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Chapter 1 Overview

This tutorial provides attendees with a comprehensiare four approaches to the developing fuzzy rules [7]: (1)
overview of fuzzy logic applications in power systemsextract from expert experience and control engineering
Every effort was made to ensure the material was seKhowledge, (2) observe the behavior of human operators, (3)
contained and requires no specific experience in fuzzy logise a fuzzy model of a process, and (4) learn relationships
methods. At the same time, this booklet includethrough experience or simulation with a learning process.
contributions, which are undoubtedly state-of-the-affhese approaches do not have to be mutually exclusive.
research. Thus, it is hoped that practitioners at all levels widlue to the use of linguistic variables and fuzzy rules, the
find useful information here. Fuzzy logic technology hasystem can be made understandable to a non-expert operator.
achieved impressive success in diverse engineerihg this way, fuzzy logic can be used as a general
applications ranging from mass market consumer productsrt@thodology to incorporate knowledge, heuristics or theory
sophisticated decision and control problems [1]into controllers and decision-makers.
Applications within power systems are extensive with more
than 100 archival publications in a recent survey [2,3]This tutorial begins with a general section on fuzzy logic
Several of these applications have found their way intechniques and methods. Simplified examples are used to
practice and fuzzy logic methods are becoming anothbighlight the fundamental methodologies. Control
important approach for practicing engineers to consider . applications are addressed in chapters 3 and 4. Chapter 3
provides fundamental analysis as well as a brief description
In 1965, L.A. Zadeh laid the foundations of fuzzy set theorgf a controller in field use. Chapter 4 presents more
[4] as a method to deal with the imprecision of practicadvanced concepts, including both control design and
systems. Bellman and Zadeh write: "Much of the decisiostability analysis, useful for the more experienced developer.
making in the real world takes place in an environment iApproaches based on approximate reasoning in expert
which the goals, the constraints and the consequencessgétems are presented in Chapter 5, with a specific
possible actions are not known precisely" [5]. Thispplication to diagnostic systems. This is followed by two
"imprecision" or fuzziness is the core of fuzzy sets or fuzzgxtensive chapters on optimization problems. Chapter 6
logic applications. Fuzzy sets were proposed as pmesents applications in spatial load forecasting and in
generalization of conventional set theory. Partially as reswtheduling. Applications on generation expansion planning
of this fact, fuzzy logic remained the purview of highlyand optimal power flow in Chapter 7 highlight an alternative
specialized and mathematical technical journals for mampproach to optimization The tutorial concludes with a
years. This changed abruptly with the highly visible succesbapter on advanced applications including hybrid
of several control applications in the late 1980s. applications of neural nets and fuzzy logic.

Heuristics, intuition, expert knowledge, experience, ang References
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Chapter 2 Fuzzy Set Fundamentals

A Fuzzy Sets When X is an interval of real numbers, a fuzzy gets
expressed as

Zadeh makes a case that humans reason not in terms of

discrete symbols and numbers, but in terms of fuzzy sets [1]. A:r F‘A(X) (4)
These fuzzy terms define general categories, but not rigid,
fixed collections. The transition from one category-concept,
idea, or problem state-to the next is gradual with some stat®s emptyfuzzy set has an empty support which implies that
having greater or less membership in the one set and thkha membership function assigns 0 to all elements of the
another. From this idea of elastic sets, Zadeh proposed theversal set.

concept of a fuzzy set. Fuzzy sets are functions that mag\aechnical concept closely related to the support set is the
value that might be a member of the set to a number betwegipha-level set or thedcut’. An alpha level is a threshold
zero and one indicating its actual degree of membership. réstriction on the domain of the fuzzy set based on the
degree of zero means that the value is not in the set, anghémbership grade of each domain value. This/seis the
degree of one means that the value is completefycut of A which contains all the domain values that are part
representative of the set. This produces a curve across gRene fuzzy set at a minimum membership valueoof

members of the set. There are many books that have bgei, .o are two kinds af-cuts: weak and strong. The weak

written on the subject of fuzzy sets since Zadeh introduced _ . . .
the fuzzy set conC(Japt in 1965 3['1_19]. a-cut is defined ad, = {x € X, u,(X) > a} and the strong-

cut asA, = {X € X, us(x) > a}. Also, the alpha-level set
describes a power or strength function that is used by fuzzy
models to decide whether or not a truth value should be

) ) considered equivalent to zero. This is an important facility
Let X be a set of objects, called the universe, whose elemefgt controls the execution of fuzzy rules as well as the

are denotedk. Membership in a subsét of X is the jntersection of multiple fuzzy sets.

membership functiony, from X to the real interval [0,1].

The universe is all the possible elements of concern in thrﬁe degree of membership is known as the membership or
particular context A is called a fuzzy set and is a subseXof tryth  function since it establishes a one-to-one
that has no sharp boundary, is the grade of membership correspondence between an element in the domain and a
in A. The closer the value @i, is to 1, the more x belongs truth value indicating its degree of membership in the set. It
to A. The total allowable universe of values is called th@kes the form,

domainof the fuzzy set. The domain is a set of real numbers,

A.1 Membership Functions — Fundamental Definitions

increasing monotonically from left to right where the values Ua(X) « f(x € A) (5)
can be both positive and negative. A is completely
characterized by the set of pairs The triangular membership function is the most frequently
used function and the most practical, but other shapes are
A ={(X, pa(x)), x e X)} (1) also used. One is the trapezoid which contains more

information than the triangle. A fuzzy set can also be
Supportof a fuzzy sefA in the universal seX is the crisp set represented by a quadratic equation (involving squares,
that contains all the elements ¥f that have a nonzero or numbers to the second power) to produce a continuous

membership grade iA. That is curve. Three additional shapes which are named for their
appearance are: the S-function, the pi-function, and the Z-
SuppA= {Xe X| 1 >§>0} (2) function.

. . A.2 Set Operations
With a finite support, we'll lets, be an element of the

support of fuzzy sef and thaty; a grade of membership in

. . ) Union and Intersection of Fuzzy Sets
A. ThenA is written by convention as

n o The classical unior{(u) and intersection(n) of ordinary
A:ﬂ+...+”—n: z“_' (3) subsets ofX are extended by the following formulas for
X1 Xnoj=1X intersectionA N B, and unionA U B:



VX e X, pae(X) = maxfa(x), ue(X)) (6) model states, or the force of control that must be applied
to bring a system back to equilibrium
V X e X, pag(X) = min(ua(X), ns(x)) @) e a proportional metric which reflects a degree of
proportional compatibility between a control state and a
where u, 5 and u, g are respectively the membership  solution state
functions ofAUB andANB. e a proportionality set which reflects a degree of
proportionality between a control state and a solution
For each element in the universal set, the function in (6) state
takes as its argument the pair consisting of the element’'s
membership grades in sét and in setB and yields the (i) Choose the shape (or surface morphology) of the fuzzy
membership grade of the element in the set constituting thet The shape maps the underlying domain back to the set
union of A and B. The disjunction or union of two sets membership through a correspondence between the data and
means that any element belonging to either of the setsthe underlying concepts. ~Some possible shapes are

included in the partnership which expresses the maximufi@ngular, trapezoidal, Pl-curve, bell-shaped, S-curves, and
value for the two fuzzy sets involved. linear. Every base fuzzy set must be normal.

The argument to the function in (7) returns the membershijt) Select an appropriate degree of ovetlaphe series of

grade of the element in the set consisting of the intersectithlividual fuzzy sets, associated with the same solution

of AandB. A conjunction or intersection makes use of onlyariable, are converted into one continuous and smooth

those aspects of Sét and SetB that appear in both setssurface by overlapping each fuzzy set with its neighboring

which expresses the minimum value for the two fuzzy se$§t. The degree of overlap depends on the concept modeled

involved. and the intrinsic degree of imprecision associated with the
two neighboring states.

Complement of a Fuzzy Set

(iv) Ensure that the domains among the fuzzy sets associated

with the same solution variables share the same universe of

The complement of, ~A, which is the part of the domain °.
discourse

not in a set, can also be characterizedNmy-A.  This is

produced by inverting the truth function along each point of . . .
the fuzzy set and is defined by the membership function B Expert Reasoning and Approximate Reasoning

VX e X, uz(X) = L-ux(X) (8) B.1 Fuzzy Measures

The complement registers the degree to which an elementrig, 77y measure assigns a value to each crisp set of the
complementary to the underlying fuzzy set concept. That igniyersal set signifying the degree of evidence or belief that
how compatible is an element's valug With the assertion, 5 paricular element belongs in the set. For example, we
xis NOTy, wherex is an element from the domain ants & might want to diagnose an ill patient by determining whether
fuzzy region. A fuzzy complement is actually a metric. lfyis patient belongs to the set of people with, pneumonia,
measures the distance between two points in the fuzgy,.cnhitis emphysema, or a common cold. A physical
regions at the same domain. The linear displacem&nfsmination may provide us with helpful yet inconclusive

between the complementary regions of the fuzzy regioR%igence. Therefore, we might assign a high value, 0.75, to
determines the degree to which one set is a counter exal best guess, bronchitis, and a lower value to the other
of the other set. We can also view this as a measure of figginilities, such as .45 to pneumonia, .3 to a common cold,

fuzziness or information entropy in the set. and 0 to emphysema. These values reflect the degree to
o which the patient’s symptoms provide evidence for one
A.3 Defining Fuzzy Sets disease rather than another, and the collection of these
values constitutes a fuzzy measure representing the
The steps below give general guidelines in defining fuzayncertainty or ambiguity associated with several well-
sets [1]. defined alternatives.

(i) Determine the type of fuzzy measureméhizzy sets can A fuzzy measure is a function [7]
define
. _orthogonal _mf_zlppings betwe_en domain values and g:B —>[O,]],
their membership in the set (“ordinary fuzzy set”)
o (differential surfaces which represent the first
derivative of some action, degree of change between



where B P (x) called a Borel field, is a family of reasoning system combines the attributes of conditional and
unconditional fuzzy propositions, correlation methods,
implication  (truth  transfer) techniques, proposition
aggregation, and defuzzification [1].

subsets of X such that:

1. ¥eB and XeB ;

. Unlike conventional expert systems where statements are
2. If AeB, then AcB executed serially, the principal reasoning protocol behind
fuzzy logic is a parallel paradigm. In conventional
3 It is closed under the operation of set union, that i§nowledge-based systems pruning algorithms and heuristics
if AcB andBeB ,thenalsoAU BeB . are applied to reduce the number of rules examined, but in a
fuzzy system all the rules are fired.

SinceAu Bo AandAu Bo B, then due to monotonicity B.3 The Role of Linguistic Variables
we have mafg(A).d B| < d A B. Similarly since
; Fuzzy models manipulate linguistic variables. A linguistic

An Bc AandAn Bc B, g(An B)<min , : : : , o

< - g( ) [@( A) é 3] variable is the representation of a fuzzy space which is

essentially a fuzzy set derived from the evaluation of the

Two large classes of fuzzy measures are referred to as bajgduistic variable. A linguistic variable encapsulates the
and plausibility measures which are complementary (@roperties of approximate or imprecise concepts in a
dual) in the sense that one of them can be uniquely derivggstematic and computationally useful way.
from the other. Given a basic assignmemt a belief

measure and a plausibility measure are uniquely determingge organization of a linguistic variable is
by the formulas

Bel(A= > ntB and PI(A)= X n(B Lvar < {G1-- G} {hpo. ) s )

Bc A BN Az

) ) where predicateq represents frequency qualifierd)
which are applicable for alA €B (X). Alsom(A)refers to represents a hedge afsds the core fuzzy set. The presence
the degree of evidence or belief that a specific elemeKt ofof qualifier(s) and hedge(s) are optional. Hedges change the
belongs to the sef alone. Thebelief measure, Bel(A) shape of fuzzy sets in predictable ways and function in the
represents the total evidence or belief that the elemesgme fashion as adverbs and adjectives in the English
belongs to the sét as well as to the various special subsetsinguage. Frequency and usuality qualifiers reduce the
of A. The plausibility measure, PI(A)represents not only derived fuzzy set by restricting the truth membership
the total evidence or belief that the element in questidanction to a range consistent with the intentional meaning
belongs to setA or to any of its subsets but also theof the qualifier. Although a linguistic variable may consist
additional evidence or belief associated with sets thaf many separate terms, it is considered a single entity in the
overlap withA. There are also three important special typesizzy proposition.
of plausibility and belief measurgwobability measureand
a pair of complementary measures referred tpassibility B.4 Fuzzy Propositions
andnecessitymeasures [7].

