN u
is B defines a fuzzy set C with the membership function

mC(u) =

           supeÎU ´ U{T(( mA1´ A2® B(e, u), mE1´ E2(e))}

Firing of m fuzzy rules:
      Since each rule i will result in a fuzzy set Ci, the firing of
m rules for e results in a union of fuzzy sets

C = C1 È  ...È  Cm
with membership function

mC(u) = mC1 È  ... È  Cm(u)
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In the context of power system control, control input and
feedback error are given as real "crisp" numbers. In order to
apply fuzzy concepts the feedback error e has to be
presented by a fuzzy set. This set is modified according to
the fuzzy rules into a fuzzy set of controls C which are
translated back into a crisp control input u ÎÂ .  This task is
performed by a fuzzy system defined according to [2] and
illustrated in Figure 3.

B

e    Î  Ân

Fuzzifier 
e ® Fuzzy Set (A, mA)

  Fuzzy Rule Base  
Fuzzy  Inference Engine 

IF e is A AND e1 is A1 AND .... AND e1 is A1 THEN u is B

Defuzzifier 
 Fuzzy Set (B, mB)  ® u

A

u Î  Â

Figure 3: Structure of a Fuzzy System

A fuzzy system is a mapping

     F: Un Í Â n -> Â , F(e) = u

defined on a universe of discourse Un  with fuzzy sets A,
membership functions mA, and a T-norm T. It is further

defined by a fuzzifier, a fuzzy rule base, a fuzzy inference
engine and a defuzifier.

A Fuzzifier  maps e ÎUn Í Â n to a fuzzy set E. A fuzzifier
is called the singleton fuzzifier if the membership function
mE of E is defined as

mE (x) = 0, x ¹ e, mE (e) = 1

Another fuzzifier is mE defined as a Gaussian function with
center e. For the singleton fuzzifier and crisp inputs e =
(e1,e2) the fuzzy inference rule can be simplified as

  
mC(u) =

          supeÎU ´ U {T(( mA1´ A2® B(e, u), mE1´ E2(e))}

              = mA1´ A2® B(e, u)

              = T(T(mA1(e1), mA2(e2)), mB(u))

Keep in mind that u is a variable while e1 and e2 are

numbers and thus mB(u) is a function whereas mA1(e1) and

mA2(e2) are numbers modifying the shape of mB(u).  For the

product T-norm mA1(e1) and mA2(e2) will scale the function

mB(u) by reducing the slope.

mC(u) = mA1(e1) mA2(e2) mB(u) (1)

If it is assumed that mA1(e1) < mA2(e2), then the function

mB(u) will be clipped to mA1(e1) for the minmax T-norm.

mC(u) = min(mA1(e1), mA2(e2), mB(u))

Thus

mC(u) = mB(u) if mB(u) < mA1(e1)

mC(u) = mA1(e1) if mB(u) ³  mA1(e1)

As outlined above, the application of m rules to the fuzzy
input vector e results in the union of fuzzy sets C =C1 È ...
È Cm.  A defuzzifier maps the fuzzy output sets of the
inference engine onto a crisp number.  Once again several
choices are available. The maximum defuzzifier of the fuzzy
set C =C1 È ... È  Cm is defined as

u = argsupuÎ  U (mC1È C2 ... È Cm)

However depending on the form of the membership function,
the maximum may be reached at several points and therefore
the determination of u may become ambiguous.
In control the following two defuzzifiers are the most
common. For a finite universe of discourse with M elements
U ={u1, ..., uM} the center-of-gravity defuzzifier is defined
as

u =

uim C ui( )
i=1

M
å

m C ui( )
i=1

M
å

For a continuos universe of discourse the sum has to be
replaced by an integral and the computation of this integral
is considerably time-consuming.

A computationally more economic choice of a defuzzifier is
the so-called center-of-average defuzzifier. Let m be the
number of rules and let bi denote the center of the fuzzy sets

Bi where mBi reaches its maximum (usually 1), i = 1...m. For

one-level inference (each rule is at most fired once) these
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centers depend only on the initial shape of mBi and they can

be computed off-line in advance. Then the defuzzifier is
defined as

u =

bim Ci bi( )
i=1

m
å

m Ci
bi( )

i =1

M
å

(2)

B.2 Fuzzy Basis Functions
In  [2] it is shown that a fuzzy system F with singleton
fuzzifier, product-T-norm and center-of-average defuzzifier
can be written in a closed form as

u = F(e1,e2,...,en) = bj f j (e1,e2,... ,en)
j =1

m
å

where

f j (e1,...,en) =

m Aij ei( )
i =1

n
Õ

mAij ei( )
i=1

n
Õ

j =1

m
å

This result can be derived by generalizing  the product
inference rule (1) for m rules and by substituting (1) into
equation (2).   Further, it is assumed that m Bi bi( ) .=1

As above, the index j denotes the number of rules used for
evaluating the fuzzy input e = (e1, ..., en) and bj indicate the
centers of gravity of the fuzzy sets Bj where Bj determines
the control output u as an implication of the rules fired e.

For Gaussian membership functions
mAij (ei)= sij * exp (-0.5[(ei - aij ) / si]

2,

the fuzzy system is a  universal approximator of any
continuos function.  This result shows that this specific class
of fuzzy logic systems belongs to the class of adaptive

controllers and, therefore, that Fuzzy Systems in general can
be viewed as a generalization of adaptive controllers.

It is important to note that in this case the only important
information one needs to know about the membership
function of Bj is its center bj whereas the Gaussian
membership functions defining the fuzzy set Aij for
component ei and rule j have to be defined in detail.

Above a procedure has been outlined on how to determine
the centers aij and width sij of the membership functions of
Aij with clustering algorithms and without empirical
description. In analogy to neural networks, this process is
also referred to as unsupervised or self-organized or self-
adaptive training of the fuzzy system.

An algorithm which calculates the parameters aij , bj and si
based on the sampled system data using a least-squares
minimization algorithm based on the Gram-Schmidt-
orthogonalization procedure is described in [2].  The degree
m of the system, i.e. the number of rules has to be chosen as
a free parameter. In terms of fuzzy systems this algorithm
can be viewed as a supervised or adaptive training of the
fuzzy rule base.

Fuzzy systems given in closed form, whose membership
functions and inference rules are established in such a
systematic unempirical manner, have the advantage that
stability analysis can be performed and tasks like optimal
control can be addressed. This is outlined in more detail in
chapter 6.

On the other hand, the empirical establishment of the
membership functions and the rule base allow one to
incorporate available human knowledge and heuristics.  For
the case of a simple non-linear dynamic system, the “ball-
and-beam" system,  it is shown in [2] that for undersampled
plants additional empirical rules can improve the controller's
performance. However, a small set of purely empirical rules
may lead to unstable plant behavior.
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Table 1: Overview of Fuzzy Systems Applications to Power System Control

Application References Fuzzy
Approach

Membership
Functions

Comments

PSS [4,5] Self-adaptive B-Spline 1-machine, 2-line-inf. Bus; Lab experiment, micro
machine system DSP controller

PSS [6,33] Rule-based Triangular 1-machine, 2-line-inf. Bus; Lab experiment, micro
machine system DSP controller

PSS [7-10,12-14] Self-adaptive Trapezoidal Simulation on Analog Power System Simulator (12
machine max); Prototype field test on 2 hydro units,
Frequency response study, capacitor bank switching

PSS [15] Self-adaptive Gaussian Computer simulation, utility power system

AVR & PSS [16] Rule-based Trapezoidal Computer simulation, 3-machine test system

PSS [17-18] Rule-based Triangular Computer simulation, 2-machine, 4-line-inf. bus

PSS [19] Self-adaptive Triangular Computer simulation, 1-machine, 2-line-inf. bus

PSS [20] Rule-based Triangular Computer simulation, 3-machine, 7-line-inf. bus

FACTS [11,21] Self-adaptive Trapezoidal Computer simulation, 5-machine, 13-line-inf. Bus,
capacitor bank switching, thyristor controlled braking
resistor, static VAR compensator

Induction
Motor

[22] Rule-based Trapezoidal Lab inverter/3 hp induction motor, PC-based micro-
controller

Variable speed
drive

[23,24] Rule-based Triangular Lab inverter/reduced ratings, induction motor, DSP-
based micro-controller

PWM Inverter [25] Rule-based Triangular Lab prototype of wind energy conversion system
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C. State of the Art of Fuzzy Control for Power
Systems

In the case of power systems, control measurement data can
be obtained for the discretized plant output y, the reference
signal r  and the control input u.  In analogy to neural
networks, let this data be referred to as the training data.

A short overview of the studies of fuzzy systems of type u =
F(e) as controllers f(e) in the area of power systems or
generation control is now given.  The majority of fuzzy
controllers can be found in the area of excitation control,
especially power system stabilizers (PSS).  An upcoming
important area is control of FACTS devices like thyristors
and GTOs.  Table 1 gives an snapshot of the state-of-the-art.
Given the considerable number of publications Table 1 can
not claim to give a complete overview.  Instead this short
summary intends to provide the reader with some
information on a typical approaches and project states.

Papers published by the same team of researchers on the
same topic have been regrouped to projects.  The comments
concerning studied system size and test usually report on
information given in the latest publication.  Although the
majority of projects perform feasibility studies using
computer simulation only, several authors study the
implementation of the fuzzy controller on a PC or DSP in
order to control actual small generators or motors in an
experimental laboratory environment.  In most cases the
membership functions are established based on data samples.
Those approaches listed as rule-based attempt to justify the
fuzzy sets in terms of linguistic descriptions like “if angle is
small then deviation should be small”.The comparison of
fuzzy controllers and conventional controllers stresses
advantages of fuzzy controllers as being “generic”
parametric models instead of circuit based state space
models.  The self-adaptive controllers can be easily tuned to
different operating conditions and all projects report better
tracking capabilities of the fuzzy controllers when compared
to conventional controllers.  However, the sensitivity issues
concerning the range of validity of the tuning and the
detection of changes of operating conditions still need to be
investigated for conventional as well as for fuzzy controllers.
This is especially important for power system control where
topology, load and generation can change stochastically and
discontinuously.

D. Application of a Fuzzy Logic Controller as a
Power System Stabilizer

The design process of the fuzzy logic controller (FLC) has
five steps:

· selection of the fuzzy control variables
·  membership function definition
·  rule creation
· inference engine, and
· defuzzification strategies

To design the FLC, variables which can represent the
dynamic performance of the plant to be controlled should be
chosen as the inputs to the controller.  In addition to the
proper input signals, signal gains and fuzzy subsets should
be defined.  It is common to use the output error (e) and the
rate or derivative of the output (e’ ) as controller inputs.

In the case of the fuzzy logic based power system stabilizer
(FPSS), the generator speed deviation (Dw ) and its
derivative (D &w ), the acceleration, are considered as the
inputs of the FPSS.  After sampling, two appropriate gains,
SG and AG are applied to speed deviation and acceleration,
respectively, and then fed to the FPSS.  The output of the
controller is also scaled by an output gain, UG, and added to
the AVR input signal.

The measured input variables are converted into suitable
linguistic variables.  In this case, seven fuzzy subsets, NB
(Negative Big), NM (Negative Medium), NS (Negative
Small), Z (Zero), PS (Positive Small), PM (Positive
Medium) and PB (Positive Big) have been chosen.
Membership functions for the input variables used here are
shown in Figure 4. These membership functions are
symmetrical and each one overlaps with the adjacent
functions by 50%.

Table 2:  FPSS Control Rule Table
Dw

In practice, the membership functions are normalized in the
interval [-L, L] which is symmetrical around zero.  Thus,
control signal amplitudes (fuzzy variables) are expressed in
terms of controller parameters (gains).  These parameters
can be defined as:

Kj = 2L/Xrange j

where Xrange j defines the full range of the control variable Xj.
In this study, both inputs of the FPSS have seven subsets.
Thus, a fuzzy rule table with forty-nine rules should be
constructed.  A rule table which is formulated based on the

D &w

NB NM NS Z PS PM PB
NB NB NB NB NM NM NS Z
NM NB NB NM NM NS Z PS
NS NB NM NS NS Z PS PM
Z NM NM NS Z PS PM PM
PS NM NS Z PS PS PM PB
PM NS Z PS PM PM PB PB
PB Z PS PM PM PB PB PB
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past experience of manual tuning of a conventional PSS
(CPSS) is shown in Table 2.

In the next step, the controller output is computed by the
inference mechanism.  As an example, consider a pair of
Dw  and D &w  inputs to the controller.  In fuzzification stage
these inputs are converted to membership grades for each of
the seven subsets, e.g. mw (PB), mw (PM), etc., and mw& (PB),

mw& (PM), etc.  Thus, there are a set of forty nine pairs of

membership grades for each of input pair. The smaller
element in each pair would be the grade of membership for
any of the possible control actions. For example, the FPSS
output membership grade for the first rule in Table 2 is given
by:

m mw mwout NB NB1 = min[ ( ) , & ( ) ]

The output of the FPSS is limited to 0.1 pu and is divided in
seven subsets.  Also, the output membership functions are
chosen as singleton functions as indicated in Table 3.

   Table 3  Output Membership Functions
Output
subsets

NB NM NS Z PS PM PB

uout pu -0.10 -0.06 -0.03 0.0 0.03 0.06 0.10

The output of the inference process at this stage is a fuzzy
set. In order to take a nonfuzzy (crisp) control action, the
fuzzy control action inferred from the fuzzy control
algorithm must be defuzzified. Three different
defuzzification methods, the Max criterion method, the
Mean of Maximum method and the Centre of Gravity
method are commonly used [26]. To ensure that all of the
fired rules have some contribution in the output control
action, the Centre of Gravity method, using the following
equation, is employed in this study:

upss
i
Rulesuout Z out

i Z

i
Rules

out
i Z

= =

=

S

S
1

1

( ) ( )

( )

m

m

where mout
i Z( )  denotes the output membership grade for

ith rule with the output subset of Z. To achieve the best
performance with FPSS, the input and output gains need to
be selected properly.  For this purpose, the speed deviation
and its derivative were measured for a variety of small and
large disturbances applied to the system.

The universe of discourse for both inputs of the FPSS is
normalized as shown in Figure 4. Therefore, appropriate
gains should be chosen such that they map the measured
inputs of the FPSS to their suitable linguistic variables.  For
example, for a small disturbance the measured inputs should
be mapped to the “Small” domain, whereas for a large

disturbance they should be mapped to the saturated region of
the “Large” domain.

It was found for the system under study that for different
applied disturbances on the system, the magnitude of D &w
was about ten times that of Dw .  As the same membership
functions are used here for both inputs, the input gain for
Dw  should be about ten times the input gain for D &w .  After
fixing the input gains, the output gain should be selected
such that the controller is sensitive to the errors in the lower
region of the universe of discourse.  At the same time, to
minimize the time the control stays in the saturated region of
the controller, the output gain selected should not be very
high.

The performance of the FPSS was studied, both by
simulation studies on a seventh order non-linear model and
by experimental studies in the laboratory on a physical
model of a single machine infinite bus system.  For
experimental studies the FPSS was implemented on a single
board computer, Intel iSBC386/21.  In all these studies, the
sampling period was set at 10ms. Studies were performed
with the FPSS and a fixed parameter CPSS for a variety of
disturbances over a wide range of operating conditions.  The
control output of both stabilizers was limited to 0.1 pu in all
studies.  The parameters of the CPSS were tuned such that
the system response with the CPSS was practically the same
at the nominal operating point. Illustrative experimental
results for a 4.5% step decrease in voltage reference and
return to initial condition at a heavily loaded operating point
of  P = 1.12 pu, 0.98 pf lag are shown in Figure 5.

.
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E. A Self-learning Fuzzy Power System Stabilizer

A lot of effort is required in the creation and tuning of the
fuzzy rules for an FLC which can be time consuming and
non-trivial [26].  A self-learning adaptive network can be
used to reduce this effort.  A class of adaptive networks
which are functionally equivalent to FLC combines the idea
of the FLC and adaptive network structures [27].  As a result
an FLC network can be constructed automatically by
learning from the training examples.

Essentially, an adaptive network is a superset of multi-layer
feedforward network with supervised learning capability.
The network consists of nodes and directional links through
which the nodes are connected.  Each node performs a
particular function which may vary from node to node.  In
this network, the links between the nodes only indicate the
direction of flow of signals and a part or all of the nodes
contain the adaptive parameters.  These parameters are
specified by the learning algorithm and should be updated to
achieve the desired input-output mapping.

An adaptive network based FLC employed as a fuzzy logic
PSS (ANFPSS), Figure 6, has two inputs, the generator
speed deviation and its derivative, and one control output
[28].  The node functions in each layer are:

· layer 1 performs a membership function
· layer 2 represents the firing strength of each rule
· layer 3 calculates the normalized firing strength

of each rule
· layer 4 output is the weighted consequent part of `

the rule table
· layer 5 computes the overall output as the 

summation of all incoming nodes.

This adaptive network is functionally equivalent to a fuzzy
logic PSS.  Because the adaptive network has the property of
learning, fuzzy rules and membership functions of the
controller can be tuned automatically by the learning
algorithm.  Learning is based on the error evaluated by
comparing the output of the ANFPSS and a desired PSS.
In a typical situation, a desired controller may either not be
available, or the extensive input-output data required for
training may not be easy to procure.  A self-learning FLC
[29] does not require another desired controller to obtain the
training data.  It is trained from the controlled plant output
which in the case of the self-learning ANFPSS has been
taken as the generator speed deviation.

In this approach, first a function approximator (or model) is
required to represent the input-output behaviour of the plant.
An adaptive network based fuzzy logic model, which has the
same structure as the controller, is employed to model the
plant.  The function of this model is to compute the
derivative of the model output with respect to its input by
means of the back propagation process.  Consequently, by
propagating errors between the actual and the desired plant
outputs, back through the model, error in the control signal
can be calculated.  The error in the control signal can be
used to train the controller.  A block diagram of the self-
learning FLC, showing an adaptive network containing two
subnetworks, the fuzzy controller and the plant model, is
shown in Figure 7.

The training process for the controller starts from an initial
state at t = 0.  Then the FLC and the plant model generate
the next states of control and Dw  at time t = h.  The
process continues till the plant state trajectory is determined
based on the minimization of a performance index.
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A number of studies have been performed to investigate the
performance of the self-learning FLC structure employed as
a self-learning ANF PSS on a single-machine infinite-bus
system [30,34,35]. One illustrative result for a 0.2 pu step
increase in torque under leading power factor conditions is
shown in Figure 8.

F. Field Studies of a Fuzzy Logic Power System
Stabilizer

Over the last several years, there has been work on the
development of a fuzzy logic power system stabilizer to
enhance the damping of generator oscillations as a joint
research work between Kumamoto University and the
Kyushu Electric Power Co.  Through simulation studies and
also experimental studies on a 5kVA laboratory system,
several hydro units in the Kyushu Electric Power System,
and the Analog Power System Simulator at the Research
Laboratory of the Kyushu Electric Power Co., the excellent
control performance of the proposed fuzzy logic power
system stabilizer has been demonstrated.  The fuzzy logic
power system stabilizer manufactured by Toshiba Co. is now
in service on a 90MVA hydro unit in the Kyushu Electric
Power System.  Further studies are now ongoing for the
development of the integrated fuzzy logic generator
controller and the fuzzy logic excitation controller.

This section summarizes the development of the fuzzy logic
power system stabilizer (FLPSS) during the last several
years.  First, simulation studies have been performed to
investigate the control performance and the robustness of the
proposed FLPSS by using a simple one machine and infinite
bus system and several multi-machine power systems as the
study systems.  Then, after setting up a personal computer
(PC) based FLPSS, experimental studies were performed on

a 5kVA one machine infinite bus laboratory system, and the
Analog Power System Simulator at the Research Laboratory
of the Kyushu Electric Power Co.. mainly to investigate the
feasibility of the proposed FLPSS and also to demonstrate
the excellent control performance compared with
conventional PSSs.  First site tests were performed
successfully at one of the hydro power stations in the
Kyushu Electric Power System in October 1992.  Before the
installation of the FLPSS as a real equipment, two years long
term evaluation of the PC based prototypes of the FLPSS
was performed from March 1994 to March 1996 on two
hydro units with the rating of 20 to 30 MVA in the Kyushu
Electric Power System.

Following the long term evaluation, the PC based FLPSS
was installed on a 90MVA hydro unit in May 1997.  After
standard site tests and also disturbance tests, the PC based
FLPSS has been in service since June 1997 through May
1999.  The PC based FLPSS has been replaced to the FLPSS
manufactured by Toshiba Corp. in May 1999.  The
manufacturer made FLPSS has been in service after the
standard PSS tests.  In addition, a fuzzy logic excitation
control system is also briefly introduced as further studies.
The damping of oscillations is further improved by applying
the fuzzy logic excitation control system compared with the
combination of the conventional automatic voltage regulator
(AVR) and the FLPSS.  The fuzzy logic excitation control
system has been tested on the 5kVA laboratory system and
also on the Analog Power System Simulator to demonstrate
its better control performance.

F.1  Simulation Studies [31, 8,9]

Simulations were performed for a simple one machine
infinite bus systems and also for several multi-machine
power systems to demonstrate the robustness of the FLPSS.
Through the simulations, the roles of the adjustable
parameters were also clarified.  In addition, it has been
shown that the FLPSS provides better damping compared
with widely used conventional PSSs(CPSS).

F.2  Experimental Studies on 5kVA Laboratory System
[13]

To demonstrate the effectiveness of the proposed FLPSS,
experiments were performed by using a laboratory system
rated at 5 kVA, 220 VAC, and 60 Hz shown.  Disturbances
were added to the laboratory system by changing the length
of the transmission line which connects the generator to a
commercial power source. On the monitoring system, real
time monitoring is available to check the FLPSS
performance.  Wider stable region is achieved by applying
the three-dimensional FLPSS.
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F.3  Site Tests in October 1992 [32]

First site tests were performed at the Itsukigawa Hydro
Power Stations in the Kyusyu Electric Power System in
October, 1992 before the replacement of a 5 MVA unit (Unit
No. 1.  Step changes of the AVR reference voltage,
reactance switching, and faulty synchronization of the study
unit were considered as the disturbances at the site.  The
FLPSS demonstrated the better performance comparing with
the CPSS.

F.4  Evaluation on Analog Power System Simulator [10]

The control performance of the FLPSS was investigated on
the Analog Power System Simulator at the Research
Laboratory of the Kyushu Electric Power Company. for
several multi-machine systems.  Through the investigation, it
was demonstrated that the FLPSS could damp multi-mode
oscillations: low frequency global mode of oscillations and
high frequency local mode of oscillations

F.5  Long Term Evaluation of PC Based Prototype [10]

The PC based prototype of the FLPSS is shown in Figure 9
including the monitoring unit (PQVF), the protection unit,
and the uninterruptible power system (UPS).  The PQVF
monitors the real and the reactive powers, the terminal
voltage, and the system frequency.

Figure 9.  PC Based Prototype of FLPSS

The first prototype was installed on a hydro-unit (30.2MVA,
11kV, 600rpm) at the Kurokawa No. 1 Hydro Power Station
on March 14, 1994.  This unit has a brush-less AC
exciter(160kW, 260V).  According to the experimental
results on the Analog Simulator, the adjustable parameters
were set at the site.  The maximum size of the stabilizing
signal Umax was set to 0.05 pu because of the regulation for
the unit.

The second prototype was installed on the unit (23.4MVA,
6.6kV, 200rpm) at the Kawabaru Hydro Power Station on
May 26, 1994 after the site tests.  This unit has also a brush-
less AC exciter (155kW, 160V).  The excitation system has
a digital AVR, therefore, the tuning of the FLPSS
parameters were

 

performed at the site using step changes of
the reference voltage at the operating point of 5 MW output.
The maximum size of the stabilizing signal was also set to
0.05 pu.

Through the long term evaluation, the better performance of
the FLPSS was demonstrated and the reliablity of the PC
based FLPSS was also recognized.

F.6  Permanent Installation after Disturbance Tests

The same PC based FLPSS was installed on the 90 MW Unit
2 at the Hitotsuse Hydro Power Station in the Kyushu
Electric Power System in May 1997. Unit 2 has a thyristor
exciter.  The fuzzy control parameters were tuned at the site
for a 3 % step change of the AVR reference voltage.
Disturbance tests were also performed in June 1997 before
the actual utilization of the FLPSS.  Figure 10 shows the
configuration of the South-Kyushu Subsystem. The
disturbance was added to the system by opening the 220 kV
line at the location of A. Figure 11 and Figure 12 show the
results of the disturbance tests. These figures illustrate the
response of Unit 2 on which the FLPSS was installed.

Thermal PS
1000 MW

North Kyushu

500 kV
Thermal PS

700 MW

Nuclear PS
1700 MW

500 kV SS

500 kV SS

220 kV

60 km

96 km

60 km

A
Hitotsuse
Hydro PS
180 MW

Hydro PS
90 MW

Figure 10. Configuration of South Kyushu Subsystem
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Figure 11. Response of Unit 2 without PSS

Figure 12.  Response of Unit 2 with FLPSS

In Figure 11, the FLPSS on Unit 2 was locked.  In Figure 12,
the FLPSS was in service on Unit 2. As shown in there
figures, the damping of Unit 2 is highly increased by the
FLPSS.  The maximum size of the stabilizing signal is set to
0.05 pu according to the regulation

The FLPSS has been in service since June 19, 1997.  Since
then, all the monitored data shows that the FLPSS provides
increased damping to Unit 2. In addition, the PC based
prototype of the FLPSS was replaced with the FLPSS
manufactured by Toshiba Corp. in May 1999. After standard
tests for the FLPSS, the FLPSS has been in service since

then.  The monitoring of the FLPSS performance has been
continued for the future installation of the FLPSS on the
other large-scale units.

G. Conclusions
In the previous sections a fuzzy system has been defined and
it is shown how a fuzzy system can be used to approximate a
controller. The determination of the membership functions
and the fuzzy rule base is illustrated in two ways:

- the empirical way using linguistic sets and rules and
human knowledge

- the self-organizing way using data samples and analysis.

Both approaches do not necessarily need a detailed state-
space model of the plant. The advantage of the first approach
is the use of heuristics and human knowledge. However the
demonstration of stability for this type of controller is very
tedious if not impossible.

Self-organizing controllers on the other hand fall into the
class of adaptive controllers and the related stability issues
can be explored with adaptive control techniques.  Cited
results show that fuzzy systems generalize the concept of
function approximation. There is a class of fuzzy systems
whose mapping is given as a Basis Function expansion of
controller input and output data.

A lot of progress has been made concerning the application
of fuzzy systems to power system control problems. For
feasibility studies most authors experiment with empirical
rules and data. However, a few projects, using self-
organizing techniques, have been installed on a
microprocessor and tested in a research lab environment
either in academia or a utility. Recently, fuzzy controllers
have achieved commercialization.
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Chapter 4 Control Design and Stability

A. Control Design Techniques

When fuzzy systems are used as controllers, they are called
fuzzy controllers.  If fuzzy systems are used to model the
process and controllers are designed based on the model,
then resulting controllers also are called fuzzy controllers.
Therefore, fuzzy controllers are nonlinear controllers with a
special structure.  Fuzzy control has represented the most
successful applications of fuzzy theory to practical problems.

Fuzzy control can be classified into static fuzzy control and
adaptive fuzzy control.  In static fuzzy control, the structure
and parameters of the fuzzy controller are fixed and do not
change during real-time operation.  On the other hand in
adaptive fuzzy control, the structure and/or parameters of the
fuzzy controller change during real-time operation.  Fixed
fuzzy control is simpler than adaptive fuzzy control, but
requires more knowledge of the process model or heuristic
rules.  Adaptive fuzzy control, on the other hand, is more
expensive to implement, but requires less information and
may perform better.

A.1 Fixed Fuzzy Controller Design

Fuzzy control and conventional control have similarities and
differences.  They are similar in the sense that they must
address the same issues that are common to any control
problem, such as stability and performance.  However, there
is a fundamental difference between fuzzy control and
conventional control.  Conventional control starts with a
mathematical model of the process and controllers are
designed based on the model.  Fuzzy control, on the other
hand, starts with heuristics and human expertise (in terms of
fuzzy IF-THEN rules) and controllers are designed by
synthesizing these rules.  That is, the information used to
construct the two types of controllers is different; see Fig. 1.
Advanced fuzzy controllers, however, can make use of both
heuristics and mathematical models.

For many practical problems, it is difficult to obtain an
accurate yet simple mathematical model, but there are
human experts who can provide heuristics and rule-of-thumb
that are very useful for controlling the process.  Fuzzy
control is most useful for these kinds of problems.  If the
mathematical model of the process is unknown, we can
design fuzzy controllers in a systematic manner that
guarantees certain key performance criteria.

convent ional
control

fuzzy
control

mathmat ical  model heuristics

contoller

control theory

Fig. 1 Fuzzy control and conventional control.

The design techniques for fuzzy controllers can be classified
into the trial-and-error approach and the theoretical approach
[1]. In the trial-and-error approach, a set of fuzzy IF-THEN
rules are collected from human experts or documented
knowledge base, and the fuzzy controllers are constructed
from these fuzzy IF-THEN rules.  The fuzzy controllers are
tested in the real system and if the performance is not
satisfactory, the rules are fine-tuned or redesigned in a
number of trial-and-error cycles until the performance is
satisfactory.  In theoretical approach, the structure and
parameters of the fuzzy controller are designed in such a
way that certain performance criteria are guaranteed.  Both
approaches, of course, can be combined to give the best
fuzzy controllers.

Trial-And-Error Approach:

The trial-and-error approach to fuzzy controller design can
be summarized in the following steps:

1. Select state and control variables.  The state
variables should characterize the key features of the
system and the control variables should be able to
influence the states of the system.  The state variables
are the inputs to the fuzzy controller and the control
variables are the output of the fuzzy controller.
2. Construct IF-THEN rules between the state and
control variables.  The formulation of these rules can
be achieved in two different heuristic approaches.  The
most common approach is the linguistic verbalization
of human experts.  Another approach is to interrogate
experienced experts or operators using a carefully
organized questionnaire.
3. Test the fuzzy IF-THEN rules in the system.  The
closed-loop system with the fuzzy controller is run and
if the performance is not satisfactory, fine tune or
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redesign the fuzzy controller and repeat the procedure
until the performance is satisfactory.

The resulting fuzzy IF-THEN rule can be in the following
two types:

Type I: IF x1 is A i
1 AND ... AND xn is An

i ,

THEN u is Bj .

Type II:IF x1 is Ai
1 AND ... AND xn is An

i ,

THEN u is c c x c xi i
n
i

n0 1 1+ + +... .

In Type I, both the antecedent and consequent have
linguistic variables, A k nk

i , , ,...,= 1 2  and Bj , respectively.

On the other hand in Type II, the consequent is a
parameterized function of the input to the fuzzy controller,
or the state variables [2].  Comparing the two types, the
THEN part of the rule is changed from a linguistic
description to a simple mathematical formula.  This change
makes it easier to combine the rules.  In fact, Type II, the
Takagi-Sugeno system, is a weighted average of the rules in
the THEN parts of the rules.  This framework is useful in
tuning the rules mathematically [3].  Type II, on the other
hand has drawbacks: (i) its THEN part is a mathematical
formula and therefore may not provide a natural framework
to represent human knowledge, and (ii) there is not much
freedom left to apply different principles in fuzzy logic, so
that the versatility of fuzzy systems is not fully represented
in this framework.

Theoretical Approach:

Knowing the mathematical model of a system is not a
necessary condition for designing fuzzy controllers.
However, in order to analyze the performance of the closed-
loop fuzzy control system theoretically, we need to have
some knowledge on the model of the system.  This approach
assumes a mathematical model for the system, so that
mathematical analysis can be performed to establish the
properties of the designed system.

Theoretical approach can be classified into the following
categories:

1. Stable controller design
2. Optimal controller design
3. Sliding mode controller design
4. Supervisory controller design
5. Fuzzy system model-based controller design

1) Stable Controller Design - For control systems, stability
is the most important requirement.  Conceptually, there are
two classes of stability: Lyapunov stability and input-output
stability.  We assume that   the system is represented as a

linear system and the fuzzy controller is connected in the
feedback path as shown in Fig. 2.

Fig. 2. Closed-loop fuzzy control system.

The overall system is described by the following
equations:

dx t

dt
Ax t Bu t

( )
( ) ( ),= +     (1)

y t Cx t( ) ( ),=    (2)

u t y t( ) [ ( )],= -F    (3)

where x t( ) , u t( ) , y t( ) ÎÂ  and F  is a fuzzy system.  Then

we have the following exponential stability theorem:

Theorem 1.1[4]:  Consider the system (1)-(2), and suppose
that (a) all eigenvalues of A lie in the open left half of the
complex plane, (b) the system is controllable and observable,
and (c) the transfer function of the system is strictly positive
real.  If the nonlinear function F satisfies F( )0 0=  and

y y y RF( ) ,³ " Î0     (4)

then the equilibrium point x = 0  of the closed-loop system
(1)-(3) is globally exponentially stable.

Conditions (a)-(c) in the theorem are imposed on the system
under control, not on the controller.  They are simply
requiring that the open-loop system is stable and well-
behaved.  Conceptually, these systems are not difficult to
control, and the conditions on the fuzzy controller are not
very strong.  The theorem guarantees that if we design a
fuzzy controller F( )y that satisfies F( )0 0=  and (4), then

the closed-loop system is globally exponentially stable,
provided that the system under control is linear and satisfies
conditions (a)-(c).  This leads to the design of a stable fuzzy
logic controller:

Step 1. Define 2N+1 fuzzy sets Al on the output space [-1,
1]that are normal, consistent, and complete with the
triangular membership functions as shown in Fig. 3, where
the first N fuzzy sets cover the negative interval [-1, 0], the
last N fuzzy sets cover the positive interval [0,1], and the
center of the middle fuzzy set for l=N+ 1 is at zero.

dx

dt
Ax Bu

y Cx

= +

=    

F (. )

yur = 0
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0 1-1

y

... ...

Fig. 3.  Fuzzy controller membership functions.

Step 2. Define the following 2N+1 fuzzy IF-THEN rules:

IF y is Al , THEN u is Bl     (5)

where l = 1, 2, ... , 2N+1, and the centers of fuzzy sets Bl

are chosen such that

u

for l N

for l N

for l N N

i

£ =
= = +
³ = + +

ì

í
ï

î
ï

0 1

0 1

0 2 1

,...,

, ...,2

    (6)

Step 3. Design the fuzzy controller from the IF-THEN
rules (6) using the product inference engine, singleton
fuzzifier, and center average defuzzyfier; i.e., the designed
fuzzy controller is

u y
u y

y

l

Al
N

Al
N

l

l

= - = -
å

å
=

+

=
+F( )

( )

( )

m
m

1
2 1

1
2 1     (7)

where m
Al y( ) are shown in Fig. 3 and u

l
satisfy (6).

The above design steps imply that in designing the fuzzy
controller, we do not need to know the system model.  Also,
there is much freedom in choosing the parameters of the
fuzzy controller.

When a nonzero input is applied to the fuzzy controlled
system shown in Fig. 2, the input-output stability can be
established following the following theorem:

Theorem 1.1.2 [4]: Consider the system in Fig. 2 and
suppose that the nonlinear controller F( )y  is globally

Lipschitz continuous, that is,

F F( ) ( ) , ,y y K y y y y R1 2 1 2 1 2- £ - " Î (8)

for some constant K.  If the eigenvalues of A lie in the open
left-half complex plane, then the forced closed-loop system
in Fig. 3 is Lp-stable for all p Î ¥[ , ].1

It can be shown that the fuzzy controller F( )y  of (7) is

continuous, bounded, and piecewise linear, and hence
satisfies the Lipschitz condition (8) [1].  Thus, the closed-
loop fuzzy control system in Fig. 2 is Lp- stable for all
p Î ¥[ , ].1

The stable fuzzy controller design can be easily extended to
multi-input multi-output systems with m input/output
variables.  The IF-THEN rule (5) is generalized for the j’th
group (j = 1,2,...,m) to the set of ( )2 11 Nii

m +Õ =  rules:

IF y1 is Al
1

1 and ... and ym is Am
lm  THEN uj is Bj

l lm1...    (9)

where l i = 1, 2, ... , 2Ni+1, i = 1,2,...,m and the centers of
fuzzy sets B j

l l m1 ...  are chosen such that

u

for l N

for l N

for l N N

j
l l

j j

j j

j j j

m1

0 1

0 1

0 2 1

...

, ...,

, ...,2

£ =
= = +
³ = + +

ì

í
ï

î
ï

   (10)

where l i for i = 1,2,...,m can take any values from
{1,2,...,2Ni+1}.  The resulting fuzzy controller is

u y
u y

yj j

l
N l l

A ii
m

l
N

l
N

A ii
m

l
N

m

i
lim

i
lim

= - = -
å Õå

å Õå

=
+

==
+

=
+

==
+F ( )

... ( ( ))

... ( ( ))

...

1

1

1

1
2 1

11
2 1

1
2 1

11
2 1

m

m
 (11)

where j = 1,2,...,m.

2) Optimal Controller Design - The stable controller
determines the range for fuzzy controller parameters for
which the stability is guaranteed; however, it does not show
how to determine specific values of the parameters.
Optimal controller, on the other hand, determines the
specific values of the fuzzy controller parameters such that
certain performance criterion is minimized.

From the stable fuzzy controller (11), we define the
fuzzy basis functionsb x b x b xN

T( ) ( ( ),..., ( ))= 1  as

b x
x

xl
A ii

n

l
N

A ii
n

l
N

i
li

i
lim

( )
( )

... ( ( ))
= -

Õ

å Õå

=

=
+

==
+

m

m
1

1
2 1

11
2 1

1

   (12)

where l i = 1,2,...,2Ni+1, l = 1,2,...,N and N Nii
n= +Õ = ( )2 11

Define an m N´  parameter matrix Q  as

Q
Q

Q
=

-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1
T

m
T

L    (13)

where Q j
T NRÎ 1́  consists of the N parameters uj

l ln1...
  for l i

= 1,2, ...,2Ni+1 in the same ordering as bl(x) for  l = 1,2,...,N.
Then the fuzzy controller u u um

T= ( ,..., )1  can be expressed

as

A1 A2 AN AN+1 AN+2 A N2 A N2 1+
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u b x= Q ( ) .    (14)

Substituting (14) into (1), the closed-loop system is
obtained as

&( ) ( ) ( ) ( ( ))x t Ax t B t b x t= + Q ,    (15)

where the parameter matrix is assumed to be time-varying.
The optimal control problem can then be  formulated to
minimize the following performance criterion

J x T Sx T x Qx b x R b x dtT T T TT= + +ò1
2

1
2 0( ) ( ) [ ( ) ( )]Q Q    (16)

Thus, the problem of designing the optimal fuzzy controller
becomes the problem of determining the optimal Q( )t ,
which can be solved by applying the Pontryagin maximum
principle [5].  Specifically, by  minimizing the Hamiltonian
function

 H x p x Qx b R b p Ax B bT T T T( , , ) ( )Q Q Q Q= + + + (17)

the optimal fuzzy controller parameter matrix is obtained as

Q * - * * * * -= -( ) ( )[ ( ) ( )]t R B p b x b x b xT T T1
2

1 1 ,    (18)

where x and p are the solution of the Hamiltonian system:

&
( , , )

; ( )

&
( , , )

; ( ) ( )

x
H x p

p
x x

p
H x p

x
p T Sx T

*
* * *

*
* * *

= =

= - =

¶
¶

¶
¶

Q

Q

0 0

  (19)

and thus the optimal fuzzy controller is

u t b x* *= Q ( ) ( ) .    (20)

We note that the optimal fuzzy controller (20) is a state
feedback controller with time-varying parameters.

3) Sliding Mode Controller Design - Sliding mode
control is a robust control method for nonlinear and
uncertain dynamic systems [6,7].  It can be applied in the
presence of model uncertainties and parameter disturbances,
provided that the bounds of these uncertainties and
disturbances are known.  In many respects, the sliding
mode control is similar to fuzzy control [8,9].

Consider a SISO nonlinear system

x f un( ) ( )= +x    (21)

where u RÎ  is the control input, x RÎ  is the output, and

x = ( , &, , )( )x x x Rn T nL - Î1  is the state vector.  The
uncertainty of the model is bounded by a known function:

f f f( ) $( ) ( )x x x= + D    (22)

and

Df F( ) ( )x x£    (23)

where Df ( )x  is unknown but $( )f x  and F( )x  are known.

The control objective is to determine a feedback control
u u= ( )x  such that the state x will follow the desired state

xd d d d
n Tx x x= -( , & , , )( )L 1 , i.e., the tracking error

e = x - xd
n Te e e= -( , &, , )( )L 1    (24)

should converge to zero, where e = x - xd.
Define a scalar function

   
s t

d

dt
e

e C e C e e

n

n
n

n
n

n n

( ) ( )

( ) ( ) ( )

x, = +

= + + + +

-

-
-

-
-

- -

l

l l l

1

1
1

1 2
1

2 2 3 1L

 (25)

where l  is a positive constant.  Then
s t( )x, = 0    (26)

defines a time-varying sliding surface S t( )  in the state

space Rn .  The equation (26) has a unique solution
e t( ) = 0  for the zero initial condition e( )0 0= .  Thus, the
tracking control problem is equivalent to keeping the scalar
function s t( )x,  at zero.  This can be achieved by the
sliding condition

1
2

2d
dt s s£ -h    (27)

when the state is outside of S t( ) , where h is a positive
constant.

Consider, for example, a second order system (n=2),
then the sliding surface S t( )  is

s t e e x x x xd d( ) & & &x, = + = + - - =l l l 0 (28)

which is a strait line in the x x- &  phase plane as shown in
Fig. 4.

S(t)

chatter ing

B(t)  boundary layer

&x

x

Fig. 4.  Sliding surface, chattering, and boundary layer.

It can be shown that the sliding condition (27) is satisfied if
we choose the control to the second order system as

u f x e F sd= - - - +$( && & [ ( )] ( )x x) + l h sgn .   (29)

This sliding control law, however, is discontinuous across
the sliding surface and, since the control switching cannot
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be perfect, it causes chattering in when implemented, as
shown in Fig. 4.  In order to eliminate chattering, a thin
boundary layer around the sliding surface,

B t s t d( ) { : ( ) }= £x x, ,    (30)

is introduced so that the control changes continuously
within this boundary layer, Fig. 4, where d and
e l= -d n/ 1 are the thickness and width of the boundary
layer, respectively.  If the control law satisfies the sliding
condition  (27) outside of the boundary layer B(t), then the
error tracking is guaranteed to be within the precision of e .
Thus, a smooth controller can be designed that does not
need to switch discontinuously across the sliding surface.
For the second-order system, this is achieved by modifying
the control law (29) as

u f x e F sat s dd= - - - +$( && & [ ( )] ( / )x x) + l h   (31)

where the saturation function is defined as

sat s d

if s d

s d if s b

if s d

( / )

/

/ /

/

=
- £ -

- £ £
³

ì

í
ï

î
ï

1 1

1 1

1 1

  (32)

The fuzzy controller can now be designed by viewing the
smooth sliding controller (31) as the center of the output
fuzzy set, g e e( , &) .

4) Supervisory Controller Design - The fuzzy control
systems discussed above are all single-loop (or single-level)
controllers.  For complex systems, the single-loop control
systems may not effectively achieve the control objectives,
and multi-level control structure becomes a necessity.  The
low level controllers perform fast direct control and the
higher-level controllers perform low-peed supervision.
There are two types of two-level controls: a) low-level
fuzzy control and high-level nonfuzzy supervisory control,
and b) low-level nonfuzzy control and high-level fuzzy
supervisory control, Fig.  5.

Plant

Fuzzy Control ler

Nonfuzzy
Superv isory
Control ler

P lant

Nonfuzzy
Convent iona l

Control ler

(a) (b)

Fuzzy
Superv isory
Control ler

Fig. 5.  Two-level fuzzy control systems: (a) fuzzy-local
nonfuzzy-supervisory control, (b) nonfuzzy-local fuzzy-
supervisory control.

In the two-level control system in Fig. 5(a), the fuzzy
controller can be designed without considering stability and
the supervisory controller can be designed to ensure the
stability and other performance requirements [10].  In this
way, there is much freedom in choosing the fuzzy controller
parameters and consequently, the design of the fuzzy
controller is simplified.  Since the fuzzy controller is to
perform the main control action, the supervisory control will
play a supplementary action, that is, if the fuzzy controller
works well, the supervisory control will be idle; if the fuzzy
control system tends to be unstable, the supervisory
controller starts working to enforce stability.

Consider the nonlinear system

x f x x x g x x x un n n( ) ( ) ( )( , &, ..., ) ( , &, ..., )= +- -1 1    (33)

where x RÎ  is the output, u RÎ  is the control,

x = -( , &,..., )( )x x x n T1  is the state vector, and f and g are
unknown nonlinear functions with g > 0 assumed.  This type
of system can be linearized with nonlinear feedback and a
stable linear controller con be designed [11].

 Suppose a fuzzy controller is already designed and we want
to guarantee the stability of the closed-loop system in the
sense that the state x is uniformly bounded, i.e.,
x( ) ,t M tx£ " > 0, where Mx is a constant.  This can be

achieved by supplementing a supervisory controller to the
fuzzy controller:

u u I ufuzz s= + *( ) ( )x x    (34)

where the indicator function I* = 1 if |x| ³ Mx and I* = 0 if |x|
£ Mx.  The goal is now to design the supervisory controller us

such that |x| £ Mx for all t > 0.  The closed-loop system then
becomes

x f g u g I un
fuzz s

( ) ( ) ( ) ( ) ( ) ( )= + + *x x x x x    (35)

The feedback linearization controller for the system (33) is
given by

u
g

fFL
T= - -

1

( )
[ ( ) ]

x
x k x    (36)

where k = Î( ,..., )k k Rn
T n

1 is such that all roots of the

polynomial s k s kn n
n+ + +-

1
1 L are in the left-half complex

plane.  The system (35) is then rewritten as

x g u u I un T
fuzz FL s

( ) ( )[ ]= - + - + *k x x    (37)

or, in the matrix form,

& [ ]*x = x + bL u u I ufuzz FL s- +   (38)

where



4-6

   L =

- - -

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

-
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é

ë

ê
ê
ê
ê

ù

û
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ú

0

0

L

g

 (39)

The supervisory controller us can be designed to
guarantee |x| £ Mx for all t > 0 by introducing a Lyapunov
function

V PT=
1

2
x x    (40)

where P is a symmetric positive definite matrix satisfying
the Lyapunov equation

L LT P P Q+ = -    (41)

where Q is specified by the designer.  Using (39) and (41),
we have

& [ ]

( )

V Q P u u u

P u u P u

T T
fuzz FL s

T
fuzz FL

T
s

= - - +

£ + +

1

2
x x + x b

x b x b
   (42)

The supervisory controller us can be designed such that
&V £ 0  by choosing

u sign P
g

f us
T

L

U T
fuzz= - + +

é

ë
ê

ù

û
ú( ) ( )x b k x

1
   (43)

where fU and gL are the upper and lower bounds of f and g,
respectively.
Since the indicator function is a step function it may cause
chattering at the boundary |x| = Mx, and this can be avoided
by defining a continuous function

I

a
a

M a
a M

M
x

x

x

* =

£
-
-

£ £

³

ì

í
ïï

î
ï
ï

0

1

x
x

x

x

   (44)

Fuzzy controller can be used to tune the gains of
conventional proportional-integral-derivative (PID)
controllers.  The transfer function of a PID controller has the
following form:

G s K K s K sP I D( ) /= + +    (45)

where KP, KI, and KD are the proportional, integral, and
derivative gains, respectively.  An equivalent form of the
PID controller in time-domain is

u t K e t
T

e d T e tP
I

D
t( ) [ ( ) ( ) &( )]= + +ò

1
0 t t    (46)

where e(t) is the error between the set point and the response
of the system, and TI = KP/KI and TD = KD/KP are the integral
and derivative time constants, respectively.