. . A fuzzy model consists of a series of conditional and

B.2 Approximate Reasoning unconditional fuzzy propositions. A proposition or
statement establishes a relationship between a value in the

The root mechanism in a fuzzy model is the propositiomnderlying domain and a fuzzy space.cénditional fuzzy
These are statements of relationships between maogi@positionis one that is qualified as ahstatement. The
variables and one or more fuzzy regions. A series @foposition following theif term is the antecedent or
conditional and unconditional fuzzy associations opredicate and is an arbitrary fuzzy proposition. The
propositions is evaluated for its degree of truth and all thopeoposition following thehenterm is the consequent and is
that have some truth contribute to the final output state of thé&so any arbitrary fuzzy proposition.
solution variable set. The functional tie between the degree
of truth in related fuzzy regions is called the method of If w isZ thenx isY
implication. The functional tie between fuzzy regions and
the expected value of a set point is called the method interpreted as
defuzzification. Taken together these constitute the
backbone of approximate reasoning. Hence an approximate
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x is a member oY to the degree that is a member ot

z=f((x Y, W (11)

then under a restricted set of circumstances, a fuzzy
reasoning system can develop an expected value without
going through composition and decomposition. The value of
the output is estimated directly from a corresponding truth

embership grade in the antecedent fuzzy regions. While
éE—Ee antecedent fuzzy expression might be complex, the

An unconditional fuzzy propositions one that is not
qualified by arif statement.

XisY

wherex is a scalar from the domain andis a linguistic
variable.  Unconditional statements are always appli
within the model and depending on how they are applie ; .

P g y PP ,!rutlon is not produced by any formal method of

serve either to restrict the output space or to define a defa ificati but b direct slic £ 1h ¢
solution space. We interpret an unconditional fuzz eluzzihcation, but by a direct slicing of the consequen

proposition as uzzy set at the antecedent’s truth level. Monotonic

reasoning acts as a proportional correlating function between
two general fuzzy regions. The important restriction on
monotonic reasoning is its requirement that the output for
the model be a single fuzzy variable controlled by a single
fuzzy rule (with an arbitrarily complex predicate).

X is the minimum subset &f

when the output fuzzy setis empty, therX is restricted to
Y, otherwise, for the domain & X becomes thenin(X,Y)
The solution fuzzy space is updated by taking th

intersection of the solution set and the target fuzzy set. Fmpllca'uon space generated by the gene@hpositional

rules of inferenceis derived from the aggregated and

orrelated fuzzy spaces produced by the interaction of many
atements. In effect all the propositions are run in parallel
‘create an output space that contains information from all

If a model contains a mixture of conditional or unconditionag
propositions, then the order of execution becomes importal

Unconditional propositions are generally used to establi? e propositions. Each conditional proposition whose

the default support set for a model. If none of thgvaluated predicate truth is above the current alpha-cut

Sgﬂggllgn?sl réljelft}esrrﬁixne;dm?rs(),rr:h?t?e asg:éie J(())lrmtgg d Sg;]t't%lnre_shold contributes to the_ shape of the output §o|qti0n
unconditionals. For this reason, they must be execut riable’s fgzzy representation. There are two principal
before any of the conditionals ' ethods of mfererpe in fuzzy systems: the min-max m_ethod

' and the fuzzy additive method. These methods differ in the
way they update the solution variable's output fuzzy

The effect of evaluating a fuzzy proposition is a degree %presentation

grade of membership derived from the transfer function,

For the min-max inferencamethod the consequent fuzzy
H ‘_(XEY) (10) region is restricted to the minimum of the predicate truth.
The output fuzzy region is updated by taking the maximum
wherex is a scalar from the domain andis a linguistic 0f these minimized fuzzy sets. The consequent fuzzy set is
variable. This is the essence of an approximate statemangdified before it is used to set each truth function element
The derived truth membership value establishes t@ the minimum of either the truth function or truth of the
compatibility betweerx and the generated fuzzy spate proposition’s predicate. The solution fuzzy set is updated by
This truth value is used in the correlation and implicatiotfking, for each truth function value, the maximum of either
transfer functions to create or update fuzzy solution spadBe truth value of the solution fuzzy set or the fuzzy set that
The final solution fuzzy space is created by aggregating ti@s correlated to produce the minimum of consequent.

collection of correlated fuzzy propositions. These steps result in reducing the strength of the fuzzy set
output to equal to the maximum truth of the predicate and
B.5 Fuzzy Implication then, using this modified fuzzy region, applying it to the

output by using theOR (union) operator. When all the
propositions have been evaluated, the output contains a

The monotonic method is a basic fuzzy implication oo -
. o . — fuzzy set that reflects the contribution from each proposition.
technique for linking the truth of two general fuzzy regions.

When two fuzzy regions are related through a simp

proportional implication function I'?he fuzzy additive compositional inferenoeethod updates

the solution variable’s fuzzy region in a slightly different
manner. The consequent fuzzy region is still reduced by the
maximum truth value of the predicate, but the output fuzzy
region is updated by a different rule, the bounded-sum
operation. Instead of taking th@ax(u,[x [ug[y;]) at each

if xisY thenzisW

functionally represented by the transfer function,



point along the output fuzzy set, the truth membership.7 Aggregation
functions are added. The addition is bounded by [1,0] so

that the result of any addition cannot exceed the maximufihe eyaluation of the model propositions is handled through
truth value of a fuzzy set. The use of the fuzzy additivg, 5ggregationprocess that produces the final fuzzy regions

implication method can provide a better representatior! of th§ each solution variable. This region is then decomposed
problem state than systems that rely solely on the MiN-M§Xing one of the defuzzification methods.
inference scheme.

] B.8 Methods of Defuzzification
B.6 Correlation Methods

_ ) Using the general rules of fuzzy inference, the evaluation of
The process of correlating the consequent with the truth gf ,.qhosition produces one fuzzy set associated with each
the predicate stems from the observation that the truth of thgyqe| solution variable.Defuzzificationor decomposition
fuzzy action cannot be any greater than the truth of the,gves finding a value that best represents the information
proposition’s premise. There are two principal methods @fntained in the fuzzy set. The deffuzification process
restricting the height of the consequent fuzzy sefie|ds the expected value of the variable for a particular
correlation minimum and co_rrelat|0n product. The_ Mostyecution of a fuzzy model. In fuzzy models, there are
common method of correlating the consequent with the,eral methods of defuzzification that describe the ways we
premise truth truncates the consequent fuzzy region at i, derive an expected value for the final fuzzy state space.
truth of the premise. This is called correlation minimum,
since the fuzzy set is minimized by truncating it at the)efuzzification means dropping a “plumb line” to some
maximum of the predicate’s truth. Therrelation minimum  o5int on the underlying domain. At the point where this line
mechanism usually creates a plateau since the top of {igqqes the domain axis, the expected value of the fuzzy set
fuzzy region is sliced by the predicate truth value. Thig yoaq  Underlying all the defuzzification functions is the
introduces a certain amount of information loss. If thgqcess of finding the best place along the surface of the
truncated fuzzy set is multimodal or otherwise irregular, thﬁzzy set to drop this line.  This generally means that
surface topology above the predicate truth level is discardegls 7 ification algorithms are a compromise with or a trade-

The correlation method, however, is often preferred over thg herveen the need to find a single point result and the loss
correlation product (which does preserve the shape of t§€intormation such a process entails.

fuzzy region) since it intuitively reduces the truth of the

consequent by the maximum ”“”.‘ of the predicate, mvoIveﬁ]e two most frequently used defuzzification methods are
less complex and faster arlthmetlc_, and_generally general:%?nposite moments (centroid) and composite maximum.
an aggregated output surface that is easier to defuzzify USIAQe centroidor center of gravity technique finds the balance

the cqgventlonal tephnlque_s of Composm: mo_mer:&jgim of the solution fuzzy region by calculating the
(centroid) or composite maximum (center of maximu eighted mean of the fuzzy region. Arithmetically, for

height). fuzzy solution regiom, this is formulated as

While correlation minimum is the most frequently used Zn:di LA (di)

technique, correlation product offers an alternative and, in i—

many ways, better method of achieving the correlation. R (12)
With correlation product the intermediate fuzzy region is 2 UA (di)

scaled instead of truncated. The truth membership function i=0

is scaled using the truth of the predicate. This has the effect

of shrinking the fuzzy region while still retaining the originalwhere d is the ith domain value andu(d) is the truth

shape of the fuzzy set. The correlation product mechanisfiembership value for that domain point. A centroid or

does not introduce plateaus into the output fuzzy regiodemposite moments defuzzification finds a point

although it does increase the irregularity of the fuzzy regiaepresenting the fuzzy set'’s center of gravity.

and could affect the results obtained from composite

moments or composite maximum defuzzification. This lack maximum decompositidinds the domain point with the

of explicit truncation has the consequence of generaljjaximum truth. There are three closely related kinds of

reducing information loss. If the intermediate fuzzy set isomposite maximum techniques: the average maximum, the

multimodal, irregular, or bifurcated in other ways thigenter of maximums, and the simple composite maximum.

surface topology will be retained when the final fuzzy regiof this point is ambiguous (that is, it lies along a plateau),

is aggregated with the output variable’s undergeneratigRen these methods employ a conflict resolution approach

fuzzy set. such as averaging the values or finding the center of the
plateau.



Also there are other techniques for decomposing a fuzzy sdgorithm to partitioning the power system in many
into an expected value. Thaeverage of maximum value subsystems according to a geographic basis. The
defuzzification finds the mean maximum value of the fuzzgptimization process is applied to these subsystems, and the
region. If this is a single point, then this value is returnedpnstraints are limited to local constraints and coupling bus
otherwise, the value of the plateau is calculated and returnednstraints.
The average of the nonzeregion is the same as taking the
average of the support set for the output fuzzy region. TWa optimization process can be defined as a maximization
far and near edge of the support $ethnique selects the (or minimization) of an objective functiori(x), subject to
value at the right fuzzy set edge and is of most use when tanstraints of the problengy(x). These constraints define a
output fuzzy region is structured as a single-edge platedeasible regionR, i.e., a region that contains possible
The center of maximumsechnique, in a multimodal or solutions of the problem. Two popular techniques have been
multiplateau fuzzy region , finds the highest plateau and theleveloped for optimization process, they are linear
the next highest plateau. The midpoint between the centpregramming and quadratic programming. Examples of
of these plateaus is selected. these techniques, for two variabbesandxp, are shown in
Figure 1, where there are 4 linear inequality constraints,
gi(x), that define the feasible regidR, and the optimal

C Fuzzy Optimization solution is denoted by .
C.1 Initial Considerations ()
X
.o . ? gs(X) X
In the real world, it is not an easy task to find a useful
optimal solution of a given problem because many 02(X)
constraints and limitations must be taken into account during 9(x)

this process. Usually, only the most important constraints
and limitations are chosen to be used during the solution
search process. Another problem is that the solution may not gu(X)
be unique and it depends directly on the weight of each
constraint. Hence, many optimization processes have been
developed in the last decades to achieve the best solution in
this search process. In addition, one of the most important (a) Linear Programming.
points in this process is the computational cost to find the

best solution. Sometimes, this cost may comprise the use of ,
a technique to solve a problem. Number of constraints,
number of variables (involved to describe the problem) and
poor convergence speed are some examples of
computational cost. In other words, the computational
problems are related to hardware processor speed, memory
capacity and numerical techniques. However, the highly fast
evolution of the computational world (hardware and
software) allows optimization techniques, that could not be
used before to solve a specific problem, to be applied X1
successfully now. Specifically for power system problems,
decomposition techniques, partitioning techniques and
parallel processing are examples of recent evolution of
computational techniques.

X1

(b) Quadratic Programming
Fig.1 - Example of Techniques.

It can be verified that in the linear programming the optimal

In many power system problems, the use of optimizatioly, o occurs always at an extreme point (a “corner” point)
techniques has been important to reduce costs and Iosseg oxle feasible region; while in the quadratic programming

the_ system. Unit commitment, economic dispatching, AMfis solution can be located on the interior or boundary of the
optimal power flow are some areas where these technquggsible region

have been extensively used. For example, minimization of

active power losses is one of thg biggest chall_enges f.?ﬁe two major drawbacks of these current optimization
power control operators. The achievement of this goal

: . g ; : Methods are: speed/convergence problems and correct
real-time is a critical task. A possible solution for thi

bl . he D . 4 Wolfe d ..%epresentation of constraints. Usually, methods with fast
problem is to use the Dantzig an ofte ecomp05|tlo§beed present poor convergence, while slower methods have
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less convergence problems. On one hand, for example,

Newton-Raphson (or other parallel tangent methods)here S and | are the maximum and minimum possible

presents a very good answer when the starting point is ngatues in the feasible interval for the functidix;),

the solution point; however, this methods performance cagspectively.

be very dependent on the shape of the involved functions.