The PID gains are usually tuned by experienced experts
based on heuristics.  This is where fuzzy IF-THEN rules can
be used.  The PID gains can be tuned by analyzing the
responses of the system on-line [12].  The input to the fuzzy
system can be e(t) and &( )e t , and outputs of the fuzzy system
can be the PID gains.  The PID gains are usually normalized,
for example, as

K
K K

K KP
P P

P P

=
-

-
min

max min

   (47)

Then the fuzzy IF-THEN rules can be of the form:

IF e t is A and e t is B THEN K is C K is D K is El l
P

l
D

l
I

l( ) &( ) , , ,

(48)

where Al, Bl, Cl, Dl, and El are fuzzy sets, and l = 1, 2, ..., M.

5) Fuzzy System Model-Based Controller Design - The fuzzy
control systems discussed above assumed that the systems
under control are represented by ordinary linear or nonlinear
dynamic system models.  In many practical problems,
however, human experts may provide linguistic descriptions
about the system that can be combined into a model of the
system; this model is called a fuzzy system model.  There are
two types of fuzzy system models, the Takagi-Sugeno-Kang
(TSK) fuzzy system model [13-15] and the fuzzy-
autoregressive-moving-average (FARMA) model [16,17].

The Takagi-Sugeno-Kang Fuzzy System Model: The Takagi-
Sugeno-Kang (TSK) fuzzy system was proposed as an
alternative to the usual fuzzy systems.  The TSK fuzzy
system is made of the following rules:

IF x is C and and x is C THEN y c c x c xl
n n

l l l l
n
l

n1 1 0 1 1L L, = + + +
   (49)

where Ci
l are fuzzy sets, ci

l are constants, and l = 1, 2, ..., M.

Thus, the antecedent parts of the rules are the same as in the
usual fuzzy IF-THEN rules, but the consequent parts are
linear combinations of the input variables.  Given an input
x x x U Rn

T n= Î Ì( ..., ),1 , the output f x V R( ) Î Ì of the

TSK fuzzy system is computed as the weighted average of
the outputs, i.e.,

f x
y w

w

l l
l
M

l
l
M

( ) = å
å

=

=

1

1

   (50)

where the weights wl are computed as

w xl

C i
i

n

i
l= Õ

=
m ( )

1
   (51)
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The fuzzy system is a mapping from U RnÌ  and V RÌ ,
and the output is a piece-wise linear function of the input
variables, where the change from one piece to another is
smooth rather than abrupt.  If ci

l = 0 for i = 1, 2, ..., n and

cl
0 equals the center yl of the fuzzy set Bl in the usual fuzzy

IF-THEN rules, then the TSK fuzzy system is identical to
the fuzzy system with product inference, singleton fuzzifier,
and center average defuzzifier.

If the output of a TSK fuzzy system appears as one of its
inputs, a dynamic TSK fuzzy system is obtained:

IF x k is A and and x k n is A and u k is B

THEN x k a x k a x k n b

p
n
p p

p p
n
p p

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1 1

L

L

- +

+ = + + - + +
   (52)

where Ai
p and Bp are fuzzy sets, ai

p and bp are constants, p

= 1, 2, ..., N, u(k) is the input to the system, and
x( ) ( ( ), ( ), ..., ( ))k x k x k x k n RT n= - - + Î1 1 is the state
vector of the system.  The output of the dynamic TSK fuzzy
system is computed as

x k
x k v

v

p p
p
N

p
p
N( )
( )

+ =
+å

å
=

=

1
11

1

   (53)

where the weights vp are computed as

v x k i u kp

A B
i

n

i
p p= - +Õ

=
m m[ ( )] [ ( )]1

1
   (55)

This dynamic TSK fuzzy system is used to model the plant
under control, and the TSK fuzzy control (50) is used to
control the plant, Fig. 6.

Plant

Dynamic  TSK fuzzy  sys tem

Contol ler

TSK fuzzy contro l ler

X(k)

x(k+1)u(k)

Fig. 6. Fuzzy control with fuzzy system model.

It remains to determine the stability of the closed-loop fuzzy
control system, in other words, the controller parameters,
ci

l and m
Ci

l in (49), need to be designed to guarantee the

stability of the fuzzy controlled system.  Assuming that the
parameters of the dynamic TSK fuzzy system model (52) are
known, the following gives the sufficient condition for
stability:

Theorem 1.5.1[15]: The dynamic TSK fuzzy system
is globally asymptotically stable if there exists a common
positive definite matrix P such that

A PA Plp
T

lp - < 0    (56)

for all l = 1, 2, ..., M and p = 1, 2, ..., N, where

A

a b c a b c a b c a b c

lp

p p l p p l
n
p p

n
l

n
p p

n
l

=

+ + + +é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

- -1 1 2 2 1 1

1 0 0 0

0 1 0 0

0 0 1 0

L

L

L

L

L

   (57)

Since there is no direct way to find the common P satisfying
for all possible l and p, trial and error need to be used.
  
Fuzzy Autoregressive Moving Average Model: In general, the
output of a system can be described with a function or a
mapping of the plant input-output history. For a single-input
single-output (SISO) discrete-time system, the mapping can
be written in the form of a nonlinear auto-regressive moving
average (NARMA) as follows:  

y k f y k y k u k u k( + ) =    ( ( ),  ( - ),  ,  ( ),  ( - ), )1 1 1L L   (58)

where y(k) and u(k) are respectively the output and input
variables at the k-th time step.
The objective of the control problem is to find a control input
sequence which will drive the system to an arbitrary
reference set point yref. Rearranging (58) for control purpose,

the value of the input u at the k-th step that is required to
yield the reference output yref can be written as follows:

u k g y y k y k u k u kref( ) =  ( ,  ( ),  ( - ),  ,  ( - ),  ( - ),  ) 1 1 2L L  (59)

which is viewed as an inverse mapping of (58).

The proposed controller doesn't use rules pre-constructed by
experts, but forms rules with input and output history at every
sampling step. The rules generated at every sampling step are
stored in a rule base, and updated as experience is
accumulated using a self-organizing procedure.

The system (58) yields the last output value y(k+1) when the

output and input values, y(k), y(k-1), y(k-2), ..., u(k), u(k-1),

u(k-2), ..., are given. This implies that u(k) is the input to be
applied when the desired output is yref as indicated explicitly

in (59). Therefore, a FARMA rule with the input and output
history is defined as follows:

 IF yref is A1i, y(k) is A2i, y(k-1) is A3i, 
..., y(k-n+1) is A(n+1)i

     AND u(k-1) is B1i, u(k-2) is B2i , 
..., u(k-m) is Bmi,

THEN   u(k) is Ci,           (for the i-th rule)                    (60)

where,  n, m : number of output and input variables
            Aij , Bij  : antecedent linguistic values for the i-th rule

            Ci  : consequent linguistic value for the i-th rule.
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The rule (60) is generated at (k+1) time step. Therefore,
y(k+1) is given value at (k+1) step. The rule (60) explains
that “IF desired yref is y(k+1) with given input-output history,

y(k), y(k-1), y(k-2), ..., u(k), u(k-1), u(k-2), ..., THEN u(k) is
the input to be applied”.

In a conventional FLC, an expert usually determines the
linguistic values Aij , Bij , and Ci by partitioning each universe
of discourse, and the formulation of fuzzy logic control rules
is achieved on the basis of the expert's experience and
knowledge.  However, these linguistic values can be
determined from the crisp values of the input and output
history at every sampling step. Therefore, at the initial stage,
the assigned u(k) may not be a good control, but over time,
the rule base is updated using the self-organizing procedure,
and better controls can be applied [16].

A. 2 Adaptive Fuzzy Controller Design

The motivation behind the fuzzy control is to handle
uncertainties or unknown variations in model parameters and
structures.  Similarly, the basic objective of adaptive control
is to control systems in the presence of these uncertainties.
Therefore, it is natural to combine the two and design
adaptive fuzzy control [18,19].  Fig. 7 shows the basic
configuration of an adaptive fuzzy control system.  The
reference model is used to specify the ideal response that the
controlled system should follow.  The plant is assumed to
contain unknown parameters.  The fuzzy controller is
constructed from fuzzy systems whose parameters q are
adjustable.  The adaptation law adjusts the parameters q  on-
line such that the plant output y(t) tracks the reference model
output ym(t).

Reference Mode l

Plant

Fuzzy Control ler

Adaptat ion Law

q

F( )q

ym

yr u

e

-

Fig. 7.  Adaptive fuzzy control system.

The main advantages of adaptive fuzzy control systems are:
(I) better performance is usually achieved because the
adaptive fuzzy controller can adjust itself to the changing
environment, and (ii) less information about the plant is
required because the adaptation law can help to learn the
dynamics of the plant during real-time operation.  The main
disadvantages, on the other hand, are: (i) the resulting
control system is more difficult to analyze because it is not
only nonlinear but also time-varying, and (ii)
implementation is more costly.

Although adaptive fuzzy control and conventional adaptive
control are similar in principles and mathematical tools, they
differ in the sense that: (i) the fuzzy controller has a special
nonlinear structure that is universal for different plants,
whereas the structure of a conventional adaptive controller
changes from plant to plant, and (ii) human knowledge about
the plant dynamics and control strategies can be
incorporated into adaptive fuzzy controllers, while such
knowledge is not considered in conventional adaptive
control systems, which is the main advantage of adaptive
fuzzy control over conventional adaptive control.

Human knowledge about a control system can be classified
into categories: plant knowledge and control knowledge.
Depending upon the human knowledge used and the
structure of the fuzzy controller, adaptive fuzzy controller is
classified into the following three types:

· Indirect adaptive fuzzy control: The fuzzy controller
comprises a number of fuzzy systems constructed from
the plant knowledge.

· Direct adaptive fuzzy control: The fuzzy controller is a
single fuzzy system constructed from the control
knowledge.

· Combined indirect/direct fuzzy control: The fuzzy
controller is a weighted average of the indirect and
direct adaptive fuzzy controllers.

Indirect Adaptive Fuzzy Controller:

Consider the nonlinear system

x f x x x g x x x un n n( ) ( ) ( )( , &, ..., ) ( , &, ..., )= +- -1 1    (61)

where x RÎ  is the output y, u RÎ  is the control,

x = -( , &,..., )( )x x x n T1  is the state vector, and f and g are
unknown nonlinear functions with g > 0 assumed.  This type
of system can be linearized with nonlinear feedback and a
stable linear controller con be designed [11].

Since the functions f(x) and g(x) are unknown, the fuzzy
system describes their input-output behavior:

IF x is F and and x is F THEN f is Cr
n n

r r
1 1 L , ( )x    (62)

IF x is G and and x is G THEN g is Dr
n n

r r
1 1 L , ( )x    (63)

If the nonlinear functions f(x) and g(x) are known, then the
feedback linearization controller for the system (61) is given
by

u
g

f ym
n T* = - + +

1

( )
[ ( ) ]( )

x
x k e    (64)
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where e y ym= - , e = -( , &,..., )( )e e en T1  and

k = Î( ,..., )k k Rn
T n

1 is such that all roots of the polynomial

s k s kn n
n+ + +-

1
1 L are in the left-half complex plane.

The system (61) with control (64) is then rewritten as

e k e k en n
n

( ) ( )+ + + =-
1

1 0L    (65)

which, because of the choice of k, implies e t( ) ® 0 as
t ® ¥ , i.e., the plant output y converges to the ideal output
ym. asymptotically.

Since f(x) and g(x) are unknown, the ideal controller (64)
cannot be implemented.  However, the fuzzy IF-THEN rules

(62)-(63) give estimates$( ) $( )f f fx x= q  and

$( ) $( )g g gx x= q , where q f
M

R fÎ  and q g
M

R gÎ  are

unknown parameter vectors in $( )f x  and $( )g x , respectively.

Thus, the fuzzy controller becomes

u u
g

f yI

g

f m
n T= = - + +

1

$( )
[ $( ) ]( )

x
x k e

q
q    (66)

Typically, the unknown parameters are the centers of the
output fuzzy sets Cr and Dr in the rules (62) and (63),
respectively.  Using the product inference, singleton
fuzzifier, and center average defuzzifier, and following the
similar procedure leading to (11)-(14), the estimates are in
the form:

$( ) ( )f f f
Tx xq q x=    (67)

$( ) ( )g g g
Tx xq q h=  (68)

where x( )x  andh( )x are the fuzzy basis function defined in

(12) for fuzzy sets Fi
r andGi

r , respectively, and

q f
T andq g

T are vectors of the centers of the output fuzzy sets

Cr and Dr in the rules (62) and (63), respectively.

Next step is to adjust the parameter vectors q f
T andq g

T such

that the tracking error e and the parameter errors
q qf f- * andq qg g- * are minimized.  The Lyapunov synthesis

approach defines the following Lyapunov function:

V PT
f f

T
f f

g g
T

g g

= + - -

+ - -

* *

* *

1

2

1

2

1

2

1

2

e e
g

q q q q

g
q q q q

( ) ( )

( ) ( )
   (69)

where g 1andg 2 are constants and P is a positive matrix

satisfying the Lyapunov equation (41).
An adaptation law which minimizes the Lyapunov

function is given by [18]

& ( )q g xf
T P= - 1e b x   (70)

& ( )q g hg
T

IP u= - 2e b x    (71)

where b is defined in (39) with g = 1.

Direct Adaptive Fuzzy Controller:

Consider the nonlinear system

x f x x x g x x x un n n( ) ( ) ( )( , &, ..., ) ( , &, ..., )= +- -1 1    (72)

where x RÎ  is the output y, u RÎ  is the control,

x = -( , &,..., )( )x x x n T1  is the state vector, and f and g are
unknown functions as before.  For simplicity, assume that g
= b, an unknown positive constant.  The control objective
remains the same as in the indirect adaptive fuzzy control,
i.e., design a feedback controller ( )u u= xq based on fuzzy

systems and adaptation law for adjusting the parameter
vector q , such that the plant output y follows the ideal
output ym as close as possible.  The main difference lies in
the assumption about the human knowledge.  Instead of
knowing the plant knowledge (62) and (63), we are provided
with some control knowledge, i.e., the following IF-THEN
rules that represent human control actions:

IF x is P and and x is P THEN u is Qr
n n

r r
1 1 L ,    (73)

where Pi
r and Qr are fuzzy sets in R, and r = 1, 2, ...,Lu.

Using the product inference, singleton fuzzifier, and center
average defuzzifier, and following the similar procedure
leading to (11)-(14), the fuzzy controller is in the form:

uD
T( ) ( )x xq q x=    (74)

where x( )x  andh( )x are the fuzzy basis function defined in

(12) for fuzzy sets Pi
r , and q T is the vector of the centers of

the output fuzzy sets Qr in the rule (73).

Next step is to adjust the parameter vector q T such that the

tracking error e and the parameter error q q- * is minimized.

The Lyapunov synthesis approach defines the following
Lyapunov function:

V P
bT T

f= + - -* *1

2 2
e e

g
q q q q( ) ( )    (75)

where g  is a positive constant and P is a positive matrix

satisfying the Lyapunov equation (41).

An adaptation law which minimizes the Lyapunov function
is given by [18]
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& ( )q g x= - e xT
np    (76)

where pn  is the last column of P.

Combined Direct/Indirect Adaptive Fuzzy Controller

This adaptive fuzzy controller incorporate both types of
linguistic information, plant knowledge and control
knowledge.  Consider the system (72) with b = 1, for
simplicity.  Assume that the following information is
available:

· Information 1: The plant f in (72) is represented

by an approximate model $f .

· Information 2: The modeling error 
~ $f f f= -  is

given by the fuzzy IF-THEN rules:

 IF x is S and and x is S THEN f is Er
n n

r r
1 1 L ,

~
   (77)

 where Si
r and Er are fuzzy sets in R and r = 1, 2, ..., Le.

· Information 3: Control actions are given by the
fuzzy IF-THEN rules (73).

From (64), if f(x) is known, then the optimal control is

u f ym
n T* = - + +( ) ( )x k e    (78)

to guarantee y t y tm( ) ( )® .  However, the best estimate of

f(x) based on Informaions 1 and 2 is

$( )
~
( )f f Ix x+ q    (79)

Thus, the controller based upon Informations 1 and 2 is

u f f f yI m
n T

12 = - - - + +$( )
~
( ) ( ) ( )x x x k eq    (80)

The fuzzy controller based upon Information 3 is, from (74),

u uD D3 = ( )xq    (81)

Therefore, the combined fuzzy controller is

u u u= + -a a12 31( )    (82)

where a Î[ , ]0 1 is a weighting factor.

The fuzzy systems 
~
( )f Ixq and uD D( )xq are respectively

designed following the same steps in the indirect and direct
fuzzy controller design:

~
( ) ( )f I I

Tx xq q x=    (83)

uD D D
T( ) ( )x xq q h=    (84)

Next step is to adjust the parameter vectors q I
T andq D

T such

that the tracking error e and the parameter errors

q qI I- * andq qD D- *  are minimized.  The Lyapunov

synthesis approach defines the following Lyapunov
function:

V PT
I I

T
I I

D D
T

D D

= + - -

+
-

- -

* *

* *

1

2 2

1

2

1

2

e e
a
g

q q q q

a
g

q q q q

( ) ( )

( ) ( )
   (85)

where g 1andg 2 are constants and P is a positive matrix

satisfying the Lyapunov equation (41).
An adaptation law which minimizes the Lyapunov function
is given by [18]

& ( )q g xI
T P= - 1e b x    (86)

& ( )q g hD
T P= - 2e b x    (87)

B. Tuning Controller Performance

The design of an observer and optimal controller is in
general based on an assumed linear model that is an
approximate representation of an otherwise nonlinear plant.
Moreover, the controller takes precise measurements of
plant variables and generates a precise control variable.  An
alternative to this model-based controller design is the fuzzy
logic control, which neither relies on an accurate description
of the plant, nor on the precise measurements.  Fuzzy logic
controllers are generally based on experts’ understanding of
the plant rather than any mathematical model.  Another
approach is to design a controller based on the knowledge
obtained of the system from repeated simulation conducted
on a mathematical model.  In either case, the rule base of the
fuzzy logic controller has to be fine-tuned or calibrated using
trial and error in order to obtain the desired performance.
Therefore, an Automatic Tuning Method (ATM) is
developed to tune the fuzzy logic controller’s critical
parameters to achieve a desirable response of the plant
[3,20].

B.1 Automatic Tuning of Fuzzy Logic Controller

Fuzzy Logic Controller:

The fuzzy logic is based on intuition and experience, and can
be regarded as a set of heuristic decision rules or “rules of
thumb.” One of the most interesting applications of fuzzy
logic is the development of fuzzy logic controller.  A fuzzy
logic controller consists of :

1)  A rule base which contains a number of control rules.
2)  A database which defines the membership functions of
the linguistic terms used in the rule base.
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3)  An inference mechanism based on the control rules.
4)  A fuzzification unit to map real inputs from sensors into
the fuzzy terms.
5) A defuzzification unit to map fuzzy outputs of the
inference mechanism to real numbers.

A fuzzy logic controller uses a set of control rules and an
inference mechanism to determine the control action for a
given process state.  The control rules are fuzzy expressions
that relate the fuzzy process variables (controller inputs) to
the fuzzy controller outputs.  The inference mechanism
evaluates the rule base to find the appropriate control action.

A fuzzy control action consists of situation and action pairs.
Conditional rules expressed in IF and THEN statements are
generally used.  In order to tune the rule base, the fuzzy
controller consists of a number of rules in the form:

  IF f x( 1  is A xk1,..., is Ak ) , THENy  = g x xk( ,..., )1 ,    (89)

where xi  and y are  respective variables of the premise and

the consequent, Ai  are fuzzy sets with membership

functions representing a fuzzy subspace in which the above
IF-THEN rule can be applied, f  is a logical function

connecting propositions in the premise, and g is a function
that implies the value of y when x xk1,...,  satisfy the premise.

The consequence (the outputs, or drive) used here are
parameterized functions of the input variables.  To apply
rules like this to fuzzy algorithms for process control, the
variables of the premise and the consequent are defined as
the following:

Error (E) = process output - set point
Error change (DE) = current error - last error
Controller output = input applied to process.

The domain of a variable, E or DE, is partitioned into fuzzy
sets, Ai , i = 1, 2, ....  Every fuzzy set Ai  is associated with

a name that represents qualitative statements, e.g., for i = 1,
2, ..., 5, A1 = large negative (LN), A2 = small negative (SN),
A3 = zero (ZE), A4 = small positive (SP), and A5 = large
positive (LP).  An example of a rule, where the consequent
of the rule is a parameterized function of the input variables,
is:

IF error (E) is large negative (i = 1) and the change
in error (DE) is small negative (j = 2),

THEN the output is

u12  = c12
0  + c E12

1  + c DE12
2 ,     (90)

where the subscripts represent Rule12, and the parameters ck
12 ,

k = 0, 1, and 2, need to be determined.  In general the
parameters for Ruleij , for all i and j, are determined by the
Automatic Tuning Method (ATM) using the input and
output data from the experiment [3].

Automatic Tuning Method:

Most existing fuzzy logic controllers are designed without
using any mathematical model of a plant.  The construction
procedures are generally based on the experts’ understanding
of the process.  Therefore, the rule base of a fuzzy logic
controller must be adjusted through trial and error to obtain
the desired performance.  In order to tune the controller, the
fuzzy logic controller uses parameterized output functions
(90) as the consequent to rules.  These parameters permit the
use of  numerical algorithms to modify the output of the
controller.

The consequent of each rule of the controller has the form

u kij ( )  = c0  + c E kij
1 ( )  + c DE kij

2 ( ) ,     (91)

where c0  is known steady-state controller output, and cij
1

and cij
2  are the unknown parameters.  To find these

unknowns, the Kalman filter approach is taken because the
Kalman filter estimates are the optimal mean-squared error
estimates.  Also, in this recursive filter there is no need to
store past measurements for the purpose of computing
present estimates.  In order to apply the Kalman filtering, the
unknown parameters cij

l  are viewed as state variables, the

premise variables E(k) and DE(k) as time-varying system
coefficients, and the u kij ( )  as the system output variables.

Then the dynamics of cij
l  can be modeled simply as a

stochastic system in discrete-time:

System Model:
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   (92)
Measurement Model:

[ ]u E k DE k
c k

c k
v cij
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+ +( ) ( )
( )

( )
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0 , v Nk » ( , )0 0 , Rk
- = ¥1 ,

   (93)

where wk  and vk  are process and measurement noise,
respectively, with normal distribution.  In this formulation,
the process noise is assumed to be completely unknown and
the measurement model is assumed to have zero
measurement noise.  The parameters are unknown constants
and therefore their changes at steady-state are zero.  Also,
the variations of the two parameters are uncorrelated.  From
these initial assumptions for the system model, the Kalman
filtering problem can be easily solved to give the steady-
state solution for the parameters cij

l .
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B.2 Self-Organizing Fuzzy Controller Design

The FARMA rule defined in Section 1 is generated at every
sampling time. Each rule can be represented as a point in the
(n+m+1)-dimensional rule space, i.e., (x1i, x2i, ... , x(n+m+1)i).

To update the rule base, the following performance index is
defined:

    J =  |yr(k+1) - y(k+1)|,                                    (94)

where y(k+1) is the real plant output, and yr(k+1) is the

reference output. Therefore, at the (k+1)-th step, the
performance index J is calculated with the real plant output
y(k+1) resulting from the k-th step control.
   The fuzzy rule space is partitioned into a finite number of
domains and only one rule, i.e., a point, is stored in each
domain. If there are two rules in a given domain, the
selection of a rule is based on J. That is, if there is a new rule
which has the output closer to the reference output in a given
domain, the old rule is replaced by the new one. The self-
organization of the rule base, in other words "learning" of the
object system, is performed at each sampling time, Fig. 8
[16,17].
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Chapter 5 Expert System Applications

Abstract - Fuzzy logic allows a convenient way to
incorporate the knowledge of human experts into the expert
systems using qualitative and natural language-like
expressions.  Recent advances in the field of fuzzy systems
and a number of successful real-world applications in power
systems show that logic can be efficiently applied to deal
with imprecision,  ambiguity and probabilistic information
in input data.  Fuzzy logic based systems with their
capability to deal with incomplete information, imprecision,
and incorporation of qualitative knowledge have shown
great potential for application in electric load forecasting.

A. Expert Systems

The major use of artificial intelligence today is in expert
systems, AI programs that act as intelligent advisors or
consultants.  Drawing on stored knowledge in a specific
domain, an inexperienced user applies inferencing capability
to tap the knowledge base.  As a result, almost anyone can
solve problems and make decisions in a subject area nearly
as well as an expert.

It is not easy to give a precise definition of an expert system,
because the concept of expert system itself is changing as
technological advances in computer systems take place and
new tasks are incorporated into the old ones.  In simple
words, it can be defined as a computer program that models
the reasoning and action processes of a human expert in a
given problem area.  Expert systems, like human experts,
attempt to reason within specific knowledge domains.

An expert system permits the knowledge and experience of
one or more experts to be captured and stored in a computer.
This knowledge can then be used by anyone requiring it.
The purpose of an expert system is not to replace the experts,
but simply to make their knowledge and experience more
widely available.  Typically there are more problems to
solve than there are experts available to handle them.  The
expert system permits others to increase their productivity,
improve the quality of their decisions, or simply to solve
problems when an expert is not available.

Valuable knowledge is a major resource and it often lies
with only a few experts.  It is important to capture that
knowledge so others can use it.  Experts retire, get sick,
move on to other fields, and otherwise become unavailable.
Thus the knowledge is lost.  Books can capture some
knowledge, but they leave the problem of application up to
the reader.  Expert systems provide a direct means of
applying expertise.

An expert system has three main components: a knowledge
base, an inference engine, and a man-machine interface.
The knowledge base is the set of rules describing the domain
knowledge for use in problem solving.  The prime element
of the man-machine interface is a working memory which
serves to store information from the user of the system and
the intermediate results of  knowledge processing. The
inference engine uses the domain knowledge together with
the acquired information about the problem to reason and
provide expert solution.

A Working Definition

An expert system is an artificial intelligence (AI) program
incorporating a knowledge base and an inferencing system.
It is a highly specialized piece of software that attempts to
duplicate the function of an expert in some field of expertise.
The program acts as an intelligent consultant or advisor in
the domain of interest, capturing the knowledge of one or
more experts.  Non-experts can then tap the expert system to
answer questions, solve problems, and make decisions in the
domain.

The expert system is a fresh new, innovative way to capture
and package knowledge.  Its strength lies in its ability to be
put to practical use when an expert is not available.  Expert
systems make knowledge more widely available and help
overcome the age-old problem of translating knowledge into
practical, useful results. It is one more way that technology
is helping us get a hand on the oversupply of information.
All AI software is knowledge-based as it contains useful
facts, data, and relationships that are applied to a problem.

Expert systems, however, are a special type of knowledge-
based system, they contain heuristic knowledge. Heuristics
are primarily from real world experience, not from textbooks.
It is knowledge that directly from those people -the experts -
who have worked for years within the domain.  It is
knowledge derived from learning by doing.  It is perhaps the
most useful kind of knowledge, specifically related to
everyday problems. It has been said that knowledge is power.
Certainly there is truth in that but in a more practical sense,
knowledge becomes power only when it is applied. The
bottom line in any field of endeavor is RESULTS, some
positive benefit or outcome. Expert systems are one more
way to achieve results faster and easier.

A.1 Desirable Expert System Features

Expert systems are far more useful if they have some
additional features.  These include an explanation facility,
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ease of modification, transportability, and adaptive learning
ability.  Let's take a look at each of these key features.

Explanation Facility

Expert systems are very impersonal and get right to the point.
Many first time users  are surprised at how quickly the
expert system comes up with a recommendation, conclusion,
or selection.  The result is usually stated concisely, and
sometimes very curtly, using rule clauses.  A natural
language interface will help improve this situation, but that's
not the main problem.  A more important issue is that often
users have difficulty in "buying" the output decision.  They
question it or perhaps don't believe it.  Users frequently want
to know how the expert system arrived at that answer.  Most
of the better expert systems have a means for explaining
their conclusion.  Typically, this takes the form of showing
the rules involved in the decision and the sequence in which
they were fired.  All of the information is retained in the data
base for that purpose.  When users want to know the expert
system's line of reasoning, they can read the rules and follow
the logic themselves.  Some rule formats permit the
inclusion of an explanation statement that justifies or
elaborates on the need for or importance of the rule.

The explanation facility is important because it helps the
user feel comfortable with the outcome.  Sometimes the
outcome is a surprise or somewhat different than expected.
It is difficult for an individual to follow the advice of the
expert in these cases.  However, once the expert system
explains itself, the user better understands the decision and
feels more at ease in making a decision based upon it.

Ease of Modification

As indicated earlier, the integrity of the knowledge base
depends upon how accurate and up to date it is.  In domains
where rapid changes take place, it is important that some
means be provided for quickly and easily incorporating this
knowledge. When the expert system was developed using
one of the newer development tools, it is usually a simple
matter to modify the knowledge base by writing new rules,
modifying existing rules, or removing rules.  The better
systems have special software subsystems which allow these
changes to be made without difficulty.  If the system has
been programmed in LISP or Prolog, changes are much
more difficult to make.  In examining or evaluating an expert
system, this feature should be considered seriously in
context of the modification.

Transportability

The wider the availability of an expert system the more
useful the system will be. An expert system is usually
designed to operate on one particular type of computer, and
this is usually dictated by the software development tools
used to create the expert system. If the expert system will
operate on only one type of computer, its potential exposure

is reduced. The more different types of computers for which
the expert system is available, the more widely the expertise
can be used.  If possible, when the expert system is to be
developed, it should be done in such a way that it is readily
transportable to different types of machines.  This may mean
choosing a programming language or software development
tool that is available on more than one target machine.

Adaptive Learning Ability

This is an advanced feature of some expert systems that
allows them to learn their own use or experience.  As the
expert system is being operated, the engine will draw
conclusions that can, in fact, produce new knowledge.  New
functions stored temporarily in the data base, but in some
systems they can lead to the development of a new rule
which can be stored in the knowledge base and used again in
the problem.  The more the system is used, the more it learns
about the domain and more valuable it becomes.

The term learning as applied to expert systems refers to the
process of the expert system new things by adding additional
rules or modifying existing rules. On the other hand, if the
system incorporates the ability to learn it becomes a much
more powerful and effective problem solver.  Today few
expert systems have this capability, but it is a feature that is
sure to be further developed  into future systems.

A.2 Suitable Application Areas for Expert Systems

Expert systems are best suited for problems with  limited
domains and well-defined expertise. Application areas
involving common sense and analogical reasoning do not
lend themselves well to expert system development.  The
suitability of expert system-based approaches can be
determined by taking into consideration some criterion based
on general experience in this field.  Expert systems are found
to be suitable for those problems for which the solution steps
are not clearly defined.  The action taken depends not only
on the present values of data but on the outcome of previous
decisions, historical data, past experience and trends.
  
In power systems, many promising applications have been
reported in the broad fields of system control, alarm
processing and fault diagnosis, system monitoring,  decision
support, system analysis and planning.  An excellent review
of the popular application areas can be found in [1].

A.3 Expert System Applications
Expert systems are ideal when it is necessary for an
individual to select the best alternative from a long list of
choices.  Based on the criteria supplied to it, the expert
system can choose the best option.  For example, there are
expert systems that will help you select one of the many
places to invest your money based on your own financial
condition, goals, and personality traits.
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An expert system can be created to help an individual
troubleshoot and repair a complex piece of equipment.  The
various troubles and symptoms can be given to an expert
system which then identifies the problem and suggests
courses of action for repair.  Expert systems also can be used
to aid in diagnosing medical cases.  Symptoms and test
results can be given to the expert system which then
searches its knowledge base in an attempt to match these
input conditions with a particular malady or disease.  This
results in a conclusion about the illness and some possible
suggestions on how to treat it.  Such an expert system can
greatly aid a doctor in diagnosing an illness and prescribing
treatment.  It does not replace doctors, but helps them
confirm their own decisions and may provide alternative
conclusions.

Expert systems perform financial analysis.  Some expert
systems evaluate stocks and recommend buy, sell, or hold
positions.  Other expert systems can be used in tax planning
and budgeting.  Expert systems have been used to help
locate oil and mineral deposits or to configure complex
computer systems and recommend a specific policy in a
variety of insurance applications.  Expert systems also have
been used to locate oil spills and provide speedy critical
advice to commanders in battlefield situations.  The variety
of potential applications is enormous.  If one or more experts
exist in the domain of interest, and the knowledge can be
codified and represented in symbolic form, then an expert
system can be created.

In power systems, many promising applications have been
reported in the broad field of system control, alarm
processing and fault diagnosis, system monitoring, decision
support, system analysis and planning. An excellent review
of the popular application areas can be found in [1].

Table 1 shows the main categories of applications suitable
for expert systems.  If the problem to be solved falls into one
of these categories, it is a candidate for expert systems
solution.  This is not to imply that an expert system is the
only answer.  There may very well be a more conventional
algorithmic program that will do the job.  In any case,
assuming the problem is one of these types, an expert system
should most certainly be considered as an alternative.  Now
let's take a look at each category in more detail.

Table 1.  Generic Expert System Categories

Control - intelligent automation
Debugging- renovation corrections to faults
Design-development products to specification
Diagnosis- estimated defects
Instruction-optimized computer instruction
Interpretation-clarification of situations
Planning-developing goal-oriented scheme

Prediction-intelligent guessing of outcome
Repair-automatic diagnosis, debugging, planning
and fixing

B. Reasoning with Uncertainty in Rule Based
Expert Systems

One of the important feature in expert systems is their ability
to deal with incorrect or uncertain information.  There will
be times when an expert system, in gathering initial inputs,
will ask you a question for which you do not have the
answer. In such a case, you simply say that you do not know.
Expert systems are designed to deal with cases such as this.
Because you may not have a particular fact, the search
process will undoubtedly take a different path.  It may take
longer to come up with an answer, but the expert system will
give you an answer.

Traditional algorithmic software simply cannot deal with
incomplete information. If you leave out a piece of data, you
may not receive an answer at all.  If the data is incorrect, the
answer will be incorrect.  This is where artificial intelligence
programs, particularly expert systems, are particularly useful.
When the inputs are ambiguous or completely missing, the
program may still find a solution to your problem.  The
system may qualify that solution, but at least it is an answer
that can in many cases be put to practical use.  This is
consistent with expert level problem solving where one
rarely has all the facts before making a decision.  Our
common sense or knowledge of the problem tells us what is
important to know and what is less important.  Experts
almost always work with incomplete or questionable
information, but that it doesn’t prevent them from solving
the problem.

Thus, increasingly in the design of expert systems, there has
been a focus on methods of obtaining approximate solutions
to a problem when there is no clear conclusion from the
given data.  Logically, as expert system problems become
more complex, the difficulty of reaching a conclusion with
complete certainty increases, so in some cases, there must be
a method of handing uncertainty.  In [2,3], researchers report
that a classical expert system gave incorrect results due to
the sharpness of the boundaries created by the if-then rules
of the system; however, once a method for dealing with
uncertainty (in these two cases fuzzy set theory) was used,
the expert system reached the desired conclusions.

The successful performance of expert systems relies heavily
on human expert knowledge derived from domain experts
based on their experience.  The other forms of knowledge
include causal knowledge and information from case-studies,
databases, etc.   Knowledge is typically expressed in the
form of high level rules.  The expert knowledge takes the
form of heuristics, procedural rules and strategies in nature.
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It inherently contains vagueness and imprecision because an
expert is not able to explicitly express their knowledge. The
process of acquiring knowledge is also quite imprecise,
because the expert is usually not aware of all the tools used
in the reasoning process.  The knowledge that one reasons
with may itself contain uncertainty.  Uncertain data and
incomplete information are other sources of uncertainty in
expert systems.

Uncertainty in rule based expert systems occurs in two forms.
The first form is linguistic uncertainty which occurs if an
antecedent contains vague statements such as the level is
high" or "the value is near 20".  The other form of
uncertainty, called evidential uncertainty, occurs if the
relationship between an observation and a conclusion is not
entirely certain.  This type of uncertainty is most commonly
handled using conditional probability which indicates the
likelihood that a particular observation leads to a specific
conclusion.  The study of making decisions under either of
these types of uncertainty will be referred to as plausible or
approximate reasoning in this work.  Several methods of
dealing with uncertainty in expert systems have been
proposed, including

· Subjective probability
· Certainty factors
· Fuzzy measures
· Fuzzy set theory

 
The first three methods are generally used to handle
evidential uncertainty, while the last method, fuzzy set
theory is used to incorporate linguistic uncertainty.  These
methods of reasoning with uncertainty will be discussed in
the following sections.  For a comprehensive list of methods
used in reasoning with uncertainty including a discussion
about their application. see [4, pp. 1307-1322].

As expert assessments of the indicators of the problem may
be imprecise, fuzzy sets may be used for determining the
degree to which a rule from the expert system applies to the
data that is analyzed.  When applying a method of reasoning
with uncertainty to a rule based expert system, there must be
a method of combining or propagating uncertainty between
rules.  A method of propagating uncertainty for the method
of  reasoning with uncertainty will be discussed in the next
section.

B.1 Subjective Probability and Statistics
One method of dealing with uncertainty is to use
conventional statistics and probability.  For example, with
the use of statistics, sufficient data may be available to
compute mean (average), median, and standard deviation.
These new figures derived from original data provide
additional knowledge which will help in making a decision.
Recall that probability is simply a ratio the number of times

that a particular action will occur for a given number of
attempts. It is really a ratio as shown below:

P(x) =Number of occurrence of an event /Total number
of events that take place

The probability of x occurring, stated as P(x), is the ratio of
the number of times x occurs to the total number of events
that take place.  For example, in rolling a standard die, the
probability is one-sixth that any one of numbers 1 through 6
will come up.  This may also be expressed as a
fraction, .16667, or as a percentage, 16.67%. In many
knowledge representation cases, the probability for a certain
condition or action may be known or can be estimated. For
the probability of a certain event taking place is 70%, then it
may initiate some action if the probability  is equal or greater
than 70%. If the probability is less than 70%, then perhaps
an action may not be taken. For example, the production rule
below uses the probability:

IF the stone is clear, without color
THEN it is diamond (probability 60%)

An example will illustrate this.  Suppose we ask ten
engineers whether they can program in the BASIC language.
Out of the ten, three say they can.  We can use these figures
to compute the probability:

P(BASIC)=
3

10
0 3= .

What this says is that the probability of an engineer being
able to program in BASIC is .3. We can also express this as
a percentage by simply multiplying the probability by 100.
We say that the probability of engineers being able to
program in BASIC is 30%.  Probability figures like this can
be used to determine rule strength if they fit the problem.

Multiple probability values will occur in many systems.  For
example, a rule may have three parts to its antecedent, each
with a probability value.  The overall probability of the rule
then becomes the product of the individual probabilities, if
the parts of the antecedent are independent of one another.
In a three part antecedent, the probabilities may be .9, .7
and .65. The overall probability is:

P = (.9)(.7)(.65) = .4095

The combined probability is about 41%.  But this is true
only if the individual parts of the antecedent do not affect or
depend on one another.

Sometimes one rule references another.  Here the individual
rule probabilities can propagate from one to another.  There
is a need to evaluate the total probability of a sequence of
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rules or a path through the search tree to determine if a
specific rule fires.  Or you may be able to use the combined
probability to predict the best path through the search tree.
In other words, the probabilities become the "costs" of the
individual arcs in the tree.

There are numerous methods of computing combined
probabilities.  If the rules are independent, a simple product
can be used as described before.  However, most events and
rules are dependent upon one another.  In that case, a special
procedure called Bayes' Rule or Theorem can compute the
probability of event A occurring given that event B has
already occurred.  This is expressed as P(A|B).  Bayes'
Theorem is:

P(A B)=
P(B A)P(A)

P(B A)P(A)+P(B A)P(  A)
|

|

| |~ ~
 

We won't attempt to explain this rule here as it is doubtful
that you would ever need to program it.  But you should
know that many expert systems use Bayes' Theorem instead
of certainty factors to deal with uncertainty.  Several major
expert system development tools use Bayesian probability.

B.2 Measures of Belief and Disbelief

Measures of belief arose disbelief arose from the desire that
evidence should incrementally increase the belief or
disbelief in a hypothesis.  The formal definition of the
measure of belief was based on the idea that if a prior
probability, P(h) is defined, then the maximum amount of
belief that can be added to P(h) from a new piece of
evidence is 1 - P(h).  If a piece of evidence confirms P(h\e),
then this would amount to adding P(h\e) - P(h) to the
previous belief, so the belief in h has been increased by
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The measure of increased disbelief can be defined similarly.
Now with this idea, let the measure of increased belief (MB)
given some evidence e about a hypothesis h be defined as
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and let the measure of increased disbelief (MD) be defined as
MD[h, e]®  [0, 1] with

MD(h,e)
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Note that when evidence e is assigned to a hypothesis h,
only one of the MD or MB functions will be greater than
zero so that a single piece of evidence cannot be used as
both a measure of the confirmation and negation of a
hypothesis.  As the measures of belief and disbelief were
used in the design of expert system, it was found that a
representation of the uncertainty in terms of a single measure
would be more convenient in making comparisons of
different hypothesis.

B.3 Certainty Factors

As you saw earlier, there are several methods of dealing with
uncertain information.  In rule based expert systems,
numerical factors indicating the truth or probability of a
premise or conclusion are used as a measure for uncertainty.
These numerical factors are known as certainty factors (CF)
and probability.  In this section we want to take a look at
these measures of uncertainty to be sure that you understand
their use in rule based expert systems.

In a high percentage of expert system rules, there will be no
ambiguity or uncertainty. We will know with confidence
whether or not a particular premise or conclusion is true or
false.  If the information is not known at all, then the rule
requesting it will not fire.  In cases where there is the
possibility that the information is not known, special rules
can be created to deal with this problem.  The rule might
state that if a particular piece of information is not available,
then a certain action will be initiated.

Still, there are many cases where the information is known
but we have less than 100% confidence in its truthfulness.
Just as weather forecasters use a number to predict the
likelihood of rain, so can a confidence number be used with
production rules.  Weather forecasters may say that there is a
70% probability of rain.  They are saying that they don't
know for sure whether or not it is going to rain.  On the other
hand, they have enough information to be able to say that
70% of the time under similar circumstances it does rain.
While a certainty or confidence factor is not really a
probability, it is a number that helps you to represent the
uncertainty. A certainty. factor is simply a measure of the
confidence you have that a particular fact or rule is true or
not true.  It is usually a number between 0 and 1 where zero
indicates no confidence and 1 means full or complete
confidence.  You will also hear certainty factors called
confidence factors or rule strength.

Certainty factors are used with both the premise (IF) and
conclusion (THEN) portions of a rule.  The two examples
given below show how confidence factors are used.
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IF the patient has hayfever, CF = .6
THEN prescribe an antihistamine

IF the patient is sneezing
AND has a runny nose
AND has watery eyes
THEN the patient has a cold, CF=.5

Fig. 1 shows several ways to use certainty factors.  As you
can see, the scale is up to the programmer.  In example A, a
scale of 0 to 1 is used where 1 = absolute certainty; that is,
100% truthfulness or validity of the premise or conclusion of
a rule.  The 0, of course, indicates absolute uncertainty or
falsity.  Intermediate values have varying degrees of
truthfulness or uncertainty.  You could also use a scale of 0
to 10 or 0 to 100 with the same result.  The + and - scale
shown in example B in Fig. 1 is another approach.  A + 5
indicates absolute certainty while a - 5 indicates 100%
contradiction.  The 0 in the center of the scale indicates
unknown.  You could also use a -1/ 0 / +1 scale as well.

Determining whether a particular rule is to fire requires the
inference engine to look at the confidence factor and
evaluate it.  For example, if you are using the 0 to 1 scale,
you might want the rule to fire if the confidence factor is
above a certain threshold level, say a 0.2. In Fig. 1B, you
may assign a threshold of + 1 or - 1 depending upon the
circumstances as the minimum acceptable level for
determining whether something is true or false.  Other levels
may be set depending upon the problem.

In rules with compound premise clauses connected by AND
or OR, each clause may have its own CF.  For such
situations, there must be a way to compute a composite  CF
for the rule.  This is done by using the minimum CF of all
clauses connected by AND or the maximum CF of all
clauses connected by OR. Some examples will illustrate this.

Rule 1:
IF X (.4)
AND Y (.75)
THEN Z
Composite CF = .4

Rule 2:
IF D (.3)
AND E (.8)
THEN F
Composite CF = .8

If each rule in a reasoning chain has a CF, each will, of
course, affect the other.  The outcome has to be decided
based upon some composite evaluation.  One way this is
done is with a special formula.

CF = CF(X) + CF(Y) - CF(X)*CF(Y)

This says that the CF for rule X is added to the CF for rule Y
and from that is subtracted the product of the CFs for rules X
and Y. Below are two rules to illustrate the point.

Rule 3:
IF P
AND Q
THEN R (.65)

Rule 4:
IF R
THEN S (.2)

The composite CF then is:

.65 + -2 - (.65) (.2) = .85 - .13 = .72

Of course, there will usually be more than two rules in a
chain.  The formula above can be used by taking the
composite CF of two rules and combining it with the CF of a
third rule.  That new composite CF is then combined with a
fourth, and so on.

B.4 Fuzzy Logic
Another method of dealing with imprecise or uncertain
knowledge is to use fuzzy logic. Fuzzy logic is a system
conceived by  Zadeh  for dealing in inexact or unreliable
information.  In this method, an attempt is made to assign
numerical ranges with a possibility value between zero and
one to concepts such as height, beauty, age, and other
elements with values that are hard to pin down.  It allows
you to work with ambiguous or fuzzy quantities such as
large or small, or data that is subject to interpretation.

For example, how tall is tall?  Are you tall if you are 5 foot 7
inches?  Is tall over 6 feet or over 6 feet 3 inches?  Is short

0 1

-5 +50

.25 .5 .75

CONFIDENCE 100%0

UNKNOWNFALSE
TRUE

Figure 1. Confidence and certainty factor scales
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less than 5 foot 5 inches or what?  Fuzzy logic  gives you a
way of expressing this kind of approximate information.
Tall might be expressed as some value of X where X is
between 5'10' and 6'2' with a possibility of .8. A "0”
possibility means that X is not in the range given while "1"
means that X is between  the values given.  Values between
0 and 1 mean some degree of possibility that X is in the
given range.  Once you are able to express such imprecise
knowledge, you can use it more reliably in the reasoning
process.  Fuzzy logic is not as widely used in expert systems
as confidence factors and probability because it is more
complex and difficult to implement.  And often it does not
offer any advantages over the simpler systems.  But, it is an
alternative of growing importance as AI expands into new
areas of application.

Fuzzy set-based techniques can provide an excellent
framework for systematically representing the imprecision
inherent in an expert’s knowledge.  Using the following
example to illustrate,

IF the temperature is high (0.8)
AND system is operating in heavy load period (0.9)
THEN system is highly stressed

the parameters in premise and consequent (temperature, load
period, system stress) can be represented using simple fuzzy
membership functions. In this case, the fuzzy information is
contained in the terms high and heavy.   An example is
shown in Fig. 2 where temperature is  divided into three
linguistic classes each [low (L), medium (M), high (H)].  If
the forecast temperature is 32oC, it’s membership in class
[high] will be 0.7.

The load period can also be represented using similar fuzzy
variables.  If the hour of the day falls during heavy load
period with a membership grade of 0.87,  the membership of
the consequent can be obtained as the minimum of the two,
i.e., 0.7.

Although, there are situations where membership grades and
probabilities can take on similar values, they are not the
same.  One distinguishing factor between probability and

fuzzy membership grades is that the summation of
probabilities on a finite universal set must equal to 1.

The main drawback of nonfuzzy methods in dealing with
uncertainty is their handling of linguistic terms.  Fuzzy set
theory provides a natural framework for dealing with
linguistic terms used by experts.  Imprecision in numeric
data can be easily dealt with by expressing it as a fuzzy
number.  Fuzzy sets can be conveniently incorporated in
expert systems to better deal with uncertainty and
imprecision.