On the other hand, bisection methods (e.g., Fibonacci, cubithe constraints may also receive the same fuzzification

and quadratic searches) are slower than tangent methodsgigtess as above, or they are previously defined as a

they are more reliable. Hybrid system schemes have ba@embership function. In the latter possibility, this definition

proposed. Initially, the procedure starts with a bisectiopan represent an expertise (or a linguistic value). For

method until the vicinity of the optimal point; then, theexample, using a crisp function, a possible constraint can be

procedure changes the method to a parallel tangent methogd< 3. The same constraint can be expressed as “the good
value is equal or less than 3”. A possible complement of this

The second drawback, correct representation of constrai§gatement may be ‘it is also acceptable for a value to be not

is related to the difficulty to evaluate the correct value to by larger than 3”. A possible membership function to
incorporated in the constraint equations. Sometimes, thag@resent this linguistic value can be

constraints are not well-defined by crisp functions, and the

use of fuzzy values is recommended. Many fuzzy 1 forx< 3

optimization methods have been proposed in the literature, C(x) =

where they can be classified according to the introduction of

fuzzy set theory in: (a) representation of the constraints, and

(b) solution method. A typical fuzzy optimization process isvherek represents how acceptable is the value larger than 3.

described in the next sections. If the value ofk is small (usuallyk < 1), only values very
close to 3 are acceptable; otherwike>1), k can represent

The main applications of fuzzy optimization in powemigger values for the membership functions. Figure 2

system problems are: expansion planning [21-25presents an example of these values. The corstamnly a

maintenance scheduling [26,27], unit commitment [28harameter for level adjustment and it is used to turn the

multi-objective coordination [29-31], and optimal powemembership function to a continuous one.

flow [32-34].

k
a+— forx> 3
X

C.2 Fuzzy Optimization by Pseudogoal Function H(x)

X is quite close to 3
k<1

Description of the Process

Usually, optimization problems with a single-real variable
are solved using bisection methods, where the main idea is

X is close to 3

initial | : i ini . i k =1
to reduce an initial interval until a required minimum. X is very close to 3
Different from the classical optimization methods, the main D Kko>1
idea in fuzzy optimization is to optimize objective function '
and constraints, simultaneously. In order to determine the
optimal point (solution point), both objective function and 3 X
constraints must be characterize by membership functions
and they must be linked by a linguistic conjunction: “and” Fig. 2. - Possible Membership Functions for a
(for maximization) and “or” (for minimization). Generic Constraints.

Fuzzy optimization by pseudogoal was proposed by Bellm@mnother usual procedure is the use of fuzzy numbers to
and Zadeh [41] and the main idea is to satisfy a fuzalefine constraints. In classical optimization, intervals define
objective function and fuzzy constraints that receive thide region to be explored. In fuzzy optimization, this region
same treatment, i.e., there is no difference among than be expressed using fuzzy numbers. An example of this
objective function and constraints. The first step is procedure is shown in Figure 3, wheig andd, can be
fuzzification process of the objective function, thisjefined as the fulfillment (or relaxation) of the constraint.
procedure converts the objective functid(xj) into a

pseudogoalF(x;) by the following fuzzification process

f(x,)-1

S-1 (13)

HF(XJ‘):



— Classical Numerical Example
H(x)
= Fuzzy
This section presents a numerical illustrative example on the
use of fuzzy optimization for one-single variable. (&) be
an objective function that represents the following linguistic
statement “x must be around 4” and the two constraiits:
“x must be equal or greater than 2 and equal or less than 6",
andC, = “a good value for x is equal or less than 3 and an
acceptable value is not much greater”. In this example, the
former constraint is a crisp function, while the latter
constraint is a fuzzy value. Let's consider the example below.
X1-061 X1 X2 X2 +32 .
Maximize f(x) = 10 -x - 25/x2
Fig. 3. - Classical and Fuzzy Intervals;,%{ and )
[X, +8,, %, + &,], respectively. subject to
0 forx<2

After the fuzzification process, the membership of the C,(x)=11 for2<x<6

optimal function can be found by the aggregation of all 0 forx>6

constraints and the pseudogoal. In the computation of the

fuzzy maximum function, all membership functions are C.o0=11 1 5 forx=< 3

initially merged by the conjunction “and” (intersection of all 23V §+; forx> 3

function, operator: minimum) and then the optimal value

(solution)x” is computed by the operator maximum (i.e., th
maximum-minimum value of the membership function)
This procedure can be presented by the following sequen
whereG(x) represents the decision function, angx) is its

associated membership,

o (x) = Min(C, F)
X" = ma{ ()

§he initial step is to compute the pseudogde@ using the

minimum and maximum values f{k):
ce,

f(x=2) = 1 = 1.75 (minimum value in the interval [2,6])
f(x=3.68) = S = 4.47 (maximum value in the interval [2,6])

Thus,
fx)-1 x 919

FOO="¢ 2727 %

In fact, this last operation (maximum) is a defuzzification

. * . . . . .
process, i.ex is the optimal value in the original scale.

As the constraints have been defined as membership
functions, the next step is compute the membership of the

In the same way, for the fuzzy minimum function, &ecision functiorG(x). This computation is performed using
sequence can also be structured. Initially, all membershjp, linguistic conjunction “and” because the objective

functions are merged by the conjunction “or” (it means thgction and the constraints must be satisfied simultaneously.
union of all membership functions, operator maximum) anglhe result is shown in Figure 4, where the minimum

then the optimal value< is computed by the operator
minimum, as defined by the following sequence

e (x) =max G F)
X" = min{ (X}

operator has been used. The bold curve is the decision
membership function.

The final step is the computation of the optimal valua’of
by the maximum relation d&(x). In this case, the maximum
value (optimal value) is located in the intersection between

In the fuzzy optimization process, it is possible tdhe second part of constraint, @nd the pseudogodi(x).

incorporate weights for each constraint and pseudogo
These weights can represent linguistic hedges in order

%quating the two functions, the final valueofis equal to

modify a membership function (as a linguistic value). Also, ™"
other operators (than maximum and minimum) can be used
to define relations among constraints and pseudogoal.
Sometimes, composite operators must be used for a better
definition of the relations [42].



duality theory, sensitivity analysis, and integer fuzzy
programming can be found in [45].

Fuzzy Dynamic Programming

The idea in classical dynamic programming is to decompose
a main problem into several subproblems (one for each
variable). Thus, the optimization of each subproblem is
divided into a multistage decision process. Here, all
operators and values have a crisp meaning. In the same way,

r(x)

or—_ a fuzzy dynamic programming can be defined as a
2 25 3 35 4 45 5 55 6 fuzzification of all (or part of) these elements. In a well-
known fuzzy dynamic programming method, Bellman and
Fig. 4 - Computation of Membership Functions. Zadeh [41] have proposed to work with fuzzy constraints
and fuzzy goals to determine the subgoals of each step of the
C.3 Fuzzy Programming process, while the transformation function is maintained

crisp. An excellent example of the application of fuzzy

Fuzzy Linear Programming dynamic programming to power systems is presented in [35].

Classical linear programming can be defined by a&4Fuzzy Multi-Criteria Analysis
optimization of a linear objective function and linear

constraints. Usually, this procedure can be represented by = |
the following statements Déscription of the Problem

maximize f(x) = ol x During any decision making process, many different factors
must be taken into account. These factors can be heuristic or

subject to Ax<b arising from numerical analysis. _Usually, the heuristic
x>0 factors are due to the planner's previous experience and have

a non-numerical structure, i.e., they can be better expressed
by linguistic values. The problem that planners face in their
daily job is how to incorporate these linguistic values into
numerical analysis. Commonly, the computational packages

The fuzzv linear proaramming has the same structure as go not include the possibility to use non-numerical values.
y prog 9 s, planners have two possibilities when using this kind of

classical linear p_rogramrning. The Qifference between thel%ﬁ wledge. One is to put the linguistic numbers in numbers.
LWZrZ?grfa:rZeir'iz tha:/tvrllri}ethcianc[[erl]ses|?l?zlzapgroar(;r;gsllilzfuafrh other possibility is to forget this knowledge during the
P P. ’ y app Fumerical analysis and then, after getting the final result,

Ezglr?] r |e(s)F())?rt?wtigrfsuzzm?ryansa;(s)frw;t?on frlrjélzybe_CharaCte“St'Cr%odify it so as to make an adaptation to take into account
P y Y be: the planner expertise.

where c(nx1), b(mx1), A(mxn) and m<n. The inequality
constraints form a feasible region.

;eart:r? f(())rptehrstgpr)tir;njxl;rlllf)enlycgqirr]r?;rzsﬁgfgf gﬁaﬁg,,arhe problem is that both app_roaches are not gopd. I_n _the
. ‘first one, where planner tries to transform linguistic
° the_ operators< and > can ex“press fﬂunqnons "?‘Sknowledge into numerical values, much information is lost
shown in Figure 2, whe_re.for the “belong” crisp r.eg'o'?:iuring this process. For example, if the following statement
the.value of membe_rshlp IS .equal to 1, and outside t S to be incorporated: "The distribution feeder A is quite
region, an exponential function defines the memberShl8aded." What is a good numerical value for "quite loaded" ?
values, and . Two possible ways can be taken; that is, the planner uses a
* the elements of the vectors b and ¢ and the maltrx fhmber to define it, for example, 0.80 pu, or he/she can use
can also be a fuzzy definition for a better representatiqq percentage, say 90%. Here we also lose information in
of the real world. both transformations. In the first one (the worst

M ibuti h b de in this field . transformation), if 0.80 pu relates to a 0.85 pu feeder
hanybcontr:c utions age eéandrr;_a_e In t ISer .%lcor.np05| pacity, the statement does not include information about
the above features [43] and defining new fuzzification an her numbers around 0.80 pu, for example: 0.78, 0.82, and

inference processes [44]. Other developments, incIudirgg) on. Each of these expresses the same knowledge and have



the same result. On the other hand, the number 0.80 aloepresentation. Several facilities are included in the user-
can not represent "quite loaded feeder", for example, if theterface for an easy accomplishment of the tasks.
feeder capacity is 1.30 pu.
The steps of the proposed algorithm are presented as
The second representation of the statement, using falows:
percentage or a range, has the same lost of information
problem. Let us assume a "small change" in the percentdgiep 1:.Choose the alternatives to solve the problems and the
number; for a long-term decision-making process, it magriteria that will be used in the decision-making process.
result in the same final decision. The problem is that it Step 2.Create scenarios with fuzzy weights for each
very hard to quantify ‘'what is a small change' in ariterion and give the conjunctions to compose them.
conventional computational tool. Step 3Create a matrix by the combination between
scenarios and alternatives for each decision criterion. These

matrices must contain information about the relation

The other possible approach is to modify the final result Detween each scenario and each alternative in the light of

order to take into account the pIan_ner expertise. Thésach criterion.
approach has been commonly used in practical analy

e . o ep 4.Create the fuzzy conditional statements to represent
however, planners have had difficulty in explaining Wh)bossible data-base knowledge

they need to modify a final value, mainly, if this . : .
modification can change the final result order given by th%ztep 5:0btain, for each matrix of Step 3, the fuzzy Zpt

decision process. that is formed by the input weights, according to

Classification of Fuzzy Multi-Criteria Analysis Z = (%) P

The classification of fuzzy multi-criteria problems is divided’\/here".J angk represent criterion, alternatlv_e and scenario,
in two main types: multi-objective decision-making anJespectlvely, and Pik 1S the weight assigned to the
multi-attribute decision-making. In general, the differenc@lternative for a scenarid in a given criterion.

between these two approaches is located in the decisidi¢P 6:Obtain the fuzzy set; formed by the weightg;
space. For the former approach, this space is continuous, @mat are assigned to the pertinence matrix which, in turn, is
the problem is solved by mathematical programming. Fgfiven by the ratio between each weight and the largest value
the latter approach, the decision space is discrete, and otherong all weights of the same matrix. The following

approaches have been developed [36,46]. The nexjuations express these value, wherepresents the largest
subsection presents an algorithm to treat this problem. weight of the matrix,

Presentation of a Multi-Attribute  Decision-Making L= u, (X)) P
Algorithm

pa(lK)=py A
This algorithm is an extension of Dhar's algorithm, proposed
in [37]. Some aspects of data structure representatidtep 7:0Obtain fromz; andL; a matrixC; that is expressed
inclusion of a new matrix composition and a different fuzzyy the equations,
decision-making process are some modifications anal
extensions proposed in this algorithm. The original C = pie (X)) Py
algorithm divides the structure of the problem into L '
alternatives, scenarios and criteria, and its matrix

2-10



Hc, (Xj,k) = min(.ui(xj,k )!:u/\(xj,k )

analyzed, at long term, for a given region. The generation
options are hydroelectric plantsH) and nuclear-type

Step 8:.Use max min, and algebraic sum operators tothermoelectric plantsN), natural gasNG), coal C) and oll

compose the fuzzy decision set, according to Step 2.

fuel (OF). This expansion policy is also intended to be

Step 9:Present the final decision set for each criterion, armssociated to investments in electrical power conservation

the total result.

programs trying to establish, within some scenes, an option
scale of generation and conservation measures.

The Steps 5 to 7 has been proposed by Dhar in his original
algorithm. More information about the algorithm to build thelhe characterization of each plant, under quantitative and
fuzzy conditional statements to represent data sets cancdpglitative stand point, is shown in Table 1. Some data have

found in [38,39].