C. Example Application - Fault Diagnosis
In the past few years,  great emphasis has been put in
applying the expert systems for transmission system fault
diagnosis. However, very few papers deal with the
unavoidable uncertainties that occur during operation
involving the fault location and other available information.
This example shows a method using fuzzy sets to cope with
such uncertainties.

C.1 Problem Statement
To reduce the outage time and enhance service reliability, it
is essential for dispatchers to locate fault sections in a power
system as soon as possible. Currently, heuristic rules from
dispatchers’ past experiences are extensively used in fault
diagnosis. The important role of such experience has
motivated extensive recent work [5-11] on the application of
expert system in this field. A few papers have described and
dealt with uncertainties involving the fault location and other
information available [12-15]. These uncertainties occur due
to failures of protective relays and breakers, errors of local
acquisition and transmission, and inaccurate occurrence time,
etc. An effective approach is thus necessary to deal with
uncertainties in these expert systems.
Fault diagnosis in electric power system is a facet operation.
Every signal and step contain some uncertainties, which can
be modeled by membership functions. Fuzzy set theory is
used to determine the most likely fault sections in the
approach presented here.  Membership functions of the
possible fault sections are the most important factors in the
inference procedures and decision making. In this example,
the membership function of a hypothesis is used to describe
the extent to which the available information and the system
knowledge match the hypothesis.  They are manipulated
during inference based on rules concerning fault sections.

C.2 Structure of the Fault Diagnosis System
The fuzzy expert system structure is shown in Fig. 3. Its
database contains the power system topology, and the status
of all breakers and protective relays after the fault.

m
   Low   Medium       High

Temperature (oC)
     15       25       35

Figure 2:  Fuzzy sets for representation of uncertainty
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The knowledge base of the fuzzy expert system contains all
the data of the protection system. The information is based
on known statistics of protection performance used in the
system. If these data are not available when a fault occurs,
the fuzzy expert system asks the dispatcher to provide them
and then saves them in the database for future use. Models
for estimation of possible faults, and heuristic rules about the
relay characteristics for actual fault determination are also
included here.

C.3 Island Identification
When a fault occurs in a power system, the relays
corresponding to the fault sections should trip the circuit
breakers to isolate the fault sections from being extended.
Thus the power system is separated into several parts named
subnetworks after the operation of protective relays and
circuit breakers. Generally,  only a few subsections are
formed from the faults. Since the fault sections are confined
to these subnetworks, The magnitude of the problem can be
reduced greatly.
An expert system is developed to identify the island by using
the real-time information of circuit breakers and adopting
the real-time network topology determination method [17].
The framework of this efficient method is described as
follows:
· Initializing the network: The expert system identifies

the power system pre-fault status  as the normal
operation state by using the real-time network topology
determination method [17]. When a fault occurs, the

power system status would be changed by the operation
of relays and circuit breakers.

· Healthy subnetwork identification: The next step is to
identify the network topology of the healthy part of the
post-fault power system by using the real-time network
topology determination method [18]. The healthy
subnetwork is called set Shealthy.

· Island identification: By comparing the initial network
topology with the healthy subnetwork topology, the
differences between them are identified as the island.
This subnetwork is called Sisland.

This method was proven in a case study that consists of 43
substations, 523 sections, 412 circuit breakers, 107 busbar,
23 three-winding transformers and 77 transmission. The
simulating results are quite satisfactory [17]. The required
processing time to identify the island is less than 2 seconds
in a 486 micro-computer in all the simulated cases.

C.4 Fault Section Identification

When a fault occurs, the change in breaker status activates
the fuzzy expert system. It then classifies the breakers into
two sets: no-trip status set and tripped status set. According
to the procedures described in section 3, a fault hypothesis Fi

is formed as follows:

F F CB F RL

C C C S
i i i

i P i i islandfault

= È
= Î

( ) ( )

{( , ( )| }m
(1)

P Ffault i= { } (2)

F CB C Ci i P
CB

ifault
( ) { , ( )}= m (3)

F RL C Ci i P
RL

ifault
( ) { , ( )}= m (4)

where Ci   is one of the possible fault sections being
considered; Pfault is the fuzzy set which contain all the
possible fault sections and their membership functions;
Fi(CB) is the fuzzy subset by considering only the tripped
circuit breakers; Fi(RL) is the fuzzy subset by considering

only the operated relays; m P
CB

ifault
C( )  is the membership

function that Ci belongs to the fuzzy set Pfault by considering

only the tripped circuit breakers;m P
RL

ifault
C( )  is the

membership function that Ci belongs to fuzzy set Pfault by
considering only the operated relays.

Fig. 3 Fuzzy Expert system Structure
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   Inference Engine
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       Fault
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The following rules are used to determine the overall grade
of the results.
Rule 1: If (first stage protection has operated)

then (ignore the signals in second and third stage 
protections)

Rule 2: If (first and second protection have isolated the 
suspected fault section)
then (ignore the signals of third stage protection)

Rule 3: If (all three stage protections have not isolated the 
suspected fault section)
then (no fault at this section)

During decision making, the most likely fault sections are
determined by comparing the above membership grades  for
each possible fault section using either or both of the
following methods [12] :

(1) Maximum Selection: The most likely fault section is the
one with the highest membership grade mP ifault

C( ) .

(2) aaaa-level selection: The a-level set includes all fault
sections with a membership grade m P ifault

C( )  greater than

the qualifying value of a.

According to the methods described above, two additional
rules are formed for decision making:
Rule 4: (Maximum selection):

If (section M has the greatest membership function
compared with all the other possible fault sections)
then (select M as the fault section)

Rule 5: (a-level selection):
If (the membership grade of a fault section is
greater than the constant a)
then (add this section to the fault section set)

Case Study

Fig. 4 shows the test network. Both substations SS1 and SS2
have double buses with 4 bus-ties, and 4 transmission lines
between them.  In this example, the primary bus protection
relay (type PR) “PR2DA” has operated, but “CB2A” has
failed to trip. Back-up relays (type BR) “BR12-A”, “BR12-
B”, “BR12-D”, BR32-B”, and “BR42-A” have operated, but
“BR42-B” has failed to detect the fault. Therefore, “BR54-
A” and “BR54-B” have operated, making “CB54-A” and
CB54-B” to trip accordingly.

Table 3Membership Grades of Case Study 1
Possible fault

section
           
F2DA

             
F12-A

             
F24-

A

             
F45-A

             
F12-D

             
F23-B

             F1
2-B

Membership
function

           0
.950

           
0.489

           
0.489

           
0.489

           0
.489

           
0.489

           0.47
7

Possible fault
section

             
F45-B

           
F4AA

           
F2CD

           
F2AB

           
F2BC

           
F4BB

             F2
4-B

Membership
function

           0
.476

           
0.348

           
0.285

           
0.282

         0.
0356

         0
.0356

         0.023
8

Table 4Diagnosis Results of Case Study 1.1
Estimated

Fault section
Tripped circuit breakers Maloperated breakers

Busbar
F2DA

CB12-A, CB12-B, CB12-D, CB2D, CB21-
C, CB23-A, CB32-B, CB42-A, CB54-A,

CB54-B

CB2A

Table 2 Formation of Island for Case Study 1
Fault section
subnetwork

Tripped
circuit

breakers

CB12-A, CB12-B, CB12-D, CB2D, CB21-C, CB23-
A, CB32-B, CB42-A, CB54-A, CB54-B

identification Island F12-A, F12-B, F12-D, F2AB, F2BC, F2CD, F2DA,
F23-B, F24-A, F24-B, F4AA, F4BB, F45-A, F45-B
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Based on the tripped circuit breaker status, the island is as
shown in Table 2.
Using Equations 1-4, the membership grade of all possible
fault sections are calculated and shown in Table 3.
Finally, the rule of maximum selection described above is
used and only the section F2DA is selected as the fault
section because the membership grade of this section is
much higher than those of other sections. The diagnosis
results are correct and are shown in Table 4.

D. Conclusion
Generally, a conventional rule-based expert system for bulk
power system needs several hundreds of rules. It is time-
consuming in inference procedures to search for suitable
rules during inferencing.  On the other hand, fuzzy set based
expert systems tend to be much faster compared to
traditional rule-based expert systems for most of the rules
are replaced by the calculation of the membership functions
of the applicable rules . Only a few rules or functions are
used in the inference engine.

The fuzzy set approach for uncertainty processing in expert
systems offers many advantages to compared other
approaches to deal with uncertainty.
· Small memory space and computer time: The

knowledge base is very small because there are only a
few rules needed during inference. The computation
time is therefore also small.

· Small number of rules: With properly designed
linguistic variables and level of granularity,  only a few
fuzzy rules are needed for each situation.

· Flexibility of the system: Membership functions
representing the parameters can be changed dynamically
according to the situation. It is also possible to develop
a self-learning module that modifies the grades of
membership automatically according to changing
situations.
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Fig. 4. Operating Relays and Tripped Circuit Breakers



Chapter 6 Optimization Techniques I

A. Session Overview

Power system planning and operating often face the mutli-
objective optimization situations, which is a challenging
problem. Conventionally, solutions of a multi-objective
optimization problem are given as Pareto solutions, of which
consist of many solution points. The decision maker needs to
decide or select one specific solution out of the many
solutions by considering various factors relating to the
problem at hand. In general, the decision will be made based
on his/her preference, experience, or subjective judgment.

Three kinds of information are involved in the decision
process : Goals, Constraints, and Alternatives. Goals are
what we want to achieve out of the decision process.
Constraints/criteria are limiting factors that are needed to
consider before deciding how to achieve the goals.
Alternatives are the available decision outcome of the
problem under consideration. The typical multi-objective
decision problem, which basically a decision process,
involves the selection of one alternative, ai , from a

universe of n alternatives { }A a a an= 1 2, , ,L  given a set of

r objectives { }O o o or= 1 2, , ,L  with corresponding

weighting factors/constraints constraints B = b1,b2,L,br{ }
that are important to the decision making. Each alternative
will be evaluated on how well it satisfies each objective.

Generally, heuristic intuition, expert knowledge and
experience, and linguistic descriptions are very important in
the decision making process. Since some information only
can be described imprecisely and some others only as quality,
the decision making environment is fuzzy. The conventional
multi-objective decision making scheme does not capture
imprecise information and quality data in an effective
manner.

Fuzzy logic technology is a rich field with a large amount of
theory and operations developed. Chapter 2 has briefly
described the techniques in fuzzy logic, including
membership functions, fuzzy rules, fuzzification,
defuzzification. This chapter will focus on how to use fuzzy
logic to optimize multi-objective decision making for power
system problems.

B. Brief Overivew of Yeger’s Multi-Objective
Decision Making and Linear Fuzzy Linear
Programming

This section gives an overview of some fundamental concept
of multi-objective optimization decision making and some
technical background of Yager’s fuzzy multi-objective
decision making technique and fuzzy linear programming
technique.

B.1 Yager’s Fuzzy Logic Multi-Objective Decision
Making Scheme

In order to use Yager’s Fuzzy Logic Multi-Objective
Decision Making Scheme to solve some power engineering
problems, there are several issues needed to be addressed.
To name a few:

1. How to implement linguistic descriptions of the
problem at hand?

2. How to aggregate the available information for decision
making?

3. How to infer the final decision based on the aggregated
information?

Three popular fuzzy logic concept and techniques can be
used to answer the issues posted. Membership functions  will
be used to convert the input values to the linguistic
descriptions and membership values to fuzzy descriptive
forms. The fuzzy inference such as using min  operation to
aggregate input information based on the fuzzy rules.

Centroid rule, which is the popular method to perform
defuzzification in fuzzy logic [11], can be used to evaluate
the fuzzy outputs into an preference value for each
alternatives for later decision making approaches used to
infer the final decision making based on the preference value
obtained from the Centroid rules and the weightings of
objectives. The overall decision process is shown in Fig. 1.

fuzzification
process

(membershi
p functions)

fuzzy
rule

defuzzification
process

Fuzzy multi-
objective
decision

making scheme

decision

Fig. 1. Fuzzy multi-objective decision making process

In 1981, Yager proposed an approach for decision making
that required only ordinal information on the ranking of
preferences and importance weights. This process naturally
requires subjective information from the decision maker
concerning the importance of each objective. Based on the
multi-objective decision making formulation described
previously, the decision measure for a particular alternative,
a, can be replaced with a classical implication of the form,
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M Oi a bi bi Oi a bi Oi a( ( ), ) ( ) ( )= ® = Ú . (1)

where bi bi= -1  and Ú  is the max operator, i.e.,

 { }bi Oi a bi Oi aÚ =( ) max , ( ) . (2)

The implication preserves the linear ordering required of the
preference set, and at the same time relates the two
quantities in a logical way where negation is also
accommodated. Justification of the implication as an
appropriate measure can be developed using an intuitive
argument [10]. A reasonable decision model will be the joint
intersection of r decision measures,

( )J bi Oii

r
= È

=1
I , (3)

and the optimum solution, a* , is the alternative that
maximizes J. If we define

Ci bi Oi= È , (4)

hence

[ ]m m mCi bi
Oi

a a a( ) max ( ), ( )=
, (5)

then the optimum solution, expressed in membership form,
is given by :

{ }[ ]m m m mD C C Cr
a a A a a a(
*

)
max

min ( ), ( ), , ( )= Î 1 2
L (6)

Yager’s decision making requires users to rank the group of
goals and the group of constraints along a comparative scale
of importance from 0 to 1 (create fuzzy membership
functions for each input and output. Then measure each of
the user’s alternatives against each of the goals and
constraints and rank them from 0 to 1 (another membership
function concept).

The preference weighting factors, { }B b b br= 1 2, ,L ,will be

assigned to each of the objectives to quantify the decision
maker’s feelings about the influence that each objective
would have on the chosen alternative. They are used to
convert the multiple objectives into an overall decision
function in some plausible way. The negation of the
preference weighting bj  acts as a barrier such that all

distinctions less than that barrier is disregarded while those
distinctions above the barrier is kept. The more important is
the objective, the lower is the barrier, and thus the more
level of distinction there are. Later sections will apply
Yager’s multi-objective on a Power Distribution Spatial
Load Forecasting problem.

B.2 Fuzzy Linear Programming

 In real world decision problems, objectives and constraints
are seldom rigid or crisp but rather vague in the degree of
attainment. Fuzzy mathematical programming has been
developed significantly in recent years to solve a class of
multi-objective optimization problems with ambiguous or
fuzzy constraints as well as objectives. Fuzzy linear
programming is an effective method of making coordination
among many conflicting or trade-off objectives. The
coordination will be done through the shape of membership
functions assigned to objectives and also to constraints. If
the goal of a certain objective is not thought of much, this
must be adjusted by redefining the associated membership
function. Furthermore, it is advantageous to treat future
demand prediction as fuzzy number. The conventional
multi-objective linear programming problem with k
objectives may be formulated as follows:

minimize     z(x) = CTx

subject to   Ax £ b

                    x ³ 0

ü 

ý 
ï 

þ ï 
(7)

where 
  z

T (x) = z1(x),  z2(x),L,  zk (x)[ ],
  C = c1,  c2 ,L, ck,[ ],   A

T = a1,  a2,L,  am[ ], and

x,  ci ,  ai ÎÂn .

In real world problems, the constraints are mostly
given as fuzzy quantities, in other words, by ambiguous or
soft constraints. The objectives are rarely need to be
minimized or maximized absolutely. However, the
objectives should attain values less than some target ranges
in the minimization process. The linear programming with
fuzzy objectives and constraints may be formulated as:

minimize    z(x) = CTx<
~
 zo

subject to   Ax<
~

b

                    x ³ 0

ü 

ý 
ï 

þ 
ï 

(8)
where, symbol <~ denotes fuzzy inequality and is used to

express both fuzzy objectives and constraints. For
instance,Ax <~ b  means the left-hand term is roughly less

than the right-hand term.

In fuzzy linear programming, the vagueness of the decision
maker in selecting an adequate plan is reflected as the degree
of satisfaction through the shapes of membership functions.
Therefore, how to set up a membership function may
characterizes constraints as well as objectives. Depending on
the strictness of objective attainment, we shall assume the
three kinds of membership functions as shown in Fig. 2.
Here, type S is for the case of low priority, type H is for
more stringent case, and type N is linear membership
function. In this Figure, relationship between the value of an
objective function a  and the degree of satisfactiona   is
shown for the linear membership function.
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Type S (Soft)   : Low priority in an objective

Type N (Normal) : Linear membership function

Type H (Hard) : High priority in an objective

Fig. 2. Membership function.

Later sections will demonstrate the application of Yager’s
multi-objective decision technique for Power Distribution
Spatial Load Forecasting, demonstrate fuzzy linear
programming techniques for Generation Expansion Planning,
modified fuzzy linear programming approach to solve
Optimal Power Flow problem, and the use Lagrange
relaxation techniques on fuzzy linear programming on
Scheduling problems.

C. Application of Fuzzy Optimization Methods to
Power System Applications

C.1 Application of Yager’s Fuzzy Multi-objective
Optimization Method for Power Distribution System
Spatial Load Forecasting
(by Mo-yuen Chow and JinXiang Zhu, North Carolina State
University)

Introduction

Distribution systems aim to provide reliable power to
customers in a large geographic areas. In the planning stages,
utilities need to plan ahead for anticipated future load growth
under different possible scenarios. Based on load forecasts,
they will decide whether to built new facilities or upgrade
the existing facilities. Their decision can affect the earning
or losing millions of dollars for their companies as well as
customers’ satisfaction and operational reliability. Therefore,
decision making tools are very important to make a right
decision based on given information. But the correct plan
must rely on the accurate load forecasting.

 For distribution plan, not only the load magnitude but also
its location are to be predicted. The load in distribution level
is highly stochastic (‘needle peaks’) and greatly affected by
land usage, weather, and living habits. Apparently, the
distribution load forecasting is a high dimensional,
stochastic, nonlinear, and time varying problem. It is
difficult to identify mathematical models or statistical
regression models that have been used successfully in
generation and transmission load forecasting.

There are a lot of unforeseen situations may occur and land
usage may change through time. For example, the new
construction of a highway, the move in of a large industry
plant. These external factors can substantially affect the land
usage, thus the load growth. The distribution system
planners need to aggregate different types of information to
predict what might happen in their service areas in the future
and plan accordingly. Load studies shows that the land usage
dominate the load growth pattern and load shapes because
they employ similar type of appliances and have similar
needs and schedule [1].

The land usage based spatial load forecasting computer
simulation has been proposed and used to aggregate
appropriate geographic information to simulate future load
growth based on different anticipated scenarios [2]. The
increasingly popular, affordable, and accurate Geographic
Information Systems (GIS) technology provide an excellent
data base platform for spatial load forecasting techniques.
The use of GIS can save thousands of man hours for utilities
to collect relevant geographic data [3]. Thus spatial load
forecasting technology become even more attractive than
before both from economical point of view and superior load
forecasting accuracy.

There are a few stages for spatial load forecasting, shown in
Fig. 3. The spatial information is used to predict the land
usage. Each land usage is mapped to a load growth pattern.
The land usage and load growth are then calibrated based on
different constraints, such as system load growth, budget
available, future economy growth of the area, etc.

       constraintsgeographic
information

land usage
decision

load growth
estimation

Fig. 3. diagram of land-use based spatial load forecasting.

Spatial Load Forecasting Problem

As discussed in [10], three kinds of information are involved
in the decision process : Goals, Constraints, and Alternatives.
For the spatial load forecasting problems, we have to
identify them before formulation.

Goals are what we want to achieve out of the decision
process. In the land usage spatial load forecasting program,
distribution engineers want to predict the likelihood of land
usage changes in the future due to different influential
factors, then estimate the spatial load growth patterns
accordingly under different scenarios in order to plan the
distribution system ahead of time. The land usage goals can
be further categorized as:

1. Determine whether the land needs re-development,
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2. Determine what land class the site will become if re-
development is required, and

3. Determine the corresponding load growth for the land
usage.

Constraints/criteria are limiting factors that are needed to
consider before deciding how to achieve the goals. The land
usage constraints/criteria can be Land-use Preferences,
Budget Limitations, Geographic Constraints, etc.

Alternatives in the land usage decision are the available
choices for land usage under consideration. For example, the
alternatives are different land class usage: Vacant land, Light
Residential, ..., Heavy Industry.

Spatial Load Forecasting Description

One of the major process in the land-use based spatial load
forecasting process relies on the prediction of future land
usage. The choice of land usage belongs to the multi-
objective decision evaluation problem based on different
factors. The typical multi-objective decision problem, which
basically a decision process, involves the selection of one
alternative, ai , from a universe of n alternatives

{ }A a a an= 1 2, , ,L  given a set of r objectives/criteria

a i  that are important to the decision

making. Each alternative will be evaluated on how well it
satisfies each objective.

Distance to highway concept is straight forward [1]. Urban
pole concept has been used in city planning and modeling
[14]. Among a city or town, site preference may attracted to
or repulse from some salient point of geographic interests
such as center of district, shopping centers, ball parks. The
influence of the center of interest is often presented by the
Urban Pole concept [1].

For example, there are three alternatives - residential,
commercial, and industrial - are considered for land-use
selection in the spatial load forecasting problems [9], that is,
n = 3 and { }A a a a= 1 2 3, , . Suppose two objectives are

considered - O1  distance from highway and O2  distance

from urban pole - then r = 2 and { }O O O= 1 2, .

Implementation of Land-use Selection

This section presents a land usage based spatial load
forecasting prototype demonstration of using fuzzy logic
decision making scheme of the land usage determination,
from which predicts the future spatial load growth.

Multi-Objective Decision Problem Set-Up

As mentioned in previous sections, the illustration problem
is formulated as following :

A 10 10´  land grid sites assuming all environmental
conditions are the same except the distance to the highway,
which is under construction, and distance to the urban pole
center. There are three alternatives for land usage, such as,
residential, commercial, industrial.

1 3 5 7 9
S1

S3

S5

S7

S9

1.5-2.5

0.5-1.5

-0.5-0.5

Residential

Commercial

Industrial

HighwayUrban Pole

Fig. 4. The illustrative example

The goals of the land usage selection are :

1. To maximize the land value by satisfy the preference of
decision makers.

2. To minimize the redevelopment costs.
The inputs for the decision making process is :

1. The distance of the site to the highway.
2. The distance of the site to the urban pole.
3. The original land-use information.
4. The cost of redevelopment from one land-use to another.

Membership Function Set-up

The preferences of the land usage depends on the two
external factors: distance to highway, Dh , and distance to

urban pole, Du . The distance to highway and distance to

urban pole are described by linguistic variables : very close
(V), moderately close (C), and far (F). The membership
functions representing these variables are shown in Fig. 5.

mV              C F

0    1      2     3    4    5    6    7     8    9    10    distance

Fig.5. Distance membership functions.

Since the grid size under consideration is 10 10´ , therefore,
the universe of discourse of the input variable is [0, 10]. The
preference values are normalized between [0, 1], in which 1
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indicates completely prefer and 0 indicates completely
against.

Fig. 6 shows five membership functions to describe the
different site preference: strongly against (SA), moderately
against (MA), neutral (NT), moderately prefer (MP),
strongly prefer (SP). Again, the preference membership
functions are normalized between [0,1].

m   SA      MA             NT           MP         SP

0  0.1   0.2  0.3  0.4  0.5  0.6  0.7   0.8  0.9  1.0

Fig. 6. Preference membership functions.

Fuzzy Rules

The rules for selecting land usage with respect to distance to
highway and urban pole can be described by the linguistic
variables in the Table 1,2. It means ‘If a site is very close to
highway, then residential will moderately against’.

Table 1: Fuzzy rules for the distance to highway
Highway Residential Commercial Industrial

Very
Close

MA SP SP

Close SP NT SA
Far MA MA SA
Table 2: Fuzzy rules for the distance to urban pole

Urban
Pole

Residential Commercial Industrial

Very
Close

SA SP SA

Close MP MP MA
Far MA MA SP

Not only the distance to highway and urban pole, but also
redevelopment cost is considered in land-use selection. The
redevelopment cost is listed in Table 3. Since cost is to be
minimized, the preference of redevelopment is defined as
1- Tij , where Tij  is the cost of redevelopment from ith land-

use to jth land-use.