Illustrative Example

The expansion strategy of a generation system is to

been obtained from Brazilian Power System (Eletrobras)
Internal Reports. These values are divided into two groups:
numerical values and linguistic values. For the generating
system there are construction and generation costs; for the
electric power there are the "demand reduction cost" and the
iraved energy cost’, in (US$/kw) and (US$/kWh),

respectively. Tables 2 and 3 illustrate these costs for the

Table 1 - Quantitative and Qualitative Characteristics of the Generation Systems

Construct. | O&M Cost Unity Environmental| Generation Ease of

Cost (US$/km Generation Costs Reliability | Implementati
(US$/kw) lyear) Cost on
(US$/kWh)

H 1500 7 0.032 Small Very High Small

N 1660 44 0.059 Very High High High
NG 1100 22 0.051 Small Regular Regular
C 1400 28 0.045 Regular Regular Regular
OF 1200 12 0.073 Regular Regular Regular

Table 2 - Electrical power conservation costs for industrial sector

Demand Saved
Reduction Cos{ Energy Cost
(US$/kW) (US$/kWh)
Motors 200-1600 0.02-0.04
Direct Heating 200-1200 0.02-0.03
(Furnaces)
Indirect Heating 200-900 0.01-0.02
Electrochemical 200-600 0.01-0.03
Processes
Lighting 200-1300 0.02-0.04

Note: Indirect heating includes boiler and water heating.
Table 3 - Comparison of different lighting options

Kind of Lamp Power Average Saved Energy Cost
(W) Operating Life (US$/kWh)
(hours) A B
Incandescent Economical (I11) 54 1000 0.027 0.026
Common Tubular Fluorescent 20 6000 0.031 0.026
(12)
Fluorescent Compact (I3) 13 8000 0.060 0.049

Note:

A - considering 3 hours/day operation
B - considering 10/hours/day operation
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. . . Table 6 - Characteristic Matrix - O&M Cost
Table 4 - Comparison of different costs of the electrical

- Alternatives| HM IM IH CL
Kind of Program Saved Energy Cost States
(US$/kWh) H 3 9 10 7
Motor 1 (M1) 0.01 N > 2 2 2
Motor 2 (M2) 0.02 NG 3 3 4 3
Motor 3 (M3) 0.04 C 2 2 3 2
Table 5 - Electrical Power Conservation Scene in the OF > 6 ’ >
Planning Horizon 11 VH H H VM
12 H VM VM M
Possible Description Membership 13 H VM VM M
States Degree
HM Household Medium 0.3 m; xt xm xm xt
IM Industrial Medium 0.4 M3 VL M M VL
IH Industrial High 0.8
CL Commercial Low 0.2

Calculation of the Fuzzy Decision Set

industrial sector and final uses of electrical power [40].
P (401 By using the proposed methodology, the following decision

For motors, main electrical power consumer in the industrigft P i obtained:

sector, it is possible to work in programs of energy D ={(0.6073/H) , (0.4476/N) , (0.6223/NG) ,
conservation which seek, for example, a better used and (0.5867/C) , (0.5257/0F) , (0.5692/1) , (0.5375/12) ,
adaptation in the industrial process (MOTOR 1), the (0.5432/13), (0.7165/M1) , (0.7032/M2) ,
employment of more efficient motors (MOTOR 2) or even (0.5272/M3) }

the use of varying speed controllers (MOTOR 3) applied to ” .

varying torque motors. Each of these options presen-wus' f9r the conqmons stated gbove, the_ mvestmer_lt

different saving energy costs, as shown in Table 4 strategy in conservation and generation of electrical power is
’ ' as follows:

Based on the information that we can obtain from Tables 1 o N .
to 4, the several technologies aiming at electrical powé?t ppt|on._To improve the use and suitability of the motor in
conservation can be quantitatively and qualitativel{® industrial process. . .
characterized within a planning horizon. nd option: To employ more efficient motors in the motors
in the process.
Energy Conservation Scenarios and Characteristic Matrice§rd opt_lon: Hydroelectric generatlon_ i
4th option: Natural gas thermoelectric generation
By attributing a weight from O to 10, for example, or a fuzz IE option: CoaII therrr]noelectlnc generation
linguistic variable, that represents subjectively th&th Option: Nuclear thermoelectric generation
importance of each generation plant and the actions of id | h h lectri
electrical power conservation in the final uses, scenes can@nSider, as an example, that the electric power

established and the so-called characteristic matrices can“@@Servation potential through employment of the 1st option
constructed (Table 5). is 8 (TWh) and with the 2nd option is 5 (TWh). Consider

also a prediction in the planning horizon of the electrical
The characteristic matrices are constructed for the followirPWer market in the order of 60 (TWh). Then, once the 2

analysis criteria: Irst c_>ptions of conservation are exhau_sted, there_ v_vouId _be a
- construction cost or demand reduction cost deficit of 47 (TWh). By using the policy of avoiding this

- operation and maintenance (O&M) cost: deficit only througr_l generafuon and by considering

- generation cost or saved energy cost; hydroelectrlc_ generation potentials of 25 (TWh), natural gas
- environmental costs: thermoelectrlc_ generation of_ 10 (TWh) and coal generation
- generation reliability or action reliability; of 20 (TWh) yields the following strategy:

- ease of implementation; and )

- usefulness to the entrepreneur. Conservation:

13 (TWh), representing 22% of the power demand

As an example of this kind of matrix, Table 6 shows th§eneration: .
O&M cost characteristic matrix. 47 (TWh), representing 78% of the power demand

Conservation actions:
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Use 1st and 2nd options The strategy for controlling car parking can be the same for
Generation actions: many industrial processes [47]. In this lab, each student is
53% for hydroelectric generation, 21% for naturahsked to built his/her own set of membership functions and
gas thermoelectric generation, 26% for coal thermoelectontrol rules. The inference process is performed by the

generation program directly. The problem is to drive the car backward
from a given initial position to a target area. The input
D Fuzzy Control variables for this problem are: the position of the car trank (

y); the car anglé; and the direction of motion d. The output

D.1 Initial Considerations variable,0, defines the angle of the car front wheels.

The use of Fuzzy Logic for solving control problems ha 3 Brief Description of the Software

tremendously increased over the last few years. Thus, the ) .
fuzzy inference process executes each rule, i.e., (a) the

teaching of fuzzy control in engineering courses is becomin ) ;
t variables are transformed into the fuzzy statements,

a necessity. This section presents a computational pack (b e i d Th : f h
for students' self-training on fuzzy control theory. Th&@nd (b) an output value is computed. The execution of eac

package contains all required instructions for the users %Ie IS ma(fjehusmglnodusdponenEO]é which n:eans tl?at thhef
gain an understanding of fuzzy control principles. Trainin€Mise of the rule produces the degree of membership for

instructions are presented via a practical example. The mai c_onclu5|on of the same rule. Th's memt_)ershlp degree is a
objective of the example is to park a car, approaching fro nction _of the fuzzy values of the input variables, and of the
any direction, in a parking lot. A car parking problem hagonjunctions used among them. Figure 5 shows the Rule
been chosen because it is well-known to undergraduﬁg'tor Window.
students. To accomplish this task the students must first
develop sets of fuzzy-control rules to define the trajectory of*7
the car. Many windows and numerical routines are available  cess: fF | s/ 1 & o hkad

Dapty

[T

in the program to give support to users during the

[ g

establishment of such fuzzy-control rules. Processes, such I'“: e
fuzzification and defuzzification of the variables, are T ]
performed by the program without the interference of the = [
user. lllustrative examples of training sessions are describe |[™ :
in this section. e .

0oE| 3

EHawd | agmdis
D.2 Brief Description of the Software I E - Lk

The basic problem of car motion has evolved into a more or,_anbie A
specific task: the parking of a car in a lot. This problem [His sesi asgie -
formulation can exhibit two characteristics: (a) the reduction
of the initial data, and (b) the creation of different control
zones. The first characteristic shows up because the fi

position is always the same; the program user needs to el ."-;._u"'l =L |
only the initial car position (coordinates); the final positiors== i
coordinates are internal data in the program. It is importag
to note that this reduction does not limit the problern
because all relative positions between the initial and fin
positions can be maintained. The second characteris
allows us to define fine and coarse control zones for the c
motion. For instance, if the current car position is far aws
from the final position, a coarse output value can b
produced without a major implication in the final result
However, if the car is close to the final position, a mor
rigorous control must be made. The characteristics of fine
coarse control can be represented by the number of rules
each region (non-zero domain of the membership function
This is an important learning task for the student. e ]

Fig. 5 - Rule Editor Window

The main idea behind the proposed lab is to demonstrate to Fig. 6 - Typical Session - Main Window
undergraduate students that fuzzy logic control is very useful.
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After the execution of all the rules, the defuzzificatiori16]
process begins. The final actual output value is computed
using the center of gravity method [12]. In this method, all
areas formed by the consequence of each rule are added 34
the centroid of the resultant area is computed. The value of
the abcissa found is the actual value of the output variable{18]

D.4 lllustrative Examples [19]

This package allows the students to learn the fundamental
principles of fuzzy logic and fuzzy control and, at the sa
time, to properly choose the number/position of rules for
well-designed controller. A controller with an excessive
number of rules (or a lack of them) can compromise tflgz]
system performance; that is to say, too many correct rules
(information or knowledge) can not always be interpreted as
an improvement of the system performance as these niagl
worsen it.

A typical situation that may occur in a training session aflé™
shown in Figure 6.
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Chapter 3 Control Applications

Abstract- The basic concepts of fuzzy systems, particularlyystem load. It further controls the frequency and the tie line

from the point of view of fuzzy logic based controllers, arflows between different power system areas.

described in this Chapter. State of the art of fuzzy control

for power systems is outlined and supported by REinally Transmission Contromonitors power and voltage

bibliography of the literature in this area. Application of theontrol devices like tap-changing transformers, synchronous

fuzzy logic controller as a power system stabilizer isondensers and static VAR compensators.

illustrated by two examples - one fairly straightforward

application of fuzzy logic and one self-learning algorithm. In reality all controls affect both components and systems.
For example the AVR is known to introduce local mode
oscillations as well as inter-area oscillations which in turn

A Introduction to Power System Control are counteracted by a well-tuned PSS.

L From the viewpoint of system automation, Generating Unit
A.1 Motivation Control is a complete closed-loop system and in the last
A reliable, continuous supply of electric energy is essentigbcade a lot of effort has been dedicated to improve the
for the functioning of today's complex societies. Due to gerformance of the controllers. The main problem for
combination of increasing energy consumption angxample with excitation control is that the control law is
impediments of various kinds concerning the extension ghsed on a linearized machine model and the control
existing electric transmission networks, these power systemgrameters are tuned to some nominal operating conditions.
are operated closer and closer to their limits. In case of a large disturbance, the system conditions will
change in a highly non-linear manner and the controller
Deregulatory efforts will tighten the economical constraintgarameters are no longer valid. In this case the controller

under which utilities have to operate their own network dhay even add a destabilizing effect to the disturbance by for
allow or prevent competitors from using it. This in turn willexample adding negative damping.

require more precise power flow control which is made
possible by phase angle controllers being developed usingese problems provide an important motivation to explore
new power electronic equipment. However, it is to bfovel control techniques like fuzzy systems and their

expected that these highly non-linear components Wllotential in the area of prediction, approximation,
introduce harmonics and require non-linear control in ordelassification and control.

to prevent system destabilization.

o . o ~ Power system contratonsists of 4 steps:
This situation requires a significantly less conservative

power system operation regime which, in turn, is possible  System parametric or state-space modeling based on

only by monitoring and controlling the system state in much physical components or assumed properties

more detail than was necessary previously. 2-  System parameter identification based on component
data and measurements.

A.2 Power System Control Tasks 3- System observation of inputs and outputs by filtering,

In electric power systems, [1], one can distinguish three  Prediction, state estimatictc.
different control levels: 4- Design of an open-loop or closed-loop system control

law such that the operating conditions are met.

Generating Unit Controlswhich consist of prime mover

control and excitation control with automatic voltage contrdln t.h.e case of electric power systems _and electric ma<_:h|nes,
(AVR) and power system stabilization (PSS). The firgfdividual components are modeled in terms of resistors,
controls generator speed deviation and energy supply Syst%ucgorls, dcapam(tjqrs, marﬁ:hllne |nefrt|:|;1 etc. Their Interaction
variable like boiler pressure or water flow. Excitation contrdf M0deled according to the laws of electro-magnetic circuits

aims at maintaining the generator terminal voltage ar‘gfd fields. The resulting set of differential equations then
reactive power output within its machine-dependent limits. efines a state-space model whose parameters, for example
the machine reactances have to be identified under steady

state and transient conditions. Voltage signals on the other
d are modeled as a trignometric sum of sin and cos
unctions without taking the underlying physical model into

System Generation Contralhich determines active power
output such that the overall system generation meets



account. In this case the free parameters to be identified gtant output is the angular speed deviatibn, and the
the signal amplitudes. control signal is the stabilizing voltage. vihe plant model

) - ) comprises excitation system, AVR and generator model.
System identificatiormay be defined as the process of

determining the parameters of the dynamic system mods} far the continuous system model has been considered. If
using observed input and output data. Dynamic loale system in Figure 1 is discretized taking into account k =
modeling attempts to model individual as well as composite n time-steps t=kT, the control, output and error signals

another identification task.

u = [u(k), u(k-1), ... uk-m)}
e=[e(k), e(k-1), ...e(k-n)]
y(K) = hg(x(K), x(k-1), .., u(k), u(k-1) ...)

System observatioim power systems concerns off-and on-
line monitoring of directly or indirectly observable system
variables. Load forecasting, for example is an off-line
monitoring task, power quality monitoring an on-line
monitoring taskState estimatiomalculates the most likely In the case of feedback error minimization, task 4 of the
values for power system parameters like bus voltage and ligentroller design consists in finding a function

flow by giving a least-squares estimate of a set of redundant

measurements. d: RN ->R such thaty(e) = u(k+1) and |e(k+1)| = min.