Table 3: The redevelopment costs
Resid. Comm. Industrial

Residential 0.0 0.2 0.3
Commercial 0.3 0.0 0.4
Industrial 0.3 0.2 0.0

The importance weighting factor of each objective b is set
differently based on the decision maker’s preference. For

example, highway: b1 07= . , urban pole: b2 0 6= . , cost:

b3 0 5= . , that means highway criterion is more important

than the urban pole criterion while urban pole objective is
more important than the cost criterion.

The centroid rule is applied to defuzzify the preferences to
highway and urban pole. These preferences and the
preference of redevelopment on cost issue are aggregated by
their important weighting factors based on the Yager’s
approach.

For example, site (S6, 5) is a residential site which is 1.5
miles away from highway and 2.55 miles from urban pole.

_ fuzzification to get ( ) { }~
/ . , / . , /D d V C FH = 0 25 075 0

_ apply all applicable rules { }~
/ . , / .P MA SPR = 0 25 0 75

_ defuzzification to get a crisp preference pR = 0 8125.

Same procedure will evaluate other two alternatives and get:

{ }~
/ . , / .P SP NTC = 0 25 075  pC = 0 625.

{ }~
/ . , / .P SP SAI = 0 25 075  pI = 0 25.

Similarly to  the urban pole and cost, the results are listed in
Table 4. Each alternative is evaluated based on Equ. (1-6)
and the highest rank win. Conclusion: this site is best served
by residential.

Table 4.  Results for Land-use selection
weight Res. Comm. Ind.

Highway 0.7 0.8125 0.625 0.25
Urban Pole 0.6 0.75 0.75 0.25

Cost 0.5 1.0 0.8 0.7
Rank 0.75 0.625 0.3

Spatial Load Forecasting

Different loads have their own characteristics and land-use
load curves. Reasonable approximations and simplifications
have been studied on load growth patterns [1, 15]. These
techniques have been used in several power areas such as
load modeling, load forecasting, and demand side
management.

In this paper, each land use has its own load growth
pattern and is described by state-space description in the
form of :

&S aS b= + , (9)

with appropriate units. The parameters for different land
usage used in this paper are listed in Table 5.

Table 5. Load growth parameters used in the illustration.
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The load growth pattern described in Eqn. (9) has been
shown to be a good approximation for many load growths
observed in the past. The parameters a, b, c can be fine tuned
to suit the specific problems at hand [1].

Results and Discussion

Land-use selection

The result of land-use redevelopment is shown in the Fig. 7.

1 3 5 7 9
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Year=1

1 3 5 7 9
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Year=5

1 3 5 7 9
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1.5-2.5

0.5-1.5

-0.5-0.5

Year=10

Residential

Commercial

Industria

Fig. 7. The final land-use map

Based on the land-use selection rules, the sites around urban
pole are the most preferred place for commercial. Therefore
some residential sites, which are close to urban pole, are re-
developed to commercial sites. On the other hand, some
commercial sites and industrial sites which are neither very
close nor far to urban pole nor highway are changed to
residential sites. Since industrial sites are strongly against to
be close to the urban pole but strongly prefer to be close to
highways, the sites on the side of highway which is close to
urban pole are re-developed to commercial sites while those
far away from urban pole are re-developed to industrial sites.
These results are consistent with the fuzzy rules and
membership functions used.

Once the land-use redevelopment plan has been provided,
the spatial load forecasts are easy to obtain. For example,
site (S4, 7) will be redeveloped from residential to
commercial in third years. After redeveloped it will follow
the growth pattern for commercial instead of residential. In
Fig. 8, different land-use has different load growth pattern.
Site (S1,3) is residential, site (S6,3) is commercial, site
(S10,8) is industrial site. Since the land-use redevelopment,
the load will change accordingly. Based on the spatial load
forecast results, distribution planning software can provide
the best feeder design in the future.

0
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4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15

(S1,3)

(S6,3)

(S10,8)

(S4,7)

Fig. 8. The electricity consumption.

The advantages of the proposed approach

The fuzzy logic formulation provides a intuitive and easy
approach to implement heuristic rules into the spatial load
forecasting land-use selection criteria. The fuzzy algorithm
is robust even uncertainties employed. In this paper, the
decision is made based on the compromise of preference to
highway, urban pole, and redevelopment cost. Yager’s
approach is used to evaluate multi-objective by the
importance weighting factors. Another advantage is to easily
match the decision maker’s expectation, that is, the fuzzy
rules and membership functions can be modified to fine tune
the results.  The fuzzy multi-objective decision making
process is robust, easy to fine tune, and easy to maintenance.
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D. Application of Fuzzy Linear Programming
with Lagrangian Relaxation Technique to Power
Scheduling and Transactions
(Sen Lin and Peter Luh, University of Connecticut)

D.1 Scheduling and Transactions in an Uncertain
Environment

Since electric utilities generally have different sets of
generators and have to meet their time-varying demand and
reserve requirements, they usually have different marginal
generation costs.  It is often mutually beneficial to buy or
sell power if their marginal costs are sufficiently different.
The transaction problem, however, is difficult because
transactions are coupled with scheduling through demand
and reserve requirements, and the scheduling problem itself
is “NP hard.”  In addition, significant uncertainties are
involved, including demand, reserve, and future transaction
opportunities.  These uncertainties have major impact on the
economics of system operation.  In view of the increasing
competitiveness of the power market, prudent transaction
decisions are required to be made in almost real time.  A
good problem formulation and an effective methodology are
needed to manage uncertainties.

In this subsection, the integrated scheduling and transaction
problem is formulated as a mixed fuzzy-stochastic
optimization problem in subsection b.  To solve the problem
with manageable complexity, a method based on a
synergistic combination of fuzzy optimization, Lagrangian
relaxation, and stochastic dynamic programming is
developed in subsection c.  Testing results based on data
from Northeast Utilities presented in subsection d
demonstrate that the algorithm is robust, significant savings
are obtained, and a good balance is achieved between
minimizing costs and hedging against uncertainties.

D.2 Problem Formulation

To simplify the presentation, a power system with I thermal
units, M future purchase transactions, and N future sale
transactions is considered.  Hydro and pumped-storage units

and given transaction opportunities (having crisp prices and
maximum levels) can be handled by following our previous
work as reported in [1-4].  They are in fact considered in
numerical testing presented in subsection d.  The objective is
to minimize the total cost, i.e., the fuel and start-up costs
plus the expected purchase costs and minus the expected sale
revenue, subject to fuzzy demand and reserve requirements
and individual unit and transaction constraints.  The time
unit is one hour, and the planning horizon may vary from
one week to ten days.  To formulate the scheduling and
transaction problem mathematically, the following notation
is introduced:

Ci(pi(t)): Cost of thermal unit i at hour t, in dollars;

I: Total number of thermal units;
Pd(t): System demand at hour t, in MW;

Pr(t): System reserve requirement at hour t, in MW;

pi(t): Power generated by thermal unit i at hour t, in

MW;
ri(pi(t)): Reserve contribution of thermal unit i at

generation level pi(t), in MW;

Si(t): Start up cost of thermal unit i in $, a linear

function of time since last shut down;
T: Scheduling horizon, in hours.

Object Function.  The objective is to minimize the total
cost -- the fuel and start-up costs plus the expected purchase
costs and minus the expected sale revenues:

[ ] [ ]J C p t S t E c t p ti i i
i

I

m m
m

M
º +å + å

= =
( ( )) ( ) ( ) ( )

1 1

[ ]- å
=

E cn t p tn
n

N
( ) ( )

1

.  (10)

Systemwide Constraints.  In view of the inaccurate
forecasted demand and uncertain transaction opportunities,
the system demand and reserve are required to be satisfied
“as much as possible” for the planning purpose (as opposed
to the exact satisfaction during on-line operations).  These
constraints are thus modeled as fuzzy relations following [5]
and [6].

System Demand Constraints.  Total generation plus
expected future purchases minus sales should be
“essentially” greater than or equal to the demand at each
hour:

p(t) º [ ] [ ]p t E p t E p t P ti
i

N
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m
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( )
= = =
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1 1 1

, t = 1, 2, .., T. (11)
The membership of the above fuzzy relation is assumed for
simplicity to be piecewise linear as described by:
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In the above, Pd(t) is the “nominal” system demand, and

dp(t) the maximum range of demand variations.  Equation

(2.5) states that the demand becomes less satisfied as p(t)
decreases below Pd(t) as indicated by the reduced

membership.

System Reserve Constraints.  The total reserve
contribution of all the units should be “essentially” greater
than or equal to the reserve required at each hour:

r(t) º r t P ti
i

I

r( )
~

( )
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å ³
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,

t = 1, 2, .., T. (13)
The membership of the fuzzy relation is assumed to be:
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In the above, Pr(t) is the “nominal” reserve requirement, and

Pr(t) - dr(t) the minimum acceptable reserve.  Equation (14)

states that the reserve becomes less satisfied as r(t) decreases
below Pr(t) as indicated by the reduced membership.

Beyond systemwide demand and reserve requirements, there
are individual unit and transaction constraints as detailed in
[7], [1], and [2].

D.3 Solution Methodology

To solve the above problem with manageable complexity,
the problem is first transformed into a crisp one by using the
symmetric approach for fuzzy optimization ([8]).  The
transformed problem is decomposed into individual unit and
transaction subproblems by using Lagrangian Relaxation.
Individual subproblems are then solved by using dynamic
programming.

Converting Fuzzy Optimization to a Crisp One.  Based
on the symmetric approach for fuzzy optimization, the
objective J in (11) should be “essentially smaller than or
equal” to some "aspiration level" J0:

J J
~£ 0 . (15)

The membership of the above “fuzzy objective constraints”
is assumed to be:
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The aspiration level J0 represents the desired total cost.  A

schedule becomes less acceptable as the cost increases above
J0 as indicated by the reduced membership, and the highest

acceptable cost is J0 + dJ.  One candidate for J0 is the cost of

the crisp scheduling problem with lowest acceptable demand
and reserve, and expected parameters for future transactions.

In the symmetric approach, the fuzzy demand, reserve,
and objective constraints are desired to be satisfied
simultaneously.  The problem is thus to maximize the
minimum degree of satisfaction z among all fuzzy
constraints by properly scheduling thermal units and making
good transaction decisions:

max z, with z º min {mJ , mp(t) , mr(t)},

t = 1, 2, .., T,  (17)
subject to individual unit and transaction constraints.  To
make the problem approximately equivalent to the crisp case
when all fuzzy constraints can be satisfied with membership
1, the problem is modified following [6] to:

min b(z-2)2 + J, with b >> J,

 subject to  (18)

z £ mJ,  (19)

z £ mp(t),  t=1, 2, . . . , T (20)

z £ mr(t),  t=1, 2, . . . , T, (21)

0 £ z £ 1,  (22)

and all individual unit/transaction constraints.  Since (17) -
(20) are additive in terms of individual unit and transaction
variables, the problem is “separable.”  Lagrangian relaxation
can thus be effectively applied.

Lagrangian Relaxation.  Lagrangian relaxation is applied to
relax “systemwide constraints” (18) - (20) with the
Lagrangian obtained as:

L º b(z-2)2 + J + lJ[J - J0 - (1 - z)dJ] 

[ ]+ - - -
=
ål d( ) ( ) ( ) ( ) ( )t P t p t z td p
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[ ]+ - - -
=
åm d( ) ( ) ( ) ( ) ( )t P t r t z tr r
t

T

1
1

. (23)

For a given set of multipliers, the following subproblems are
obtained after re-grouping relevant terms:

Thermal subproblem for unit i:
min Li, with
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subject to individual thermal unit constraints.  This
subproblem is very similar to its counterpart when no
uncertainty is involved ([7]), with fuzziness modifying the
cost coefficients.  The subproblem can thus be solved by
using dynamic programming presented in [7] with
straightforward modifications.

Future purchase transaction m:
min Lm , with
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subject to pm(t) £ p tm( )  and individual purchase

transaction constraints.  Parameter p tm( )  is the maximum

purchase level offered at time t, and is a random variable.

Future sale transaction n:
min Ln , with
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t
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1
l l ,  (26)

subject to pn(t) £ p tn ( )  and individual sale transaction

constraints.    Parameter p tn ( )  is the maximum sale level at

time t, and is a random variable.

The treatment of a future purchase or sale transaction
subproblem for the deterministic case can be found in [1]
and [2].  The resolution of the fuzzy-stochastic case follows
a similar procedure. By discretizing the probability
distributions of transaction price and maximum level for a
load period, a set of price-MW combinations can be
obtained,  each associated with a probability.  Backward
dynamic programming is performed for each possible price-
MW combination within a load period.  The cost for the load
period is then obtained as the expected value of the costs at
the first hour of the load period, considering all possible
price-MW combinations of that period.  These periods are
then linked together by using stochastic dynamic
programming to satisfy allowable transaction patterns.  The
two steps are performed iteratively backwards in time,
starting with the last load period.  Since the effects of
uncertainties are summarized in the expected “optimal-costs-
to-go” at the first hour of each load period, the
computational requirements increase only linearly as the
number of possible price-MW combination increases.

Fuzzy Membership subproblem:
min Lz , with

[ ]L b z z t t zz J J p t r t
t
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=
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1
l d l d m d  (13)

This subproblem can be solved analytically by minimizing a
quadratic function.

The multipliers are updated at the high level by using
the “reduced complexity bundle method” [9].

D.4 Numerical Testing Results

The algorithm was implemented in FORTRAN and C++ on
a SUN Ultra Sparc 170 workstation.  Testing is based on two
data sets from Northeast Utilities Service Company (NU):
February week 2, 1996 and February week 3, 1996.  Each
data set has a time horizon of one week (168 hours), and
includes about 70 thermal units, 7 hydro units, and 1 large
pumped-storage unit.  Hourly demand is assumed to subject
to 4% variations, and hourly reserve 7% variations.  The
solutions satisfy all the rules of New England Power Pool.

For comparison purpose, a deterministic version of the
algorithm is also tested using the same simulation shell.
This deterministic version requires demand and reserve to be
satisfied crisply, and ignores future transaction opportunities.
Simulations were then performed for both the new and the
deterministic algorithms, 200 Monte Carlo runs each.  In the
simulation, the algorithm is run on a daily basis in a moving
window fashion, each time simulating a period of one week
to ten days.  Uncertainties are realized on a daily basis, and
realized demand and reserves are required to be satisfied
crisply.  Decisions regarding realized transaction
opportunities are incorporated into the system load.  Testing
results are summarized in Tables 1 and 2, with optimal
membership 0.786 for Data Set 1 and 0.805 for Data Set 2.

The following can be observed from Tables 1 and 2:
1. The new algorithm results in significant savings for both

schedule costs (2.3) and simulation costs as compared to
the deterministic one, indicating that a good balance is
achieved between minimizing costs and hedging against
uncertainties.

2. The difference between a schedule cost and the
associated simulation cost for the new algorithm is
consistently lower than that of the deterministic version,
indicating that the new method is less susceptible to
disruptions and it thus more robust.

3. The computation time of the new algorithm is only
slightly higher (about 20-30%) than that of the
deterministic version.  Uncertainties are thus handled in
a computationally manageable manner.
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Table 1.  Simulation Results of February Week 2, 1996
Fuzz-Stoch Crisp Difference

Future purchase trans. 10 0 10
Future sale trans. 7 0 7

High level iterations 59 48 11
Schedule cost ($) 8,412,205 8,451,957 -39,752*
CPU time (sec) 29 24 5

Ave. simu. cost ($) 8,422,835 8,487,126- 54,289*
Difference ($) (sche -

simu)
-10,630 -35,169 --

* Negative number indicates savings.

Table 2.  Simulation Results of February Week 3, 1996
Fuzz-Stoch Crisp Differenc

e
Future purchase

trans.
9 0 9

Future sale trans. 6 0 6
High level
iterations

65 51 14

Schedule cost ($) 8,352,189 8,422,360 -70,171*
CPU time (sec) 35 28 7

Ave. Simu. cost ($) 8,335,353 8,381,127 - 45,774*
Difference ($)

schedule -
simulation

16,836 41,233 --

* Negative number indicates savings.
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Chapter 7 Optimization Techniques II

A. Generation Expansion Problem by Means of
Multi-Objective Fuzzy Optimization
(by Hiroshi Sasaki, Junji Kubokawa at Hiroshima
University)

A.1 Introduction

Electricity is the indispensable form of energy in modern
societies; its demand has been increasing year by year.
Furthermore, a widespread use of various advanced
electronic apparatus intensifies the sheer need of supplying
high quality electric energy. Generation facilities of a power
system must be expanded adequately so that it will be able to
meet future demand increase. Hence, generation expansion
problem has occupied an important position in power system
engineering field.

The generation expansion planning (GEP) has been so far
defined as a problem to determine the amount of new
generation facility to be constructed so that the sum of fixed
and variable costs of generation facilities is minimized over
a certain period of time. Conventionally, GEP has been
formulated as a non-integer programming problem in which
a continuous variable is allocated to each type of generating
units [1-3]. One possible approach is to apply linear
programming after linearizing the original problem [4].
Although the linearization might seem inaccurate, it is still
valid as a first approximation to the problem covering a very
long time range in which many uncertain factors should be
taken into account. More authentic, there is an approach
based on nonlinear programming [5].

However, as is already mentioned, the requirement for more
reliable electric energy supply is becoming more and more
strong as the society has become more information oriented.
As much as the same as high system security, it is
indispensable to take into consideration environmental
impact caused by power generation. Therefore, GEP may be
formulated more appropriately as a multi-objective
optimization problem in which economy, system security,
and environmental stress should simultaneously be taken
into account. This is especially the case in the recent trend of
system planning methodologies, typically known as IRP
(Integrated Resource Planning). In addition, power exchange
may be considered one of very effective means to future
supply of electric energy.

As another specific feature of GEP lies in the fact that it is a
problem covering a long time span, well exceeding a decade
or two. This means that GEP must postulate many

assumptions which will be changing drastically or possess
much uncertainties during the planning period. In reality,
planning engineers must make up many alternative plans to
allow for these uncertainties and future fluctuations of basic
parameters such fuel cost, demand forecast. The decision
maker must select one particular plan out of the thus
provided alternatives based on his/her subjective judgment
on many ambiguous factors. Thus, the incorporation of
uncertainties has been again the recent trend in GEP [7] and
an approach that can effectively handle such uncertainty is
definitely necessary for solving GEP.

In this section, we shall take into consideration three
objectives in GEP, that is, economy, supply reliability, and
environmental impact by assuming all the variables can take
continuous values. Conventionally, as to supply reliability,
the reserve rate of about 6 - 10 [%] of its peak demand is
assumed so as to accommodate inherently unforeseen faults
or sudden loss of generation. However, in GEP that handles
a long range planning, fluctuations on load demand forecast
must be securely integrated. Therefore, two different
concepts on supply reliability are needed: one is a
conventional reserve rate as mentioned above and the other
is supply reserve margin which stems from  fluctuations in
demand forecast to higher side at the target year. The latter
is taken as an index to express supply reliability.

In order to minimize environmental impact from thermal
generation units, it is natural to restrain the amount of gas
emission which has been treated as constraints in
conventional GEP. However, this critical factor must be
treated equally with economy as well as supply reliability. In
this sense, we shall introduce an environmental index to
make compromise with the other objectives.

Multi-objective optimization problems generally cause much
difficulty in the sense that which objective is more important
than others and, if so, to what extent. In conventional
mathematical methods for this class of problems, solutions
of a multi-objective optimization problem are given as
Parete solutions which consist of uncountable solution points.
The decision maker must anyhow decide or select one
specific solution out of the countless solutions by
considering various factors relating to the planning. In
general, the decision will be made based on his/her
preference, experience, or linguistic judgment. Therefore, it
may be said that the decision process is done on the basis of
rather vague judgment.

Fuzzy mathematical programming has been developed
significantly in recent years so that it can solve a class of
multi-objective optimization problems with ambiguous or
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fuzzy constraints as well as objectives.  Above all, fuzzy
linear programming is a very effective method of making
coordination among many conflicting or trade-off objectives.
The coordination will be done through the shape of
membership functions assigned to objectives and also to
constraints. If the goal of a certain objective is not thought of
much, this must be adjusted by redefining the associated
membership function. Furthermore, it is advantageous to
treat future demand prediction as fuzzy number. As already
mentioned, the role of GEP under much uncertainty is to
provide the decision maker with a set of

A.2 Fuzzy Linear Programming

In real world planning problems, their objectives and
constraints are seldom rigid or crisp but rather vague in the
degree of attainment. Fuzzy linear programming is a suitable
mathematical tool to deal with such optimization problems
with ambiguous objectives and constraints. The conventional
multi-objective linear programming problem with k
objectives may be formulated as follows:

minimize     z(x) = CTx

subject to   Ax £ b

                    x ³ 0

ü 

ý 
ï 

þ ï 
(1)

where   z
T (x) = z1(x),  z2(x),L,  zk (x)[ ],

  C = c1,  c2 ,L, ck,[ ],   A
T = a1,  a2,L,  am[ ], and

x,  ci ,  ai ÎÂn
.

In general, the above problem has an infinite
number of optimal solution points known as Parate optimal
solutions. That is, if it is desired to improve a certain
objective, this makes some other objectives deteriorate.

In real world problems, the constraints are mostly given as
fuzzy quantities, in other words, by ambiguous or soft
constraints. It is also true that the objectives are rarely need
to be minimized or maximized in the strict sense, but they
should attain values less than some taget ranges if to be
minimized. Thus, linear programming with fuzzy objectives
and constraints may be formulated as:

minimize    z(x) = CTx<
~
 zo

subject to   Ax<
~

b

                    x ³ 0

ü 

ý 
ï 

þ 
ï 

(2)
Here, symbol <~  denotes fuzzy inequality and is used to

express both fuzzy objectives and constraints. For
instance,Ax <~ b  means the left-hand term is roughly less

than the right-hand term.
Equation (2) means that  objectives and constraints are

enforced by fuzzy inequality in fuzzy linear programming
and hence can be treated equally. Fuzzy linear programming
is based on the fuzzy decision principle proposed by R.E.

Bellman and L.A. Zadeh. According to the principle, the
fuzzy decision is defined as the intersection of fuzzy
objectives (goals) and fuzzy constraints. Let us define the
following notations for the membership functions of the
k objectives and m constrinats as:

  

Objectives :  mg1
(x),  mg2

(x),L,mgk
(x)

Constraints :  mC1
(x),  mC2

(x),L, mCm
(x)

ü 
ý 
þ (3)

Then, the membership function of the fuzzy decision can be
defined as

  mD (x) = min(mg1
(x),m g2

(x),L,m gk
(x),

  mC1
(x),L, mCm

(x)) (4)
For convenience of further discussions, we shall introduce
the following notations

  mg (x) = m g1
(x),m g2

(x),L, mgk
(x) (5)

mC (x) = mC1
(x), mC2

(x),L, mCm
(x) (6)

By using these notations, the fuzzy decision can be defined
as

mD (x) = min(mg (x),mC (x)) (7)
The proposal of R.E. Bellman and L.A. Zadeh as a

decision making in the fuzzy decision is to select x  that
maximizes membership function mD(x) . This is expressed
mathematically as

mD(x* ) = max
xÎX

mD(x) = max
xÎX

min(mg(x),mC(x)){ } (8)
where X  denotes the set of alternatives which consist of
means or actions that can be taken in fuzzy decision.

According to fuzzy mathematical programming, (8) can
be transformed to the following maximization problem:

sup
xÎX

 m D(x) = sup
aÎ[0,1]

min[a,  sup
xÎC

a

mg (x)]
(9)

where Ca  means the a -level set of the fuzzy constraints

and expressed as

Ca = x mC(x) ³ a{ } (10)
If j (x) = sup

xÎCa

mg(x)  is continuous with respect to a , the

following holds:
sup
xÎX

 m D(x) = sup
xÎC

a 

 mG (x) = a 
(11)

Therefore, the fuzzy mathematical programming problem
has reduced to tan ordinary methematical programming
problem. That is, once a  is obtained, the remaining is to
maximize mG(x)  under a crisp constraint set Ca .