Closed-loop controhttempts to counter-balance undesirablg, the case of linear controllable and observable systems, a

effects like undamped frequency oscillations or VOltaggontroIIerq) can be found through inversion of the system

dev!athns In a cIosed_—Ioop feedback_ environment, o nefer function and pole placement. In the case of non-
Excitation control, automatic voltage regulation and POW&I ¢ svstems there is no aeneral closed fornp. ofow
system stabilization fall in this category. y 9 i

fuzzy systems can provide an approximation of the
Assume that the plant has been modeled by the foIIowiﬁSntm"erq) is explored in the following sections.
single-input, single-output noise-free continuos system and

the parameters of the non-linear plant model f and obsenfrFuUzzy Systems

model h have been identified.

B.1 Review of Basic Concepts

dx(ty/dt =f(x,u, 1) Some of the basic definitions of fuzzy systems as outlined in

Wherey = hx, u, 1) [2] are reviewed first. Let Uc R N denote the universe of
) discourse, with fuzzy sets AU and fuzzy membership
x eRM s the state vector of the modeled plant

ueR is the control input of the system

y eR is the observed output of the system
f is a non-linear state-space model of the plant
h is the non-linear observer model

functions pa: U ->[0,1] which may be labeled by a
linguistic term like cold, warm, positive or negative.

Fuzzy membership functions are characterized by their
shape and their localization in space. For example, if the
universe of discourse is the range of temperatures from 0 F

Figure 1 shows an example of a simple continuous closag-120 F, the membership function describing the fuzzy set

loop control system where r is a reference signé,t)
denotes the controller and e = r-y is the feedback error to hg @ =

minimized.

In the case of a power system stabilizer the reference sig
is the reference voltagerdf and the terminal voltageiMthe

Plant y
dx(tydt = f(x, u,t)
y h(x, u, 1)

Controller u

u= ¢t

Figure 1: Closed-loop control system

cold, warm and hot may be centeredptad0 F, 2 =70 F
100 F, have a triangular shape of slope and a
maximal widthc of 40 F as shown in Figure 2.

Pr%ltead of defining center, shape and width of the

ui(®)
i=1,2,3
1

| | | | | -
1 1 1 1 I 1 1 I 1 1 I o

20 30 40 50 60 70 80 90 100 110 120
Temperature e[F]

a a ag
Figure 2: Membership Function for Fuzzy Temperature Sets
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membership function by empirical rules, one can choose a

more systematic approach using data analysis. For exampl®inmax: T@a,ug) (€) = min(ua(e), ug(e))
in the case of load forecasting sampling of the load datg,gquct: T, e) =ua(eyupr(e

might indicate that the load exhibits 3 different behaviors (AnB) (&) =uae}uB(e)

(r:ri)igr?tlfg\(je \iléllg;]tht‘ihe?j ;etr;gS;?tt:ﬁbe?atfﬁ:;ién&ea\lﬁgtr;wthn?’he corresponding unions are ca_llumhmax T-conornand
) ) ~ product T-conormReference [3] gives examples of other T-

of the clustercj defines the width of the membershipnorms and their implications on rules and inferences.
functionyi, i=1, 2, 3.

As in the case of the choice of membership functions these
In addition, one can chooseGaussian functionwhich is T-norms have different advantages. The minmax T-norm is
continuously differentiable, instead of the triangular (or theloser to the set-theoretic approach and generalizes the
sometimes used trapezoidal shape) without altering t§e@ncept of crisp union and crisp intersection in a rather
quality of the results significantly. (Note, however that thétuitive manner. The product T-norm implements the logic
support of the triangular function is finite whereas thé&ND and OR calculation for boolean values 0 and 1.

support of the Gaussian is the whole universe of discourse.)
However, even for differentiable membership functions, the

membership function of the set intersections generated by
the minmax T-norm is, in general, not differentiable whereas
the membership functions of intersections generated by the
There are other continuously differentiable membershigroduct T-norm remain differentiable.
functions available with finite support available, for ex. B-
splines. Whether one defines the membership functiothe definition of intersection and union leads to the
empirically or systematically, one always has some degregsfinition of fuzzy compositions, propositions and fuzzy
of freedom, that is implication interpreted according to the chosen T-norm. See
also Chapter 3. The most important definitions are:

N: number of fuzzy sets and membership functions

g: the center of thg; Fuzzy proposition

oj: the width ofpj or §: the slope ofuj under the eisAAND e1is B <==>gisANB

constraint thaij(e) € [0,1].

MA;j = § * exp (-0.5[(e- p) / i ]2

Fuzzy composition

In analogy to crisp sets one can defimgon intersection e is AL AND e2is A2 <==> (g, @) are AL x A2
and complemenbf two fuzzy sets A and B by defining the With membership function

membership functions corresponding to union, intersection KA1 x A2(€l, €2) = T(A1(e1), nAax(€D)

and complement.

Fuzzy implication:

The most widely used definitions are thin-maxoperations uA — B(e,U) = T(LA(E), ua(u))
Intersection:  pa N B(e) = min(pa(e)up(e)) Fuzzy rule inference:
Union: uA v B(e) = maxua(e), uB(e)) Let § and B be the fuzzy sets presenting the input
Complement: uy\a(e) = Lua(e) e =(e1, &) then the rule IFgis A1 AND e2 is A2 THEN u

is B defines a fuzzy set C with the membership function
These definitions of union and intersection are not unique

and depending on the choices one can define different fuzzy uc(u) =
systems with different rule inference mechanisms. Another su {T(( (& ) )}
popular choice of intersection and union is tidgebraic RReUx UtTIHAL x A2— BI& U). HE7 x E

product and suneperations: -
Firing of m fuzzy rules:

Intersection: pa N B(€) =pA(e)uB(E) Since each rule i will result in a fuzzy set tGe firing of
Union: LA UB(E) =pA(e) +uB(e) - tA(e)uB(E) m rules foreresults in ainionof fuzzy sets

C=Cu..ucC
ComplementLu\A(e) = 1HA(€) with membersjhip functiorr1n

Here these two types of intersection definitions are referred rcU) =pC1 U ... U Cm(V)
to asminmax T-nornT and poduct T-normr.
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In the context of power system control, control input andeep in mind that u is a variable whileg @nd e are

feedback error are given as real "crisp” numbers. In order {gmpers and thusg(u) is a function whereasa 1(e1) and
apply fuzzy concepts the feedback errerhas to be

presented by a fuzzy set. This set is modified according é2(€2) aré numbers modifying the shapeugf(u). For the
the fuzzy rules into a fuzzy set of controls C which arproduct T-normua q(e1) andua 5(e2) will scale the function
translated back into a crisp control_ iNPUEWR . T_his task is L(l]B(U) by reducing the slope.
performed by a fuzzy system defined according to [2] an
illustrated in Figure 3.

nc(u) =uAq(e1) nax(e2) ua(u) 1)

an
‘e ) If it is assumed thatia4(e1) < nao(€2), then the function

Fuzzifier i i i -
e > Fuzzy Set (A, i) uB(u) will be clipped taua4(e1) for the minmax T-norm.

A nc(u) = minuaq(e1), nap(e2), B(W))

\
Fuzzy Rule Base
Fuzzy Inference Engine
IFeisAANDeqis A1 AND ... AND e1 isA; THEN uis B

Thus

ue(u)  =uB(u) if pg(u) <paq(e1)
uc(u)  =naq(en) if uB(U) > nAq(eD)

|

Defuzzifier
Fuzzy Set (B, ug) —»u

As outlined above, the application of m rules to the fuzzy

input vectore results in the union of fuzzy sets C gO ...
ue R .
‘ UCm. A defuzzifiermaps the fuzzy output sets of the
Figure 3: Structure of a Fuzzy System inference engine onto a crisp number. Once again several
choices are available. Tmeaximum defuzzifiesf the fuzzy
A fuzzy systenis a mapping setC =G u... U Cqyis defined as
FFUcRN>R,F@=u u=argsuge U(MCLUC2  UCH

defined on a universe of discours® UWvith fuzzy sets A However depending on the form of the membership function,

membership functionsis and a T-norm T. It is further the maximl_Jm may be reached at severa! points and therefore
i . ' ) the determination of u may become ambiguous.

defined by a fuzzifier, a fuzzy rule base, a fuzzy inferencgy, control the following two defuzzifiers are the most

engine and a defuzifier. common. For a finite universe of discourse with M elements

U ={uq, ..., yu} the center-of-gravity defuzzifies defined
A Fuzzifier mapse eU" < R Nto a fuzzy set E. A fuzzifier as

is called thesingleton fuzzifieif the membership function M
uEg of E is defined as Z Uit (Yi)
LE(X) =0,x#e ug(e) =1 Sucy)
i=1

Another fuzzifier isug defined as a Gaussian function with ) ) _
centere. For the singleton fuzzifier and crisp inpuis= For a continuos universe of discourse the sum has to be

(e1,€0) the fuzzy inference rule can be simplified as replaced by an integral and the computation of this integral
' is considerably time-consuming.

ne(u) = A computationally more economic choice of a defuzzifier is
supeUx U{T((rA1 x A2—> B(& U),LE] x E2(€)} the so-calledcenter-of-averagedefuzzifier. Let m be the
AL x Ap—s B(& U) number of rules and lef denote the center of the fuzzy sets

Bj whereup; reaches its maximum (usually 1), i = 1...m. For
= T(ThAL(eD, hAx(€2). 1B(L) | whereng; m (usually L)
one-level inference (each rule is at most fired once) these
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centers depend only on the initial shapg.gf and they can controllers and, therefore, that Fuzzy Systems in general can

be computed off-line in advance. Then the defuzzifier ige viewed as a generalization of adaptive controllers.

defined as - L .
It is important to note that in this case the only important

information one needs to know about the membership

3

Q“Ci(h) function of B is its center p whereas the Gaussian
U=.:M ) membership fl:jnctilon.sh definirtl)g dth:z 1:;122)(; S?:ij Hor
_ tieand rule j have to be defined in detail.
Sug () componen
=1

Above a procedure has been outlined on how to determine
B.2 Fuzzy Basis Functions the centersjpand widthaij of the membership functions of

fuzzifier, product-T-norm and center-of-average defuzzifiedescription. In analogy to neural networks, this process is
can be written in a closed form as also referred to asnsupervised or self-organized or self-
adaptive trainingof the fuzzy system.

m
u=F(e,&,...en)= 2.bj¢j(e, ... en) An algorithm which calculates the parameteys i3 and o
1=1 based on the sampled system data using a least-squares
minimization algorithm based on the Gram-Schmidt-
where orthogonalization procedure is described in [2]. The degree
ﬁ# i ( ) m of the system, i.e. the number of rules has to be chosen as
o Aj S a free parameter. In terms of fuzzy systems this algorithm
gj(er,....en) =_n'1;]n— can be viewed as supervised or adaptive trainingf the
Y Tun (e) fuzzy rule base.
j=li=1

Fuzzy systems given in closed form, whose membership

This result can be derived by generalizing the produfgnctions and inference rules are established in such a
inference rule (1) for m rules and by substituting (1) int§ystematic unempirical manner, have the advantage that

equation (2). Further, it is assumed thag, (bj)=1 stability analysis can be performed and tasks like optimal
' ! control can be addressed. This is outlined in more detail in
chapter 6.

As above, the index j denotes the number of rules used for

evaluating the f_uzzy inpwt = (€1, ...,en) andk}indicate_the On the other hand, the empirical establishment of the
centers of gravity of the fuzzy setg Bhere B determines membership functions and the rule base allow one to

the control output u as an implication of the rules feed incorporate available human knowledge and heuristics. For
the case of a simple non-linear dynamic system, the “ball-

For Gaussian membership functions and-beam" system, it is shown in [2] that for undersampled
nAjj (&)= j = exp (-0.5[(¢- &j) ! 6il%, plants additional empirical rules can improve the controller's

performance. However, a small set of purely empirical rules

the fuzzy system is a universal approximator of angf1ay lead to unstable plant behavior.

continuos function. This result shows that this specific class
of fuzzy logic systems belongs to the class of adaptive
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Table 1: Overview of Fuzzy Systems Applications to Power System Control

Application References Fuzzy Membership | Comments
Approach Functions

PSS [4,5] Self-adaptive B-Spline 1-machine, 2-line-inf. Bus; Lab experiment, micro
machine system DSP controller

PSS [6,33] Rule-based Triangular 1-machine, 2-line-inf. Bus; Lab experiment, micro
machine system DSP controller

PSS [7-10,12-14] Self-adaptive Trapezoidal Simulation on Analog Power System Simulator (12
machine max); Prototype field test on 2 hydro units,
Frequency response study, capacitor bank switching

PSS [15] Self-adaptive Gaussian Computer simulation, utility power system

AVR & PSS [16] Rule-based Trapezoidal Computer simulation, 3-machine test system

PSS [17-18] Rule-based Triangular Computer simulation, 2-machine, 4-line-inf. bus

PSS [19] Self-adaptive Triangular Computer simulation, 1-machine, 2-line-inf. bus

PSS [20] Rule-based Triangular Computer simulation, 3-machine, 7-line-inf. bus

FACTS [11,21] Self-adaptive Trapezoidal Computer simulation, 5-machine, 13-line-inf. Bus,
capacitor bank switching, thyristor controlled braking
resistor, static VAR compensator

Induction [22] Rule-based Trapezoidal Lab inverter/3 hp induction motor, PC-based micro-

Motor controller

Variable speed [23,24] Rule-based Triangular Lab inverter/reduced ratings, induction motor, DSP-

drive based micro-controller

PWM Inverter | [25] Rule-based Triangular Lab prototype of wind energy conversion system
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. selection of the fuzzy control variables

C. State of the Art of Fuzzy Control for Powere membership function definition
Systems . rule creation
. inference engine, and

In the case of power systems, control measurement data &an  defuzzification strategies

be obtained for the discretized plant outputhe reference
signal r and the control inpuu. In analogy to neural
networks, let this data be referred to as the training data.

To design the FLC, variables which can represent the
dynamic performance of the plant to be controlled should be
chosen as the inputs to the controller. In addition to the
proper input signals, signal gains and fuzzy subsets should
IJoe defined. It is common to use the output error (e) and the
ate or derivative of the output Jeas controller inputs.

A short overview of the studies of fuzzy systems of type
F(e) as controllersp(e) in the area of power systems o
generation control is now given. The majority of fuzzyr
controllers can be found in the area of excitation control . o
especially power system stabilizers (PSS). An upcomi%a the case of the fuzzy logic based power system stgblhzer
important area is control of FACTS devices like thyristor P,SS?’ the ) generator Spee‘?‘ deV|at|oncoQ and its
and GTOs. Table 1 gives an snapshot of the state-of-the-§@fvative (Ao ), the acceleration, are considered as the
Given the considerable number of publications Table 1 cdputs of the FPSS. After sampling, two appropriate gains,
not claim to give a complete overview. Instead this shoiC and AG are applied to speed deviation and acceleration,
summary intends to provide the reader with somgespectively, and then fed to the FPSS. The output of the
information on a typical approaches and project states. ~ controller is also scaled by an output gain, UG, and added to
the AVR input signal.
Papers published by the same team of researchers on the ) ) ) .
concerning studied system size and test usually report Hpguistic variables. In this case, seven fuzzy subsets, NB
information given in the latest publication. Although thdNegative Big), NM (Negative Medium), NS (Negative
majority of projects perform feasibility studies usingSmall), Z (Zero), PS (Positive Small), PM (Positive
computer simulation only, several authors study th¥edium) and PB (Positive Big) have been chosen.
implementation of the fuzzy controller on a PC or DSP ilylembership functions for the input variables used here are
order to control actual small generators or motors in &yown in Figure 4. These membership functions are
experimental laboratory environment. In most cases t§¥mmetrical and each one overlaps with the adjacent
membership functions are established based on data samgigctions by 50%.
Those approaches listed as rule-based attempt to justify the

fuzzy sets in terms of linguistic descriptions like “if angle is Table 2: FPSS Control Rule Table
small then deviation should be small”.The comparison of Aw
fuzzy controllers and conventional controllers stresses NB [NM |NS | Z PS | PM| PB

advantages of fuzzy controllers as being “generic” NB [NB [NB |NB |[NM [NM |NS | Z
parametric models instead of circuit based state space | NM |[NB [NB [NM |NM |NS |[Z PS
models. The self-adaptive controllers can be easily tunedto | NS | NB| NM | NS | NS | Z PS | PM
different operating conditions and all projects report bettek, | Z NMINM INS | Z Ps | Pm | PM
tracking capabilities of the fuzzy controllers when compared PS | NMI NS | Z PS| Pps| PM PB
to conventional controllers. However, the sensitivity issues PM I NS | Z Ps | pMl Ppml PBI PB
concerning the range of validity of the tuning and the PB | Z PS | Ml PMI PBI PBl PB
detection of changes of operating conditions still need to be

inv_es_tigated fpr co_nventional as well as for fuzzy controller§n practice, the membership functions are normalized in the
This is especially important for power system control Wheri?]t rval [-L, L] which is symmetrical around zero. Thus,

gqpologt]_y, Ioadl and generation can change stochastically trol signal amplitudes (fuzzy variables) are expressed in
IScontinuously. terms of controller parameters (gains). These parameters

. . can be defined as:
D. Application of a Fuzzy Logic Controller as a

Power System Stabilizer K; = 2L/X

range j

The design process of the fuzzy logic controller (FLC) ha¥here X.q.;defines the full range of the control variable X
five steps: In this study, both inputs of the FPSS have seven subsets.

Thus, a fuzzy rule table with forty-nine rules should be
constructed. A rule table which is formulated based on the
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past experience of manual tuning of a conventional PSBsturbance they should be mapped to the saturated region of
(CPSS) is shown in Table 2. the “Large” domain.

In the next step, the controller output is computed by tHewas found for the system under study that for different
inference mechanism. As an example, consider a pair gplied disturbances on the system, the magnitudacdf

Ao and A inputs to the controller. In fuzzification stagewas about ten times that dfow . As the same membership
these inputs are converted to membership grades for eachupictions are used here for both inputs, the input gain for
the seven subsets, e.g, (PB), u, (PM), etc., andu,; (PB), Aw should be about ten times the input gainfey . After

1, (PM), etc. Thus, there are a set of forty nine pairs dxing the input gains, the output gain should be selected

membership grades for each of input pair. The smayighch that the controller is sensitive to the errors in the lower
element in each pair would be the grade of membership fggion of the universe of discourse. At the same time, to

any of the possible control actions. For example, the Fp%nlmlze the time the control stays in the saturated region of

output membership grade for the first rule in Table 2 is givef]lshcontm"er’ the output gain selected should not be very
by: '

1 . The performance of the FPSS was studied, both by
Hout = Min[ g (NB), pg (NB)] simulation studies on a seventh order non-linear model and
by experimental studies in the laboratory on a physical

The output of the FPSS is limited to 0.1 pu and is divided fRodel of a single machine infinite bus system.  For
seven subsets. Also, the output membership functions &Perimental studies the FPSS was implemented on a single

chosen as singleton functions as indicated in Table 3. board computer, Intel iISBC386/21. In all these studies, the
sampling period was set at 10ms. Studies were performed
Table 3 Output Membership Functions with the FPSS and a fixed parameter CPSS for a variety of
Output [ NB [NM [ NS | Z | PS| PM| PB disturbances over a wide range of operating conditions. The
subsets control output of both stabilizers was limited to 0.1 pu in all
U, pu |-0.10 -0.06 -0.0B 0.0 0.03 0.06 0.10 studies. The parameters of the CPSS were tuned such that

the system response with the CPSS was practically the same
The output of the inference process at this stage is a fuZly the nominal operating point. lllustrative experimental
set. In order to take a nonfuzzy (crisp) control action, th@sults for a 4.5% step decrease in voltage reference and
fuzzy control action inferred from the fuzzy controlreturn to initial condition at a heavily loaded operating point
algorithm must be defuzzified. Three differentof P =1.12 pu, 0.98 pflag are shown in Figure 5.
defuzzification methods, the Max criterion method, th
Mean of Maximum method and the Centre of Gravity
method are commonly used [26]. To ensure that all of tt
fired rules have some contribution in the output contrc
action, the Centre of Gravity method, using the followin
equation, is employed in this study:

.|I_': 0m =0 ﬂmﬁ.ﬂﬂﬂa aa (=N ] 1.
Rules i .
ZiZ7 " Uout (Z) pout (2) ) _
Upss= Rules i Figure . Membership Punctions for A @ and A d
{21 Hout(2)
where ﬂlout (Z) denotes the output membership grade fc e " p— :-'fii
ith rule with the output subset of Z. To achieve the be : '
performance with FPSS, the input and output gains need i
be selected properly. For this purpose, the speed deviat ! ":ﬂ
and its derivative were measured for a variety of small ar e el it
large disturbances applied to the system. E i
The universe of discourse for both inputs of the FPSS |
normalized as shown in Figure 4. Therefore, appropria
gains should be chosen such that they map the meast BT BB 900 W&o 98 3RO a0s
inputs of the FPSS to their suitable linguistic variables. Fi — .m 5% "ﬂ';:wtmwmr"&rme -
example, for a small disturbance the measured inputs sho T B & oo e 8 difion T o 112 pu. 7 0.95 lng

be mapped to the “Small” domain, whereas for a larc
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E. A Self-learning Fuzzy Power System Stabilizef his adaptive network is functionally equivalent to a fuzzy
logic PSS. Because the adaptive network has the property of

A lot of effort is required in the creation and tuning of théearnmg, fuzzy rules and membe_rsh|p functions of Fhe
fuzzy rules for an FLC which can be time consuming c'zln%omro"er can be tuned automatically by the learning

non-trivial [26]. A self-learning adaptive network can bealgorlthm. Leaming is based on the error evaluated by

used to reduce this effort. A class of adaptive networl?é)mparmg the output of the ANFPSS and a desired PSS.

which are functionally equivalent to FLC combines the ided! :i|;ﬁ:ecaloflttl;]agloer;t:ngs/selr?r? ﬁ?_gt?"ﬁtr g]:t)z:\ er'éhirirggt f%er
of the FLC and adaptive network structures [27]. As a res & ’ P P q

an FLC network can be constructed automatically b[ralning may not be easy to procure. A self-learning FLC
learning from the training examples. 9] does not require another desired controller to obtain the

training data. It is trained from the controlled plant output

Essentially, an adaptive network is a superset of multi-la);}Q/P'Ch in the case of the self-learning ANFPSS has been

feedforward network with supervised learning capabilit .aken as the generator speed deviation.

The network consists of nodes and directional links throuqn this approach, first a function approximator (or model) is
which the nodes are connected. Each node performs a PP ’ PP

particular function which may vary from node to node. | equired to represent the input-outqu behaviour Qf the plant.
this network, the links between the nodes only indicate t  adaptive network based fuzzy logic model, which has the

direction of flow of signals and a part or all of the node3®Me structure as_the contr_oller, Is emp'oyed to model the
contain the adaptive parameters. These parameters jpnt.  The function of this model is to compute the

specified by the learning algorithm and should be updated mgerglr?;i\gef Frfethbeacrzﬁogreolpglgj;tgtlignWIthPoéizzedct(())ng:qigsgttlybyby
achieve the desired input-output mapping. propagating errors between the actual and the desired plant

An adaptive network based FLC employed as a fuzzy Iog?CUtPUtS’ back through the mode_l, error in the c_ontrol signal
PSS (ANFPSS), Figure 6, has two inputs, the generat%?’ndbe calgulart]ed. The" errorAlrE)Ithtla( gqntrol S|gfnarl] can Ifbe
speed deviation and its derivative, and one control outpliﬁe to gig t r? contro er.d i oc t|ag|r(am C; the Sf -
[28]. The node functions in each layer are: carning » Showing an adaplive hetwork containing two

subnetworks, the fuzzy controller and the plant model, is
shown in Figure 7.

. layer 1 performs a membership function
* layer 2 represents the firing stre_ngth o_f_each rule The training process for the controller starts from an initial
* layer 3 calculates the normalized firing strengthyaie ot t = 0. Then the FLC and the plant model generate
. giﬁhgﬁleut is the weighted consequent part Of\the next states of control and@ at time t = h. The
th)(; rule tat?le 9 q P process continues till the plant state trajectory is determined
based on the minimization of a performance index.
. layer 5 computes the overall output as the

summation of all incoming nodes.

’ = CONTROLLER
i : : (o sty 8] B | ] e
. . H : { EEEEQRA
Tl E
] Epar [ ;] :
. B PLANT MODEL
Backpeopagatin 7 o
] . - H : of Eroe -
: | I DEEEEENDECODEER
_ Plant
! Figure 7. Exror backpropagation through plant modej 0P
Ly Lew L 3 Ripwd Ll & ! Ertor

Figure &, Architesture af ANF P55
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a 5kVA one machine infinite bus laboratory system, and the
Analog Power System Simulator at the Research Laboratory
s | ' SN PR of the Kyushu Electric Power Co.. mainly to investigate the
] —— AMFFSS feasibility of the proposed FLPSS and also to demonstrate
the excellent control performance compared with
conventional PSSs. First site tests were performed
successfully at one of the hydro power stations in the
Kyushu Electric Power System in October 1992. Before the
installation of the FLPSS as a real equipment, two years long
term evaluation of the PC based prototypes of the FLPSS
was performed from March 1994 to March 1996 on two
hydro units with the rating of 20 to 30 MVA in the Kyushu
Electric Power System.