The algorithm shown in Fig. 1 is to obtain the maximum
value ofa  for which the degree of satisfaction of each
objective is greater than or equal to. Note that a suitable
membership function is postulated for each objective
depending on its relative importance. Since the minimum
degree of satisfaction among the objectives is maximized by
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this algorithm, it is one of algorithms of realizing usual max-
min operation of fuzzy objectives.  In Fig. 1, first an
optimization problem with single objective
zi  (i = 1, 2,L, k)  is solved separately to evaluate the

ideal fluctuation range a0i < zi < a1i . Based on this result,

we define a membership function to express the degree of
satisfaction for each objective. After postulating membership
functions, set the initial value ofa -level. Then, select an
arbitrary objective function, say zi , as the objective and the

remaining objective functions are transformed to constraints
as in the following:

�.

Determine the best and worst values of each
objective function: a0 i , a1i  (i = 1, 2,L,k)

Set initial value for    - level:a a
t
= a

1

Update     :a
t

a
t

- h
t
× g ® a

t

ht > e

yes

Solve LP problem (12) parameterized
by        ;       : solution pointa

t x
*

Obtain the degree of satisfactionm
t

= mi (x
*
)

Transform the objective functions
 to constraints as bounded by      :a

t

no

Select    as the objctive functionzi

Computeht
= a

t
- m

t

a = a
t

End:

Fig. 1  Algorithm to solve fuzzy LP problems

minimize    zi = ci
Tx

subject to    Ax £ b   ;   x ³ 0

                  zj £ aj  : minimization

                   zj ³ aj  : maximization

                   aj = m j
-1(a t )  ; j ¹ i

ü 

ý 

ï 
ï 

þ 

ï 
ï 

(12)

That is, if a certain objective is to be minimized, it is

constrained from downward by aj = m j
-1(a t) that is

determined by the degree of satisfaction at , and vice versa.

Then, linear programming problem (2) is solved and the

value of each membership function is respectively compared
withat . If the discrepancy exceedse , at  and therefore the

upper or lower limit aj  is updated; the process continues

until the error becomes negligible. The obtainedat  is the

optimal. If the decision maker desires to further improve the
degree of satisfaction, he must check and alter the
specifications of some membership functions.

In fuzzy linear programming, the vagueness of the decision
maker in selecting an adequate plan is reflected as the degree
of satisfaction through the shapes of membership functions.
Therefore, how to set up a membership function may
characterizes constraints as well as objectives. Depending on
the strictness of objective attainment, we shall assume the
three kinds of membership functions as shown in Fig. 2.
Here, type S is for the case of low priority, type H is for
more stringent case, and type N is linear membership
function. In this Figure, relationship between the value of an
objective function a  and the degree of satisfactiona   is
shown for the linear membership function.

... .

1

0
a0 a1a

a

z

S
N

H

m(z)

(a) Minimization (b) Maximization

0
a

0
a1a

a

1

z

S
N

H

m(z)

Type S (Soft)   : Low priority in an objective
Type N (Normal) : Linear membership function

Type H (Hard) : High priority in an objective

Fig. 2  Membership function

A.3 Formulation of Generation Expansion Planning

GEP can be defined as a problem of determining the kind
and capacity of generation technologies to be installed and
transmission networks to support power exchange between
areas. We have postulated the following assumptions in our
study:
(1) Fuel cost is the same among areas under consideration,

that is, the cost is the same for the same kind of
generation technology.

(2) Each unit has no time delay in its start-up and shutdown
(complete follow-up capability for demand fluctuations)

(3) Each unit can be operated without any fault
(4) Merit order (priority order in start-up) is predetermined
(5) The load duration curve, maximum demand and

spinning reserve are given.
(6) The load duration curve which is the sum of those of all

areas is assumed to consist of five levels as shown in
Fig. 3.

Here, the last assumption is necessary to make the problem
be solved by linear programming.
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The constraints and objective functions are explained in the
below. Subscripts m,  i,  k  attached to symbols denote the
load level, area, and the kind of generation technology,
respectively. The period of the planning is 10 years and four
kinds of generations are assumed.

t1 t2 t3 t4 t5

d1

d2
d3

d4

d5

Time [h]
Fig. 3  Approximated load during curve

 [Constraints]

(1) Constraints on generation capacity   
This is concerned with the maximum generation capacity of
the total system relative to the maximum load demand and
may be expressed as

(xik + D
k
å

i
å xik ) ³ (1+ r) (Di + DDi )

i
å

(13)
where
xik  : Capacity of the existing technology k  in areai
Dxik : Capacity of newly installed technology k  in areai
Di : Minimum forecasted load demand in areai
DDi : Change in Forecasted load demand in areai
r : Reserve rate

(2) Constraints on the output share of each generation
technology
The sum of the output of each generation technology must
be equal to the sum of power exchange and load demand at
each load level.

Ymik = (Lmij + DLmij )
i , j
å

k
å + dmi + Ddmi  ; Lmij = -Lmji

(14)
where
Ymik : Generation share of technology k  at load level m
in area i
Lmij : Power exchange between areasi  andj through the

existing transmission line at load level m
DLmij : Power exchange between areasi  andj through the

new transmission line at load level m
dmi : Forecasted load demand at area i  at load level m
Ddmi : Change in forecasted load demand at load level
m  in area i

 (3) Constraints on the output of each generation technology
At each load level, the output of each generation cannot
exceed its installation capacity.

Ymik £ (xik + Dxik )
i

å
i

å
(15)

 (4) constraints on power exchange
The amount of power exchange between two areas must not
exceed the transmission capacity of the transmission line.

Lmij £ Lij   ;   DLmij £ DLij (16)
where
Lij : Transmission capacity of the existing line between

areasi  andj
DLij : Transmission capacity of the new line between

areasi  andj

(5) Constraints on the capacity of new installation
There are certain constraints on the capacity of newly
installed generation technology and transmission lines. This
is especially the case for nuclear plants. Since any nuclear
unit is operated at a constant output at present and hence it
cannot follow up load variations. In other words, the
maximum total capacity of nuclear units should be
prescribed so that they could be used as base loading.

DXik £ DXik £ DXik   ;  DLij £ DLij (17)

where

DXik,  DXik : Lower and upper limit of new installation

of technology k  in areai
DLij : Upper limit of the capacity of new transmission

line between areas i   and j

(6) The lower and upper limits of fluctuations in forecasted
load

It is convenient and natural to anticipate that fluctuations
between the actual load demand and the forecasted one at
the planning period may lie in a range.

DDi £ DDi £ DDi (18)

where DDi , DDi : Lower and upper limit of fluctuations in

demand forecast

 [Objective Functions]

(1) Economy index
As an economy index, we shall consider the sum of the
annual investment costs of generation plants and
transmission lines, fuel cost and purchase cost through
interchange. It is assumed that investment costs are in
proportion to its capacity and fuel cost to the amount electric
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energy produced; the cost of power purchase is assumed to
be proportional to the capacity of inter-tie transmission line.
Note that the investment cost is converted to the present
value. Then, the economy index is expressed as:

F1 = fik
k
å

i
å Dxik R+ vkYmikTmR

k
å

i
å

m
å

    + cij
j

å
i

å DLij R+ bij (DLmij + Lmij )TmR
j

å
i

å
m
å

  (19)
where
fik : Per unit annual investment cost of generation

technology k  in areai
R : Conversion coefficient to the present worth
vk : Fuel cost of generation technology k
Tm : Duration of load at level m
cij : Per unit annual unit investment cost of

transmission lines between areasi  andj
bij : Per unit annual cost of power exchange between

areasi  andj

(2) Environment index
Although thermal plants are emitting NOx and SOx as well
as CO2, we shall take into consideration only CO2 for
simplicity of treatment. The amount of CO2 emission is
assumed to be in proportional to generated energy (MWh)
and expressed by

F2 = ekYmikTmR
k

å
i

å
m
å

(20)
where ek  denotes emission coefficient of CO2 of technology

k

(3) Supply reserve margin index (to be maximized)
This index is reflecting fluctuations in load forecast and to
be maximized to keep a high supply reliability. As this
certainly brings about much higher cost, there is a certain
limit which will be determined by fuzzy coordination. We
shall adopt the sum of fluctuations in load demand in all
areas as the index:

F3 = DDi
i

å
(21)

D
i

DDi

DDi

Demand

Year

Maximum
flucutuations

Best demand
  estimate

Equivalent
demand

Fig. 4   Fluctuations in load forecast

This index may be explained by utilizing Fig. 4, in which
three lines are depicted. The line at the bottom means the
best (and possibly minimum) demand forecast at the
planning year; the line at the middle shows fluctuations
against the best demand forecast that actually occur in reality.
The fluctuation denoted by DDi  in the Figure can be

regarded as supply reserve margin from the standpoint of
supply reliability. However, it is assumed that possible
fluctuations are bounded by the line at the top, that is, by

DDi  . Here, we shall designate Di
+ DDi

 as the equivalent

demand.

A.4 Discussions on Numerical Simulations

 (1) Test Systems
Fig. 5 shows a test system which is used in numerical
simulations to evaluate the validity of the proposed fuzzy
approach. Generating plants and transmission lines depicted
in doted lines signify future possible installations and those
in solid lines existing plants and lines. Four kinds of
generation sources are considered, that is, nuclear (H), coal
(C), oil (O) and LNG (L).  Load demands at the reference
year and demand forecasts at the target year in each area are
given in Table 1.

Table 1  Load demand in each area
Area Load demand in the

reference year [MW]
Forecasted load in the

target year [MW]
1 1300 1800
2 2500 3800
3 3600 5200
4 2500 3100

～～～～ ～～～～ ～ ～～～～ ～～～～

Ｇ14
(N)

Ｇ15
(C)

Ｇ1
(N)
Ｇ2
(L)
Ｇ3
(O)

～～～～ ～～～～～～～～ ～ ～～ ～

Ｇ16Ｇ17Ｇ18Ｇ4
(N)

Ｇ5
(C)
Ｇ6
(L)
Ｇ7
(O) (N) (C) (O)

～～～～ ～ ～ ～

Ｇ21
(L)

Ｇ11
(N)

Ｇ12
(C)

Ｇ13
(O)

～ ～～ ～ ～

Ｇ19Ｇ20Ｇ8
(N)

Ｇ9
(L)
Ｇ10
(C) (L) (C)

Ｌ１

Ｌ２

Ｌ３Ｌ４Ｌ５

Ｌ６

Ｌ７

Ｌ８

1800MW

3800MW 5200MW

3100MW

Area 1 Area 2

Area 2 Area 3

Fig. 5   Test System
  
(2)  Coordination Between Economy and Environment
Indices

In this subsection, we shall discuss the effect of introducing
the environmental index in GEP with interconnections. In
the proposed method, to what extent the environmental
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impact is taken into account in GEP depends on how to set
up the associated membership function.

LNG Oil

S

S Environment

EconomyS

N

S

H

N

S

H

H

N

N

N

H

H

S

H

N

Economy
Environment

Nuclear Coal

Fig. 6   Best mix for the case of the fuzzy coordination
between the economy and environment index
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S Environment

EconomyS

N

S

H

N

S

H

H

N

N

N

H

H

S

H

N

Cost

100 %
6.5%

35.2%

CO2

Fig. 7   The cost and CO2 emmison for the case of fuzzy
coordination between the economy and environment index

In the first place, the generation mix with only the economy
index considered is shown at the left column in Fig. 6. In
this case, nuclear and coal-fired thermal units are mostly
constructed because of their economical advantage over
other types of generation. Furthermore, power interchange
via the exiting lines is not incorporated so much in this case.
In the next, we shall consider another extreme case where
only environmental index is taken into consideration, though
this is quite impractical and just for the purpose of
comparison. It is clear from the second to the left column in
Fig. 6 that coal units which emit a large amount of CO2 are
not constructed at all. This is replaced by increases in oil and
LNG units, while the share of nuclear units is practically
unchanged due to the constraint. Although a large amount of
power exchange through the exiting lines is incorporated in
the planning, it generally depends on the initial allocation of
generation technologies to each area. The cost and the
amount of CO2 emission in this case are respectively 120
[%] and 46.4 [%] of those in the case of economy index only.

Simulation results for the case of coordination between the
economy and environmental indices are summarized in Figs.
6 and 7; the former depicts the generation mix (share of each
generation technology) at the target year and the latter shows
the variations of the cost and CO2  emission taking the case
with only the economy index considered as the reference. It
should be noted that the share of nuclear plants remains the

same in Fig. 7 irrespective of difference in membership
function settings as a result of constraint 5. This is because
nuclear plants cannot change their outputs. In general, coal-
fired units are not friendly to the environment and hence as
the requirement for reducing environmental impact is
strengthened, the rate of coal plants reduces (every three
cases from the left). Of course, the degree of reduction in
coal units is largely affected by the membership function
corresponding to the economy index. Fig. 8 fortify these
observations. In fact, for the case where both economy and
environment have H-type membership functions, the cost
increases by 6.5 [%], but the emission decreases by 35.2 [%]
compared with the case with only economy index taken into
account.
  
(3) Coordination between Economy and Supply Reserve

Margin Index
In this subsection, we shall discuss results of the
coordination between economy and supply reserve margin.
Fig. 8 shows how the cost and the supply research margin
index change, in which the both indices are expressed as the
ratio to that of the case with only the economy index
considered. In Fig. 9, the capacity of newly constructed
generating plants and the amount of power interchange are
shown for different combination of membership functions. It
is obvious that when the economy is weighed more (type H),
the cost and inevitably the equivalent demand reduces. Also,
we can observe that as the capacity of new generating plants
decreases, power interchange increases significantly (see
every 3 columns in Fig. 9). These Figures demonstrate that
economy and supply reserve margin are in a trade-off
relationship. Therefore, it may be concluded that by flexibly
changing the shapes of the membership functions, the
proposed system can provide a set of alternatives that
reflects the intention of the decision maker.

.

Cost Equivalent demand
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Fig. 8 The cost and equivalent demand for the case of
fuzzy coordination between the economy and supply reserve

margin index (S.R.M)
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Fig. 9 The generation capacity and power interchange for
the case of fuzzy coordination between the economy and

supply reserve margin index (S.R.M.)
  
(4)  Effect of Fluctuations of Demand Forecast

As is mentioned in the introduction, there is not a small
probability that the predicted demand fluctuates significantly.
If it fluctuates downward during the planning period, no
reliability problem does occur though the expansion
planning is quite uneconomical. A serious problem does
occur if the estimate deviates upward. Since it is very likely
to occur, GEP must be able to handle fluctuations in demand
forecast. As an effective means of handling this situation, the
predicted load demand is fuzzified, that is, it is regarded as a
fuzzy number.

1 5 10

Dmin

Dmax

year

m(x)

Dmin Dmax

1.0

Demand forecast

Fig. 10  Increase in load demand
              after the fifth year

Fig. 11  Membership function

We assume that the load demand increases unexpectedly
after the fifth year as shown in Fig. 10. Here, Dmin  is the

same as given in Table 1 and Dmax is the actual demand in

the target year. The rate of the fluctuations, defined by
(Dmax

- Dmin
) / Dmin

 , are postulated to be 3, 5, 7, and 10 [%].

Fig. 11 shows the membership function corresponding to
load increases against the original forecast. For unexpected
load growth after the fifth year, it is assumed that coal and
gas turbine units could be constructed due to their relatively
short lead times.
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Fig. 12  Possible generation plants to be constructed for
demand increase
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Fig. 13  Relationship between the cost and the rate of
fluctuations in demand forecast

By making use of the above data, simulations have been
carried out for  cases with and without treating load forecast
as fuzzy numbers.  Fig. 13 shows  the total cost versus the
rate of fluctuations in the load forecast. In this Figure, costs
corresponding to the crisp case are computed as the sum of
the cost for the expected minimum, Dmin  and additional cost

incurred by the unexpected load growth. On the other hand,
in case of the fuzzification, the planning is completed at the
outset by taking into consideration both Dmin  and Dmax . If

the demand forecast would not fluctuate, the cost in the crisp
case is clearly the optimum. However, with an increase in
fluctuations, the cost increases significantly compared with
the fuzzification case. In general, since a rigorous forecast of
load demand for a long time range which is one of the most
important basic data for GEP, these results shown in Fig. 13
have verified a clear advantage of treating load forecast as
fuzzy numbers.
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A.5 Concluding Remarks

In this section, the generation expansion planning (GEP) has
been formulated as a multi-objective optimization problem,
in which economy, supply reliability and environmental
impact are taken as objectives. Also, power interchange is
included in the formulation in order to allow for a multi-area
system. GEP thus formulated has been successfully solved
by the fuzzy linear programming method. In the proposed
method based on fuzzy coordination, it is possible to make
up a set of alternative plans that take into consideration
trade-off among the three objectives.  Therefore, this can be
a truly useful tool for the decision maker.
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B. A Solution Method of Multi-objective Optimal
Power Flow by Means of Fuzzy Coordination
(Junji Kubokawa, Hiroshi Sasaki, Hiroshima University;
Ryuichi Yokoyama, Tokyo Metropolitan University)

B.1 Introduction

In recent years, more stringent requirements have been
imposed on electric utilities. Personnel in charge of system
operations is requested to determine optimal system states
that satisfy versatile operational constraints. As a powerful
means of solving this class of problems, extensive studies on
the "Optimal Power Flow (OPF)" have been undertaken
[1,2]. It should be noted here that OPF is to optimize just
one specific objective, or single performance index. In
general, to attain an optimal operation of a large scale

system,typified by an electric power system, multiple
objectives with different natures must be taken into
consideration. For a power system, economic operations,
supply reliability, security and minimal impact on
environments are typical objectives to be satisfied. It is
obvious that trade-off among these objectives is impossible
because of their differences in nature. For instance, to
improve the security certainly deteriorates system economy
due to a large amount of investments. This fact is stated that
the objectives are non-commensurable.

Unfortunately, conventional optimization techniques are not
suitable to obtain the optimal solution which simultaneously
optimize a variety of objectives. One conceivable approach
using conventional methods is to convert a multi-objective
problem into a single objective problem by assigning distinct
weights to each objectives, thereby allowing for relative
importance among goals [3]. However, this artifice is not
totally satisfactory since different objectives cannot be
evaluated under a common measure and there are no rational
basis of determining adequate weights. The main purpose of
the optimal power dispatch problems have so far been
confined to minimize the total generation cost of a power
system. However, in order to meet environmental
regulations enforced in recent years, emission control has
become one of important operational objectives. In this
problem, the amount of NOx emission, which is in
proportion to the active power output of a generator, is
selected as an evaluation criterion, and the minimum
emission is sought within a small region around an
economically feasible operating point [4,5].

System security is another essential factor in power system
operation and also in system planning. To be specific, it is
very important to maintain good voltage profiles and to limit
line flows within prescribed upper bounds. In security
analysis, a series of anticipated contingencies are assumed to
predict possible overloading or excessive voltage deviations.
Then, a security index as a function of overloads and/or
voltage excursions will be minimized by some preventive
control actions.

When permissible limits of emission and overloads are
clearly specified in a power system under study, these
quantities could be incorporated into the OPF as operational
constraints. However, in system planning studies, these
limits posed on emission or overloads would be very
ambiguous, thus making such treatment difficult. Also, in
actual system operations, it is necessary to maintain the
system at a proper security and emission level even when
generator or transmission line tripping do occur. To attain
this goal, system operating points should not be at constraint
limits but needs some operational margin. Furthermore,
operation indices mentioned herein are in conflicting trade-
off relations, successful optimization cannot be attained
through any of conventional optimization approaches.
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In power flow optimization problems, there exist a number
of objectives to be achieved which inherently have different
characteristics, and hence conflicting relations hold among
these objectives. To be specific, indices associated with
economy, reliability and environment protection are non-
commensurable in their nature. Moreover, there is no
invariant priority order among these indices considering
drastic changes in circumstances surrounding electric
utilities. In these cases, some personnel (referred to as
"decision maker: DM") must decide which is optimal based
on his/her subjective judgments. Therefore, it is
indispensable to grasp quantitatively these trade-off relations
in order to obtain the optimal solution in an objective way.

Here, a brief review will be given on the following three
alternative approaches to deal with optimization problems
having multiple objectives that are in trade-off relations and
non-commensurable:

(1) Scalarization method approach.
(2) Goal programming method [6].
(3) Fuzzy coordination approach.

The first approach may be classified to the following three
different methods:

(a) An approach in which only a specific objective to be
regarded as the most essential is taken as the
performance index, while the others are treated as
constraints.

(b) An approach in which a scalar composite performance
index is made up by properly weighting each
objectives.

(c) An approach in which the most essential objective is
taken as the primal performance index and the
remaining objectives are processed in each sub-
problems as respective performance indices [7].

Approach (a) works well only when the goal to be attained is
well defined and priority order among objectives is given a
priori. This treatment, however, encounters a severe
difficulty in case trade-off relations among contradictory
objectives, such as between reliability and economy, are
vaguely given. As to approach (b), it is quite easy to
optimize a scalar performance index composed of as a linear
combination of involved objectives. However, it is of serious
doubt to assign weights in homogeneous manner to
objectives being not commensurable. Furthermore, the
meaning of weighting factors is difficult to justify. On the
other hand, the main advantage of approach (c) is in that it
can clearly handle trade-off relations among conflicting
objectives. Nevertheless, there is no definite guide to select
which one should be selected as the most desirable from a
group of optimal solution candidates. This method, referred
to as thee -constrained method, is very effective to obtain a

set of non-inferiority solutions (or, Pareto-optimal solutions).
Here, the concept of the non-inferiority implies that when an
arbitrarily chosen index is to be improved, some other
indices deteriorate more than the improvement gained in the
selected index. Thus, the originally selected performance
index gives no clue to choose the optimal solution.

In the goal programming, DM must set up goals or
aspiration levels for the objective functions and minimizes
deviations from the goals. This is to pursue a satisfaction of
objectives rather than optimization, and in a sense very
similar to the fuzzy coordination approach.

The fuzzy coordination approach is to maximize the degree
of satisfaction of DM on each objective. Since a multi-
objective optimization problem has uncountable solutions,
DM must decide one specific solution point by his own
decision. This is accomplished by postulating properly a
membership function to each objective according to its
importance to DM. In this approach, the degree of
satisfaction will be improved step by step by updating or
changing the membership functions.

B.2 Multi-objective Optimal Power Flow

Multi-objective Optimization Problem

A multi- objective optimization problem is to minimize
simultaneouslypobjective functions on X , a set of feasible
solutions, and may be formulated as follows:

minimize   f (x)

subject to   x Î X = {x   g(x) £ 0

ü 
ý 
þ (1)

where x : decision variable vector
X : a feasible set of x

 
  
f (x) = { f1(x),  f2(x),L,  fp(x)}T

 : vector

objective functions
g(x) : inequality constraints

In general, a complete optimal solution that simultaneously
minimizes all of the multiple objective function does not
always exist when the objective functions conflict with each
other. Thus, the concept of "Pareto optimal solution" or
"non-inferior solution" is introduced, in which the
improvement of a particular objective function must cause
deterioration of other objective functions. From the
definition, the non-inferior solution set consists of an infinite
number of points. In optimal power flow problems, it is
important to get a unique solution which reflects the
preference of Decision Maker (DM).

Evaluation Indices

Economy, environmental and security index, which can be
regarded the most important subject in power system
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operations, are chosen as the evaluation indices.

(a) Economy index

The fuel cost of a thermal unit is an essential criterion for
economic feasibility and can be impressed by:

F1 y( ) = ai + bi × PGi + ci × PGi
2( )

i=1

n

å
(2)

where PGi : Generator output of generator i

ai , bi , ci : cost coefficients

 (b) Environmental impact index

Nitrogen-Oxide (NOx) emission is taken as the index from
the viewpoint of environment conservation. The amount of
NOx emission is given as a function of generator output:

F2 y( ) = a i + bi × PGi + g i × PGi
2 + di exp e i × PGi( )( )

i=1

n

å
(3)

where ai ,  bi,  g i ,  d i , e i : NOx emission

coefficients.