CRL

AR pesams

Pawer Angla Daviation (rad)

Do

i

Following the long term evaluation, the PC based FLPSS
18 was installed on a 90MVA hydro unit in May 1997. After
Figure 8. Response to & 0.20 pu step in torgue und standard site tests_and al_so di_sturbance tests, the PC based
" leading paw:rf;mnﬂmnﬁrjun qoe under FLPSS has been in service since June 1997ghrdvay
1999. The PC based FLPSS has been replaced to the FLPSS
manufactured by Toshiba Corp. in May 1999. The
A number of studies have been performed to investigate th’%nufacturer made FLPSS has been in service after the
performance of the self-learning FLC structure employed @gandard PSS tests. In addition, a fuzzy logic excitation
a self-learning ANF PSS on a single-machine infinite-bugontrol system is also briefly introduced as further studies.
system [30,34,35]. One illustrative result for a 0.2 pu stephe damping of oscillations is further improved by applying
increase in torque under leading power factor conditions tige fuzzy logic excitation control system compared with the
shown in Figure 8. combination of the conventional automatic voltage regulator
(AVR) and the FLPSS. The fuzzy logic excitation control
F. Field Studies of a Fuzzy Logic Power Systensystem has been tested on the 5kVA laboratory system and
Stabilizer also on the Analog Power System Simulator to demonstrate
its better control performance.

004
L] 5

Over the last several years, there has been work on the
development of a fuzzy logic power system stabilizer to . _ )
enhance the damping of generator oscillations as a jofntt Simulation Studies [31, 8,9]
research work between Kumamoto University and the
Kyushu Electric Power Co. Through simulation studies ar@imulations were performed for a simple one machine
also experimental studies on a 5kVA laboratory systertiifinite bus systems and also for several multi-machine
several hydro units in the Kyushu Electric Power Systerpower systems to demonstrate the robustness of the FLPSS.
and the Analog Power System Simulator at the Researthrough the simulations, the roles of the adjustable
Laboratory of the Kyushu Electric Power Co., the excelleftarameters were also clarified. In addition, it has been
control performance of the proposed fuzzy logic poweshown that the FLPSS provides better damping compared
system stabilizer has been demonstrated. The fuzzy logih widely used conventional PSSs(CPSS).
power system stabilizer manufactured by Toshiba Co. is now
in service on a 90MVA hydro unit in the Kyushu Electric
Power System. Further studies are now ongoing for tfe2 Experimental Studies on 5kVA Laboratory System
development of the integrated fuzzy logic generatdi3]
controller and the fuzzy logic excitation controller.

To demonstrate the effectiveness of the proposed FLPSS,
This section summarizes the development of the fuzzy logikperiments were performed by using a laboratory system
power system stabilizer (FLPSS) during the last severglted at 5 kVA, 220 VAC, and 60 Hz shown. Disturbances
years. First, simulation studies have been performed jgre added to the laboratory system by changing the length
investigate the control performance and the robustness of #ethe transmission line which connects the generator to a
proposed FLPSS by using a simple one machine and infinggmmercial power source. On the monitoring system, real
bus system and several multi-machine power systems as ffife monitoring is available to check the FLPSS

study systems. Then, after setting up a personal compu@iformance. Wider stable region is achieved by applying
(PC) based FLPSS, experimental studies were performedfB three-dimensional ELPSS.
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F.3 Site Tests in October 1992 [32] The second prototype was installed on the unit (23.4MVA,
6.6kV, 200rpm) at the Kawabaru Hydro Power Station on

First site tests were performed at the Itsukigawa Hydfjay 26, 1994 after the site tests. This unit has also a brush-
Power Stations in the Kyusyu Electric Power System i1§ss AC exciter (155kW, 160V). The excitation system has
October, 1992 before the replacement of a 5 MVA unit (Unit digital AVR, therefore, the tuning of the FLPSS
No. 1. Step changes of the AVR reference voltagBarameters werperformed at the site using step changes of
reactance switching, and faulty synchronization of the studfye reference voltage at the operating point of 5 MW output.
unit were considered as the disturbances at the site. TH maximum size of the stabilizing signal was also set to
FLPSS demonstrated the better performance comparing WitPS pu.
the CPSS.

Through the long term evaluation, the better performance of

F.4 Evaluation on Analog Power System Simulator [10] the FLPSS was demonstrated_ and the reliablity of the PC
based FLPSS was also recognized.

The control performance of the FLPSS was investigated 2% Permanent Installation after Disturbance Tests
the Analog Power System Simulator at the Research

Laboratory of the Kyushu Electric Power Company. for ) _
several multi-machine systems. Through the investigation, if'¢ same PC based FLPSS was installed on the 90 MW Unit
was demonstrated that the FLPSS could damp multi-modeat the Hitotsuse Hydro Power Station in the Kyushu
oscillations: low frequency global mode of oscillations anélectric Power System in May 1997. Unit 2 has a thyristor
high frequency local mode of oscillations exciter. The fuzzy control parameters were tuned at the site
for a 3 % step change of the AVR reference voltage.
F.5 Long Term Evaluation of PC Based Prototype [10] Disturbance tests were also performed_in June 1997 before
the actual utilization of the FLPSS. Figure 10 shows the
. N cqonfiguration of the South-Kyushu Subsystem. The
The PC based prototype of the FLPSS is shown in Flgured turbance was added to the system by opening the 220 kV

including the monitoring unit (PQVF), the protection unit,. : : :
. ; e at the location of A. Figure 11 and Figure 12 show the
and the uninterruptible power system (UPS). The PQ.\%sults of the disturbance tests. These figures illustrate the

monitors the real and the reactive powers, the termi sponse of Unit 2 on which the FLPSS was installed.
voltage, and the system frequency.

North Kyushu

Thermal PS
700 MW

Hydro PS
90 MW

—

60 km .
L Hitotsuse
Thermal PS Y
1000 MW 180 MW
500 kV SS

Nuclear PS
Figure 9. PC Based Prototype of FLPSS 1700 MW

The first prototype was installed on a hydro-unit (30.2MvA, Figure 10. Configuration of South Kyushu Subsystem
11kV, 600rpm) at the Kurokawa No. 1 Hydro Power Station

on March 14, 1994. This unit has a brush-less AC

exciter(160kw, 260V). According to the experimental

results on the Analog Simulator, the adjustable parameters

were set at the site. The maximum size of the stabilizing

signalUmaxwas set to 0.05 pu because of the regulation for

the unit.
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then. The monitoring of the FLPSS performance has been
continued for the future installation of the FLPSS on the
other large-scale units.

G. Conclusions

In the previous sections a fuzzy system has been defined and
it is shown how a fuzzy system can be used to approximate a
controller. The determination of the membership functions
and the fuzzy rule base is illustrated in two ways:

- the empirical way using linguistic sets and rules and
human knowledge
- the self-organizing way using data samples and analysis.

Both approaches do not necessarily need a detailed state-
space model of the plant. The advantage of the first approach
is the use of heuristics and human knowledge. However the
demonstration of stability for this type of controller is very
tedious if not impossible.

Self-organizing controllers on the other hand fall into the

class of adaptive controllers and the related stability issues
can be explored with adaptive control techniques. Cited
results show that fuzzy systems generalize the concept of
function approximation. There is a class of fuzzy systems
whose mapping is given as a Basis Function expansion of
controller input and output data.

A lot of progress has been made concerning the application
of fuzzy systems to power system control problems. For

feasibility studies most authors experiment with empirical

rules and data. However, a few projects, using self-

organizing techniques, have been installed on a
microprocessor and tested in a research lab environment
either in academia or a utility. Recently, fuzzy controllers

have achieved commercialization.
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Chapter 4 Control Design and Stability

A. Control Design Techniques conventional fuzzy
control control

When fuzzy systems are used as controllers, they are called
fuzzy controllers If fuzzy systems are used to model the

process and controllers are designed based on the model,
then resulting controllers also are called fuzzy controllers. ‘
Therefore, fuzzy controllers are nonlinear controllers with a

special structure. Fuzzy control has represented the most

successful applications of fuzzy theory to practical problems. ‘ ' ‘

contoller

A

control theory

Fuzzy control can be classified into static fuzzy control and
adaptive fuzzy control. In static fuzzy control, the structure
and parameters of the fuzzy controller are fixed and do not

change during real-time operation. On the other hand ¢ gesign techniques for fuzzy controllers can be classified
adaptive fuzzy control, the structure and/or parameters of the, ihe trial-and-error approach and the theoretical approach
fuzzy controller change during real-time operation. Fixe ]. In the trial-and-error approach, a set of fuzzy IF-THEN
fuzzy control is simpler than adaptive fuzzy control, pu ules are collected from human experts or documented
requires more knowledge of the process model or heurisfif,yjedge base, and the fuzzy controllers are constructed
rules. Adaptive fuzzy control, on the other hand, is MO, these fuzzy IF-THEN rules. The fuzzy controllers are
expensive to implement, but requires less information andsiaq in the real system and if the performance is not
may perform better. satisfactory, the rules are fine-tuned or redesigned in a
) ) number of trial-and-error cycles until the performance is
A.1 Fixed Fuzzy Controller Design satisfactory. In theoretical approach, the structure and
parameters of the fuzzy controller are designed in such a
Fuzzy control and conventional control have similarities anglay that certain performance criteria are guaranteed. Both
differences. They are similar in the sense that they mugsproaches, of course, can be combined to give the best
address the same issues that are common to any confoalzy controllers.
problem, such as stability and performance. However, there
is a fundamental difference between fuzzy control anfrial-And-Error Approach:
conventional control. Conventional control starts with a
mathematical model of the process and controllers &f§q {rja|-and-error approach to fuzzy controller design can
designed based on the model. Fuzzy control, on the othel <\, mmarized in the following steps:
hand, starts with heuristics and human expertise (in terms of
fuzzy IF-THEN rules) and controllers are designed by
synthesizing these rules. That is, the information used to
construct the two types of controllers is different; see Fig. 1.
Advanced fuzzy controllers, however, can make use of both
heuristics and mathematical models.

Fig. 1 Fuzzy control and conventional control.

1. Select state and control variables. The state
variables should characterize the key features of the
system and the control variables should be able to
influence the states of the system. The state variables
are the inputs to the fuzzy controller and the control
variables are the output of the fuzzy controller.

2. Construct IF-THEN rules between the state and
control variables. The formulation of these rules can
be achieved in two different heuristic approaches. The
most common approach is the linguistic verbalization
of human experts. Another approach is to interrogate
experienced experts or operators using a carefully
organized questionnaire.

3. Test the fuzzy IF-THEN rules in the system. The
closed-loop system with the fuzzy controller is run and
if the performance is not satisfactory, fine tune or

For many practical problems, it is difficult to obtain an

accurate yet simple mathematical model, but there are
human experts who can provide heuristics and rule-of-thumb
that are very useful for controlling the process. Fuzzy
control is most useful for these kinds of problems. If the
mathematical model of the process is unknown, we can
design fuzzy controllers in a systematic manner that
guarantees certain key performance criteria.



redesign the fuzzy controller and repeat the procedulinear system and the fuzzy controller is connected in the

until the performance is satisfactory. feedback path as shown in Fig. 2.
The resulting fuzzy IF-THEN rule can be in the following _
_ r=0 u dx y

two types: » — = Ax+ Bu -
Type I: IFx,is A AND ... AND x, is A,

THENuis B'.
Type I:IFx, is AL AND ... AND x, is A,

THENUs ) + ¢, x+..4 ¢ x. Fig. 2. Closed-loop fuzzy control system.

The overall system is described by the followin
In Type |, both the antecedent and consequent ha(\-fﬁuationS' v y ! I y wing

linguistic variables, A, k=1,2,...,n and B, respectively. (D)
X(t

On the other hand in Type Il, the consequent is a —7 = Ax(t)+ BU9, (1)
parameterized function of the input to the fuzzy controller, dt

or the state variables [2]. Comparing the two types, the y(t) = CX(9), 2)
THEN part of the rule is changed from a linguistic u(t) = o[ y( 9], (3)

description to a simple mathematical formula. This change

makes it easier to combine the rules. In fact, Type Il, the

Takagi-Sugeno system, is a weighted average of the rulesnhere x(t), u(t), y(t) e® and @ is a fuzzy system. Then
the THEN parts of the rules. This framework is useful ive have the following exponential stability theorem:

tuning the rules mathematically [3]. Type Il, on the other

hand has drawbacks: (i) its THEN part is a mathematical

formula and therefore may not provide a natural frameworkheorem 1.1[4]: Consider the system (1)-(2), and suppose
to represent human knowledge, and (ii) there is not mughat (a) all eigenvalues of A lie in the open left half of the
freedom left to apply different principles in fuzzy logic, sccomplex plane, (b) the system is controllable and observable,
that the versatility of fuzzy systems is not fully representeghd (c) the transfer function of the system is strictly positive
in this framework. real. If the nonlinear functio satisfies®(0) = 0 and

Theoretical Approach: yo(y)>0,vye R 4)

, . . then the equilibrium poinx =0 of the closed-loop system
Knowing the mathematical model of a system is not @)-(3) is globally exponentially stable

necessary condition for designing fuzzy controllers.
However, in order to analyze the performance of the closeé

loop fuzzy control system theoretically, we need to hav der control, not on the controller. They are simply

some knowledge on the model of the systdrhis approach requiring that the open-loop system is stable and well-

assumes a mathem_aucal model for the system, S0 il aved. Conceptually, these systems are not difficult to
mathematical analysis can be performed to establish t

" f the desianed svst Gntrol, and the conditions on the fuzzy controller are not
properties ot the designed system. very strong. The theorem guarantees that if we design a

Theoretical approach can be classified into the followinft(%L_:Zzy controller &(y) that satisfies(0) = 0 and (4), then

onditions (a)-(c) in the theorem are imposed on the system

categories: e closed-loop system is globally exponentially stable,
1. Stable controller design provided that the system under control is linear and satisfies
2. Optimal controller design conditions (a)-(c). This leads to the design of a stable fuzzy
3. Sliding mode controller design logic controller:

4. Supervisory controller design
5. Fuzzy system model-based controller design ~ Step 1. Define 2N+1 fuzzy set&' on the output space [-1,
1]that are normal, consistent, and complete with the
1) Stable Controller Design For control systems, stability triangular membership functions as shown in Fig. 3, where
is the most important requirement. Conceptually, there affee first N fuzzy sets cover the negative interval [-1, 0], the
two classes of stability: Lyapunov stability and input-outpu@st N fuzzy sets cover the positive interval [0,1], and the
stability. We assume that the system is represented ageater of the middle fuzzy set fiziN+1 is at zero.
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It can be shown that the fuzzy controlléx(y) of (7) is

T continuous, bounded, and piecewise linear, and hence
K 1 nea - satisfies the Lipschitz condition (8) [1]. Thus, the closed-
AT AT AT loop fuzzy control system in Fig. 2 Is- stable for all

p €[1, ].