 (c) Line overload index

Overloading in a transmission line can lead to system
collapse in an extreme case. Hence, we adopt, as the security
index, a weighted sum of line flow deviations of all
transmission lines. Thus, the security index is expressed as

F3 y( ) = wij × x PLij y( )- PLij
*( )

i=1, j=1

n

å
(4)

where x x( ) =
x x > 0

0 x £ 0
ì 
í 
î 

wij : Weighting factor

PLij y( ) : Line flow from node i to j

PLij y( )* : Nominal transmission capacity

Equality Constraints

Since an OPF solution must satisfy power flow equations at
each node, they are treated as equality constraints.

P y( )- Ps = 0 (5)

Q y( ) -Qs = 0 (6)

Inequality Constraints

Inequality constraints must be introduced to take into
consideration various kinds of operational limits. In this
study, voltage magnitude at each node, active and reactive
generator output and line flows are used as inequality

constraints.

B.3 Interactive Fuzzy Multi-objective Optimal Power
Flow

Interactive Fuzzy Multi-objective Programming

Considering the vagueness of evaluation criteria of the
multi-objective optimization problem, the decision maker
(DM) seems to have fuzzy goals as "each objective function
will be substantially less than some value". These fuzzy
goals for DM can be quantified by specifying membership
functions to the corresponding objective functions. Once
DM having specified the membership functions, a fuzzy
optimal solution can be obtained by solving maximization
problem of the sum of the membership functions. If DM
cannot satisfy the obtained solution, the DM is required to
change the shapes of membership functions interactively.
The linear membership function and add-operator for the
fuzzy decision set were adopted in this study.

maximize DMx( ) = mk x( )
k=1

p

å

subject to x ÎX = x   g x( ) £  0{ }
(7)

where DM x( ) : fuzzy decision set

mk x( ) : the degree of satisfaction for objective

function k

Although several methods have been proposed for fuzzy
OPF[8,9], they assumed that some already tuned
membership functions would be supplied by DM. It must be
quite rare that such tuned membership functions are given a-
priori in real applications. In order for DM to set up tuned
membership functions more conveniently, we propose an
interactive fuzzy OPF method, in which the membership
function will be updated  interactively by DM.

In the conventional interactive multi-objective optimization
programming, the membership parameters have been
updated by DM in accordance with the values of the
objective functions and trade-off information (Figure 1(a)).
However, because of complicated interactions between
objective functions, it is impossible to predict how the
solution will behave depending on changes in the
membership functions. In the proposed method, only thing
that DM has to do is to change the target values and
preference information of the objective functions based on
his experience; resulting membership updates will be carried
out by the computer (Figure 1 (b)).
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objective function value

trade-off information

DM

parameter
tuning

subjectivity
experience

membership
update

trade-off
information

Multiobjective
Fuzzy OPF

DM Multiobjective
Fuzzy OPF

parameter
tuning

subjectivity
experience

membership
update

(a) Conventional Method

(b) Proposed Method

Computer

Computer

target value and
preference information

objective function
value

Fig. 1  The concept of the proposed interactive algorithm

Algorithm for Membership Function Update

(1) Change in the priority of objectives
In the proposed algorithm, the degree of satisfaction of DM
is expressed as the distance from the target value (fuzzy
goal) to the current Pareto optimal solution and the
preference information on increase/decrease of the priority
of each objective function.
Fig.2 (a) shows the linear membership function of this
problem and Fig. 2 (b) explains how the priority of fi  can

be changed byfi 0.  If DM desires to improve the degree of

satisfaction of objective fi ,  the priority of fi  should be

increased by either of the following two strategies.

(i) decrease parameter fi 0
(ii) increase parameter f j0  ( j ¹ i,  j = 1,...,p)

In this study, we have adopted strategy (ii) for updating
membership functions. This is  because the rate of trade-off
among the objectives will be used to calculate the
membership updates.

0 fi0

high priority low prior

m

0 fi0

m

fi1

(a) (b)

Fig. 2  (a) Linear membership function, (b) Tuning of mem
fi 0 : lowest acceptable value of the objective function

fi1 :  satisfactory value of the objective function

 (2) Update of the membership functions

In case of postulating linear membership functions, the
trade-off rates among objective functions are in proportion
to the trade-off rates of associated membership functions.
This fact is the basic principle in the update calculation of
the membership functions.

Now, let denote by aij  a contribution of

increasing/decreasing priority in accordance with DM's
request:

aij = b ×
¶fi x( )
¶f j x( )

 (8)
where b > 0 : request for increasing priority of fi

b < 0 : request for decreasing priority of fi
The total membership update for objective f j (x)  is given

by the sum of each contributionaij  as

a j = aij
i =1

p

å
(9)

and the new membership parameter becomes

f j0 = fj 0 +a j (10).

B.4 Solution Algorithms

The followings are the solution algorithms for the fuzzy
interactive multi-objective OPF.

Step 1: Calculate fi
min and fi

max of objective function

  fi x( )  ; i = 1,L, p. .

Step 2: Ask the DM to select the initial value of
membership parameter fi 0, fi . and target value

mi
target.

Step 3: Solve the maximization problem.(7) to obtain one
specific Pareto optimal solution. Solve (7) again
for each small displacement of Dmi  to get trade-

off rates among the memberships.
Step 4 : Stop if DM is satisfied with the obtained result.

Otherwise, go to Step 5.
Step 5: Update automatically the target value and

membership function parameters by using (8)-(10).
Go to Step 3.

Some comments are in order here for the above algorithm. In
step 4, DM is supplied with the Pareto optimal solution and
the trade-off rates between the membership function. Also,
in step 5, if the obtained objective value is far from the target
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value, it should be updated. With the new target value, DM
specifies preference information (increase/decrease priority)
for each objective function by considering current objective
function value. Then, the new membership function
parameter would be calculated by the computer.

B.5 Application to the Test System

The proposed algorithm has been applied to the IEEE 118
test system, the results of which are shown in Table 1. First,
DM must solve three single-objective OPF problems to
obtain maximum and minimum values of the objective

functions, denoted respectively by fi
max and fi

min, and

then decide the initial membership function parameters fi 0,

fi1 and the initial target value corresponding to 80% of the

membership function. In this study, b  is selected as 1/10 of

fi 0.

Since the obtained solution in STAGE 1 was far from the
target value, DM has decided to change it to (25.0, 0.58,
140.0). Even with the new target values, objective functions
f1 and f2 are still unsatisfactory and need to be improved. To

achieve this, the priority of f1 and f2 were increased and that

of  f3 was decreased by (8) - (10). In STAGE 2, although f1
and f2 were still unsatisfactory, DM assumed that it is still

possible to improve results with the same target values.
Therefore, DM supplied the same target values at the next
stage to further improve objective functions f1 and f2 . The
membership function parameters were updated in the same
manner as in STAGE 1. After the optimization in STAGE 3,
all the objective functions have satisfied the target values
and thus a satisfactory solution has been derived.

Table 1 Interactive processes to the DM
STAGE 1 2 3

Objective
Function

f1 f2 f3 f1 f2 f3 f1 f2 f3

Target
Value

23.6 0.56 138.8 25.0 0.58 140.0 25.0 0.58 140.0

22.0 0.48 136.0 22.0 0.48 136.0 22.0 0.48 136.0

30.0 0.80 150.0 31.0 0.81 159.0 38.1 0.80 180.0

F(x) 26.0 0.64 138.0 25.2 0.61 139.0 25.0 0.59 140.0

m(x) 0.49 0.50 0.85 0.64 0.59 0.86 0.81 0.67 0.92

f1 : Economy index, f2 : Environment index, f3 : Security

index

F(x) : the value of objective function, m(x) : the degree of

satisfaction
fi 0, fi1 : the membership parameter

B.6 Discussions and Concluding Remarks

Numerical simulations have been carried out on the IEEE
118 node test system to demonstrate the capability of the
proposed algorithm with focusing on the execution time and
iteration counts. Results are listed in Table 2, where the
execution time of the e -constrained method is also shown
for the purpose of comparison. As the objective function of
the proposed method with linear membership functions is
the sum of the constituent objective functions, the sparsity
structure of the system matrix becomes the same as that of
the single objective OPF, thus giving rise to similar results
as those of the conventional OPF. On the other hand, since
the e -constrained method deals with objective functions
that has not been selected as the main objective as
constraints, the sparsity of the Hessian matrix is disrupted,
increasing the time per iteration. This property together with
an increase in the iteration counts has doubled its total
execution time as compared with the single objective OPF.

Table 2 Execution results for each OPF method
Single
objective
OPF

Fuzzy multi-
objective
OPF

e
-constrained
multi-objective
OPF

Compose W matrix
[sec]

0.20721 0.36087 0.37012

LU factorization [sec.] 1.07315 1.07738 1.42480
Enforce Inequality
[sec.]

0.00684 0.00613 0.00684

Execution time /
iteration [sec.]

1.28721 1.44438 1.80176

Total Time [sec.] 5.24699 5.87073 10.89917
Iteration 4 4 5

It is possible for the fuzzy coordination method to reflect the
intention or preference of DM on the objectives, and
moreover its convergence characteristics are roughly the
same as that of the single-objective OPF. An optimal
solution obtained in the additive fuzzy decision set has a
guarantee to be a Pareto optimal unless membership
functionmi (x)  takes on either 1 or 0, and therefore it is not

necessary to make the validation test for optimality. In this
section, we have shown the effectiveness of the interactive
algorithm for determining a unique solution by means of
fuzzy coordination. Of course, there is much room for
further refinement such as a research for cases with other
types of membership functions.
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Chapter 8 Hybrid Techniques in  Fuzzy Logic

Abstract- This paper presents hybrid applications of fuzzy
logic in power systems. In particular, this paper focuses on
neuro fuzzy models as a hybrid model. The typical neuro
fuzzy models are reviewed to understand the trend in the
modeling. Next, the applications of the neuro fuzzy models
are described in load forecasting, fault detection/diagnosis,
system control, and modeling/analysis. Furthermore, the
future direction of fuzzy logic is mentioned.

Keywords: fuzzy logic, hybrid applications, neuro fuzzy

A. Introduction
It is expected that intelligent systems allows to smooth
power system operation and planning. In practice, it is not
easy to understand and control power systems appropriately.
Power systems have the following complicated factors:

 •  nonlinear dynamics
•  periodicity and/or randomness
•  large-scale
•  discrete event systems, etc.

They make power systems more complex so that power
system operators have difficulty in carrying out on-line
computation. Aside from the analytical methods, the
intelligent systems aims at solving the following:

1) Problems without any analytical algorithms
2) Problems that may be expressed by knowledge

and experiences
3) Pattern recognition problems in which the

nonlinear relationship between input and output
variables are identified

Among the intelligent systems, artificial neural
networks(ANNs) inspired by the biological nerve system
have been developed to carry out the distributed
information processing. They consist of a group of units
called "neurons" that are analogous to nerve neurons. The
multi-perceptron(MLP) is the mainstream of ANNs due to
the universal nonlinear approximator. According to the
supervised learning, the weights between neurons are
optimized to obtain a good model. However, it is pointed

out that MLP uses the black-box like description of the
inference process so that the relationship between input and
output variables is not clear. As a result, it is hard to capture
the tendency of the predicted value as well as cause and
effect.

On the other hand, fuzzy inference is also one of promising
intelligent system approaches. Kosko made a proof that
fuzzy inference allows us to approximate any nonlinear
functions with finite fuzzy rules[6]. Fuzzy inference has the
same ability as MLP in approximating any functions. The
advantage of the fuzzy inference over ANN is to capture
cause and effect in the inference process. Due to the clear
relationship between input and output variables, the results
are intuitively more understandable and user-friendly.
However, the conventional fuzzy inference does not have
the learning function like MLP. It means that it is
questionable whether the model reflects the obtained
data.Table 1 shows a comparison between MLP and fuzzy
inference. Therefore, models are required to possess the
advantages of both MLP and fuzzy inference.

B. Soft Computing
This section briefly describes soft computing (SC) to
understand the concept of the hybrid methods with fuzzy[3].
Zadeh proposed SC in which the human-like approximate
ability without high precision is simulated to solve the
complex problems. It consists of the following:

•  Fuzzy logic (FL)
•  Artificial neural network (ANN)
•  Probabilistic reasoning(PR)

Fig. 1 shows the concept of SC. The objective is to achieve
tracterability, robustness, and low solution cost of the
systems to be studied for solving complicated problems. It
is different from the conventional(hard) computing in a

Features MLP Fuzzy

Capability of Approximating
Any Functions

X X

Model Determination through
Learning

X

Easiness of Inference Process X

   Note)   FL: Fuzzy Logic
  ANN: Artificial Neural Network

PR: Probabilistic Reasoning

Fig. 1  Concept of Soft Computing

Table 1 Comparison between MLP and Fuzzy
Inference

ANN

FL PR

A
C

B
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Fig. 5   Neuro Fuzzy Type D

sense that it is tolerant of imprecision, uncertainty, and
partial truth. It should be noted that SC implies a discipline
that allows three methods to work out the problem in a
complementary way. Fuzzy inference with fuzzy rules is
suitable for identifying the nonlinear relationship between
input and output variables with high accuracy. ANN works
as a mathematical model that simulated the right-side of
human brain or nerve systems It should be noted that PR
corresponds to the following:

•  Belief Networks[4]
•  Genetic Algorithms (GA)[5]
•  Chaos Systems[6]
•  Learning Theory, etc.

Belief networks are a means of representing uncertain
knowledge from experts. They show the probabilistic
dependency among a set of variables. They are called
Baysian networks, knowledge maps, or qualitative
probabilistic networks. GA is a heuristic probabilistic
optimization technique that has been inspired by the natural
selection. The algorithm includes genetic operators such as
crossover, mutation, reproduction, etc. so that better
solutions are evaluated. Unlike the conventional methods, it
is expected that GA gives solutions near a global optimum.
Chaos systems are used in temporal pattern search in
nonlinear optical resonator, deterministic nonlinear
prediction of economics, etc.

FL, ANN, and PR cooperate with each other to handle
uncertain information that is not expressed b

y crisp numbers. In other words, SC allows a computer to
behave like a human and solve complex problems.
Specifically, FL, ANN, and PR are related to imprecision,
learning, and uncertainty, respectively. The three approaches
overlap with each other as shown in Fig. 1. Areas A, B, and
C in the figure are cooperative rather than competitive.
Suppose that SC is applied to a problem. The role of FL,
ANN, and PR depends on the problem. The combination
results in an advantageous method. Focusing on the role of
FL, most of the approaches correspond to Areas A and B in
power systems. In particular, Area A is called neuro fuzzy.
In the next section, typical neuro fuzzy models are outlined
from a standpoint of the role of fuzzy.

C. Typical Neuro-Fuzzy Models
This section briefly introduces typical neuro fuzzy models[7]
as one of promising intelligent systems although the
integration of fuzzy with other technologies is found[8]. The
degree of the integration of FL with ANN becomes higher as
the model proceeds to Type K from Type A in neuro fuzzy
models. Namely, Type A implies the most primitive neuro
fuzzy model.

C.1 Type A

Suppose that a system has two functions of fuzzy rules and
ANN independently. The fuzzy rules handle some input and
output variables while ANN does the others (see Fig. 2). It
can be seen that the fuzzy rules deal with the different input
variables from those of ANN. The model is referred to as
Type A. Fuzzy rules are used for the problem in which the
knowledge and experience of experts are described. On the
other hand, ANN is used for the problem that fuzzy rules can
not handle. Thus, there is no relationship between fuzzy
rules and ANN.

C.2 Type B

Fuzzy rules and ANN may be placed in parallel as shown in
Fig. 3. The model is called Type B. Depending on the role of
FL and ANN, it may be divided into the following model:

1) Unified model(see Fig. 3(a))
2) Compensation model(see Fig. 3(b))

input output

Fuzzy Rules

ANN

Fig. 2   Neuro Fuzzy Type A

Fuzzy Rules

ANN

input output

(a) Unified Model

Fig. 3   Neuro Fuzzy Type B

input output

Fuzzy RulesANN

Fig. 4   Neuro Fuzzy Type C

Fuzzy Rules

ANN

input output

(b) Compensation Model

Compensatio

input output

Fuzzy Rules ANN
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In the unified model, information processing is equally done
for FL and ANN. Also, FL compensates the results obtained
by ANN in the compensation model, and vice verse.

C.3 Types C & D

FL and ANN may be placed in series so that two-phase
inference is possible if ANN may be regarded as a kind of
inference. Regarding the two-phase inference, two schemes
are allowed to evaluate output variables as follows:

a) ANN plus Fuzzy rules(see Fig. 4)
b) Fuzzy rules plus ANN(see Fig. 5)

The former is called Type C while the latter is Type D. The
choice of the types depends on the problems .

C.4 Type E

Fig. 6 shows Type E of the neuro fuzzy model. A fuzzy
model is used to handle fuzzy rules in which the goal and
parameters of the fuzzy control are evaluated. It should be
noted that ANN contributes to determination of constructing
the fuzzy rules. In other words, ANN plays an assistant role
in the fuzzy model.

C.5 Type F

The model called Type F is based on the ANN model that
makes use of fuzzy rules in determining the weights between
neurons (see Fig. 7). The parameters of ANN such as the
weights between neurons and the threshold value of neurons
is evaluated by the fuzzy rules. That allows to speed up the
ANN learning and reduce the model errors. The role of ANN
and fuzzy rules in this model corresponds to that of fuzzy
and ANN of Type E , respectively.

C.6 Type G

Type G makes use of the integration of fuzzy rules and ANN
so that the supervised learning of ANN is used to evaluate
the membership function shape and the weight of true value
of fuzzy rules (see Fig. 8). As a learning scheme, the steepest
decent method is used the error backpropagation algorithm
of the multilayer perceptron. The difference between Types
E and G is that only the function of the ANN learning is
used in Type G to tune up fuzzy rules to improve the
solution accuracy.

C.7 Type H

The model of Type H has function that fuzzy rules of if-then
are expressed with the ANN construction. The model is
useful in a sense that the computation process of fuzzy
inference or fuzzy control may be represented by a learning
model.   This  concept  is  shown  in  Fig. 9.   Since the ANN

represents the fuzzy rules, the output variable after the
ANN learning corresponds to the inference value of
fuzzy model.

Fuzzy Rules

ANN

input output

Parameter tuning

Fig. 6   Neuro Fuzzy Type E

Fuzzy Rules

ANN

input output

Parameterı
  tuning

input output

Fuzzy RulesANN

Fig. 7   Neuro Fuzzy Type F

input outputFuzzy Rules

ANN Learning

Membership
 Functions

Membership
 Functions

Fig. 8   Neuro Fuzzy Type G

input
output

ANN

.. .. ..

thenif

Fig. 9   Neuro Fuzzy Type H
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C.8 Type I

A fuzzy inference model is identified with ANN to clarify
the relationship between the premise and consequence of
fuzzy rules as shown in Fig. 10. The ANN model is
constructed after fuzzy sets of the premise and consequence
are assigned to input and output of the learning data of ANN,
respectively. As a result, the input and output variables of
the model correspond to the value of the fuzzy membership
functions. Specifically, studies on ANNs representing fuzzy
rules and fuzzy operators have been done.

C.9 Type J

A part of fuzzy rules in the fuzzy model is expressed by
ANNs in Type J ( see Fig. 11). The ANN model is used to
substitute for some fuzzy rules so that the errors of the fuzzy
membership functions or the consequence are reduced. The
difference between Types G and J is that ANNs becomes a
subsystem of fuzzy rules in Type J .

C.10 Type K

The model corresponds to a generalized neuro fuzzy model.
It is a kind of an extension of ANN in a sense that the
weights between neurons are fuzzified. That implies that it
can handle input data as a fuzzy number. It is necessary to
develop more sophisticated learning algorithms in
consideration of fuzzy logic.

D. Typical Applications of Neuro-Fuzzy Models

to Power Systems
This section reviews typical applications of neuro fuzzy
models to power systems. Fig. 13 gives an overview of main
specific problems with neuro fuzzy models. The areas may
be listed as follows:

-Load forecasting (50.0%)
-Fault Detection and Diagnosis(13.64%)
-System Control(31.82%)
-Analysis and Modeling(4.55%)

In load forecasting, a neuro fuzzy model is used as one of
tools to deals with time series analysis of a load. Among the
load forecasting problems, short-term load forecasting is of
main concern. High accuracy of the load forecasting
improves security and generation cost. However, the
forecasting problem is not so easy due to the complicated
factors such as nonlinearity, weather conditions, etc. The
neuro fuzzy models allow us to carry out adaptive
forecasting efficiently.

  

input output
ANN

if A then B

Fig. 10   Neuro Fuzzy Type I

input

   Fuzzy Rules

ANN

output

ANN...

Fig. 11   Neuro Fuzzy Type J

input output

ANN

..
..

..

Fig. 12   Neuro Fuzzy Type K

Fig. 13   Main Specific Problems

Fault Detection and Diagnosis

4.55%

31.82%

13.64%

50.0%

Load Forecasting

System Control
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Table 2   Typical Applications of Neuro Fuzzy Models to Power Systems

Areas References Neuro Fuzzy Type ANN Model Problems to be studied

Load Forecasting

[LF1]

[LF2]

[LF3]

[LF4]

[LF5]

[LF6]

[LF7]

[LF8]

[LF9]

[LF10]

[LF11]

A

C

C

G

G

D

G

D

C

D

G

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

One-day ahead prediction

1-48hours ahead prediction

same as [LF2]

One-hour ahead prediction

One-day ahead prediction

One-day ahead prediction

One-day ahead prediction

One-day ahead prediction

One-day ahead prediction

One-day ahead prediction

Optimal structure of MFs

Fault Detection

/Diagnosis

[FD1]

[FD2]

[FD3]

D

D

D

MLP

MLP

MLP

Animal fault detection

Shorted turns in widingings

Equipment conditions

System Control

[CN1]

[CN2]

[CN3]

[CN4]

[CN5]

[CN6]

[CN7]

C

C

C

C

D

G

C

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Hybrid PSS

Hybrid PSS

Hybrid PSS

Hybrid controller

Extinction angle control

Excitation controller

PWM controller for induction machine

Analysis/Modeling [AM1] G MLP L d d li
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Fault detection/diagnosis is one of challenging problems in
power systems. The neuro fuzzy models -identifies the type
and location of faults with a given set of power system
conditions, measurements, alarms, etc. Through a given set
of input variables, the neuro fuzzy model handles selecting
solution candidates. However, the complexity increases
significantly as the system size increases. As a result, it is
still questionable whether the simple neuro fuzzy model
gives the "true" solution in large scale systems.

System control tries to construct a control method in power
systems that is based on a kind of pattern recognition rather
than optimal control theory. The method allows to carry out
on-line control although strictly speaking, it does not give
the optimal solution in terms of control theory.

Going into some detail, Table 2 shows an detailed overview
of papers in terms of the neuro fuzzy type, the used ANN
model, and the problems to be studied. The following can be
observed:

•  Load forecasting is the most popular area in neuro fuzzy
models. That is because load forecasting does not need a lot
of the input variables while it gives a single output variable
such one-step ahead prediction. In other words, the problem
is less difficult than other problems.

•  Neuro fuzzy models C and D are widely used for
simplicity although they are less sophisticated than other
models E-K(see Fig. 14). It can be seen that the model with
the high degree of the integration of fuzzy logic and ANN
have not been sufficiently studied in power systems.

•  The used ANN model is MLP in all the cases. MLP is
easier to incorporate fuzzy logic into the model structure.

This paragraph describes future work that enhances the
performance of fuzzy logic. It is a natural research direction
to make use of other emerging technologies to overcome
drawbacks of fuzzy logic. Table 3 gives the expected
functions of emerging technologies for fuzzy logic. In
Fuzzy-ANN, the membership function is learned through the
BP algorithm. Also, metaheuristics is used to find out a
solution near a global minimum in determining optimal
structure of the fuzzy membership functions. Ref. [LF11]
handles SA based learning for constructing the optimal
fuzzy membership functions .

E. Conclusions
This paper has provided an overview on hybrid models of
fuzzy logic in power systems. In particular, this paper has
described neuro fuzzy models that is the integration of fuzzy
logic with artificial neural networks. As the application areas,
load forecasting, fault detection/diagnosis, system control ,
and analysis/modeling were of main concern although there
exist a variety of application areas. In addition, the
integration of fuzzy logic with other emerging technologies
was described as future work.
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