The stable fuzzy controller design can be easily extended to
multi-input multi-output systems withm input/output
variables. The IF-THEN rule (5) is generalized for jthe

group ( = 1,2,...m) to the set of [, ZN, +1 )rules:

Fig. 3. Fuzzy controller membership funcuons. IFy, isA: and ... ang;, is A THEN y is B}l..lm )

Step 2. Define the following 2N+1 fuzzy IF-THEN rules:

wherel; = 1, 2, ..., R+1,i = 1,2,...m and the centers of
IFyis A', THENuis B (5) fuzzy setsg!.» are chosen such that
wherel = 1, 2, ..., 2N+1, and the centers of fuzzy sBts <0 for I, =1....N,
are chosen such that ur'"l=0 for I =N, +1 (10)
|0 for I=1...,N 20 for I, =N;+2....2N, +1
u{=0 for l=N+1 (6) _
where |; for i = 1,2,...m can take any values from
20 for I=N+2.. . 2N+1 {1,2,...N+1}. The resulting fuzzy controller is
Step 3. Design the fuzzy controller from the IF-THEN 2N+1 zNual "I ()
rules (6) using the product inference engine, singleton U =-@,(y)=- 'flzNﬂ '21N+l L (11)
fuzzifier, and center average defuzzyfier; i.e., the designed S Yneul(§ EYTIN\D)

fuzzy controller is
| wherej = 1,2,...m.

2N+1u U ‘(y)

u=-o(y)= —'QM—A

) ) 2) Optimal Controller Design -The stable controller
1 Hp

determines the range for fuzzy controller parameters for
which the stability is guaranteed; however, it does not show
how to determine specific values of the parameters.
Optimal controller, on the other hand, determines the
The above design steps imply that in designing the fuzzgpecific values of the fuzzy controller parameters such that
controller, we do not need to know the system model. Alsertain performance criterion is minimized.

where u , (y) are shown in Fig. 3 and satisfy (6).

there is much freedom in choosing the parameters of the From the stable fuzzy controller (11), we define the
fuzzy controller. fuzzy basis functions(x) = (B (%), ..., j (X)) as

. . . ITL 1H g (%)
When a nonzero input is applied to the fuzzy controlled b(X) = - —x3 o (12)
system shown in Fig. 2, the input-output stability can be D I '1”4‘ (x))

established following the following theorem:
wherel; =1,2,..., N+1,1 =1,2,.. Nand N =TT, (2N, + 1)

Define anmx N parameter matrix® as
Theorem 1.1.2 [4]: Consider the system in Fig. 2 and ;
suppose that the nonlinear controlldr(y) is globally -0,

Lipschitz continuous, that is, o= - (13)
@(y) - D(¥,) < K= ¥, VY e R (8)

for some constari. If the eigenvalues oA lie in the open  where @] e R*" consists of the N parameteu$™”  for |,
left-half complex plane, then the forced closed-loop system: 1 o ..,N+1 in the same ordering Bgx) for 1 =1,2,..N.

in Fig. 3 isL;-stable for allp <[1, o]. Then the fuzzy controllen = (u,,...,u, )" can be expressed

as
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u=0hx. (14) |Af (x)| < F(x) (23)

Substituting (14) into (1), the closed-loop system is

obtained as where Af(x) is unknown butf(x) and F(x) are known.

] The control objective is to determine a feedback control
X(t) = A+ BO(Y (X)), (15 u=ux) such that the statewill follow the desired state

where the parameter matrix is assumed to be time-varyingty = (Xq, X4+, X;™)", i.e., the tracking error
The optimal control problem can then be formulated to

minimize the following performance criterion e=x-x,=(g8&-, )T (24)
should converge to zero, whege= X - X,
J=3ix"(T)SX T+ 21.0[ X Qx K »0" & (b)k dt(16) Define a scalar function
_ d n-1
Thus, the problem of designing the optimal fuzzy controller S(x, = (EJF A)Te (25)
becomes the problem of determining the opting(t), e QA G AZE I e

which can be solved by applying the Pontryagin maximum
principle [5]. Specifically, by minimizing the Hamiltonian where 1 is a positive constant. Then
function s(x,f)=0 (26)
H(x, pO)= X Qx+ BOT RO b P( Ax B D (17) defines a time-varyingsliding surface B)t in the state
space R". The equation (26) has a unique solution
the optimal fuzzy controller parameter matrix is obtained asg(f) = 0 for the zero initial conditiore(0) = 0. Thus, the
O'M)=-3R'B P (X6 % B X", (18) tracking control problem is equivalent to keeping the scalar

function s(x,t) at zero. This can be achieved by the
where x and p are the solution of the Hamiltonian system: sliding condition

o AH(X, p*,@*); X(0) = %, 145 <-n|d (27)
0&) L (19)  when the state is outside &), where nis a positive
P = _M; p(T) = SX T constant.
X Consider, for example, a second order syst&R)(
and thus the optimal fuzzy controller is then the sliding surfac&(y is
U =0 ()b(X) . (20) S(X,h=e+Ae= %A% Y- =0 (28)
We note that the optimal fuzzy controller (20) is a stateWh'Ch is a strait line in the«— x phase plane as shown in
feedback controller with time-varying parameters. Fig. 4.
3) Sliding Mode Controller Design - Sliding mode s() . X
control is a robust control method for nonlinear and
uncertain dynamic systems [6,7]. It can be applied in the \ B(1) boundary layer
presence of model uncertainties and parameter disturbances, vy
provided that the bounds of these uncertainties and >
disturbances are known. In many respects, the sliding
mode control is similar to fuzzy control [8,9]. chattering

Consider a SISO nonlinear system
x™ = f(x)+u 1) Fig. 4. Sliding surface, chattering, and boundary layer.

where u € R is the control inputx € R is the output, and It can be shown that the sliding condition (27) is satisfied if
x=(x% %, X" ¢ R is the state vector. The We choose the control to the second order system as

uncertainty of the model is bounded by a known function: U=— f(x) +% - Ae—[n+ KXsgt 3. (29)

f(x) = f(x) + 4f(x) (22)  This sliding control law, however, is discontinuous across

and the sliding surface and, since the control switching cannot
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be perfect, it causes chattering in when implemented, bs the two-level control system in Fig. 5(a), the fuzzy
shown in Fig. 4. In order to eliminate chattering, a thinontroller can be designed without considering stability and

boundary layer around the sliding surface, the supervisory controller can be designed to ensure the
stability and other performance requirements [10]. In this
B(t) = {x[¢x}[< ¢, (30) way, there is much freedom in choosing the fuzzy controller

is introduced so that the control changes continuousRrameters and consequently, the design of the fuzzy
within this boundary layer, Fig. 4, wherel and controller is simplified. Since the fuzzy controller is to

c—d/ i are the thickness and width of the boundarg/erform the main control action, the supervisory control will

) o ... Play a supplementary action, that is, if the fuzzy controller
Iayerz .respectlvely. . If the control law satisfies the sliding,q s well, the supervisory control will be idle; if the fuzzy
condition (27) outside of the boundary lajft), then the = c,niro| system tends to be unstable, the supervisory
error tracking is guaranteed to be within the precision of .~ ntroller starts working to enforce stability.

Thus, a smooth controller can be designed that does not

need to switch discontinuously across the sliding surfacgonsider the nonlinear system

For the second-order system, this is achieved by modifying

the control law (29) as X = f(X %..., X"+ g% %..., KP)u  (33)

u:—f(x)+'>'<d—lia—[n+ Rx)]sat ¢ ¥ (31) where xeR is the output, ue R is the control,
X=(%%....X"?) is the state vector, anfland g are

unknown nonlinear functions with> 0 assumed. This type
-1 if s/d<-1 of system can be linearized with nonlinear feedback and a
sal(s/ 9=4s/d if -1<s/ b<l (32) stable linear controller con be designed [11].

1 if s/d>1

where the saturation function is defined as

Suppose a fuzzy controller is already designed and we want
The fuzzy controller can now be designed by viewing th;e0 fsueariﬂﬁe :E: Stsatlglgty )?f itge Sil?fso ?&:QOpbszrslgeerg mi t6he
smooth sliding controller (31) as the center of the outpl]ft <M. V> 0 whereM. i ; 3; Thi ' b' v
fuzzy set,g(e 8. X(t) < M,,vt> 0, whereM, is a constant. is can be

achieved by supplementing a supervisory controller to the

4) Supervisory Controller Design The fuzzy control fuzzy controller:

systems discussed above are all single-loop (or single-level) U= Uy,,(X) + I"'ugx) (34)
controllers. For complex systems, the single-loop control e

systems may not effectively achieve the control objectiveghere the indicator functiohi = 1 if |x| > M, and!” = 0 if |x|
and multi-level control structure becomes a necessity. TRe\ . The goal is now to design the supervisory controller

low level controllers perform fast direct control and theych thatx| < M, for all t> 0. The closed-loop system then
higher-level controllers perform low-peed supervisiongecomes "

There are two types of two-level controls: a) low-level

fuzzy control and high-level nonfuzzy supervisory control, XM = £(x) + g(X) U,,(X) + dX) ' u(x) (35)
and b) low-level nonfuzzy control and high-level fuzzy ) o )
supervisory control, Fig. 5. The feedback linearization controller for the system (33) is
given by
Plant — Plant — 1
Uy = ——[-F(x) —k'x 36
FL g(X)[ (x) ] (36)
Nonfuzz
Fuzzy Controller ngvnf,";:,":"f‘ where k =(k,,...,.k )" € R'is such that all roots of the
i i polynomial s" + k *+--+ kare in the left-half complex
Suerviemy Superaory plane. The system (35) is then rewritten as
Controller Controller
(a) (b) X(n) = _kTX + g(X)[ ufuzz_ UFL+ I* UJ (37)

. or, in the matrix form,
Fig. 5. Two-level fuzzy control systems: (a) fuzzy-local

nonfuzzy-supervisory control, (b) nonfuzzy-local fuzzy- X = Ax+b[Uy,, — Ug + 1'u] (38)

supervisory control.
where
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0 1 0O 0 - 0 O wheree(t) is the error between the set point and the response
0 0 1.0 - 0 0 0 of the system, and, = K/K, andT, = Ky/Ky are the integral
and derivative time constants, respectively.
A= - T (39)
0 0 0o 0 - 0 1 The PID gains are usually tuned by experienced experts
T g based on heuristics. This is where fuzzy IF-THEN rules can
' be used. The PID gains can be tuned by analyzing the
The supervisory controllen, can be designed to responses of the system on-line [12]. The input to the fuzzy
guarantegx| < M, for all t> 0 by introducing a Lyapunov System can be(t) and &1, and outputs of the fuzzy system
function can be the PID gains. The PID gains are usually normalized,
for example, as

1+
V ==x"Px (40) _ — Ko
2 KP — KKP K}:mln (47)
whereP is a symmetric positive definite matrix satisfying Pmax 2P min
the Lyapunov equation Then the fuzzy IF-THEN rules can be of the form:
ATP+PA=— 41 . . ey —y
- Q @D Ee)isA and¢) ish THENK isC K is'D K iSE
whereQ is specified by the designer. Using (39) and (41), (48)

we have
o whereA, B, C, D', andE' are fuzzy sets, arld= 1, 2, ...M.
V:__XTQ>(+XTPO[LIIUZZ_ uFL+ Lg
2 (42)  5) Fuzzy System Model-Based Controller Desihe fuzzy
§|xTPb|( +|uFL|)+xT oy control systems discussed above assumed that the systems
under control are represented by ordinary linear or nonlinear

The supervisory controllen; can be designed such thatdynamic system models. In many practical problems,

ufuzz

V <0 by choosing however, human experts may provide linguistic descriptions
about the system that can be combined into a model of the

) T 1 .y T system; this model is calledfazzy system modeThere are
U, = —sigrix" Rb) a(f +[kx) + ufUZZI (43)  two types of fuzzy system models, the Takagi-Sugeno-Kang

(TSK) fuzzy system model [13-15] and the fuzzy-

wheref’ andg, are the upper and lower boundsfafndg, —autoregressive-moving-average (FARMA) model [16,17].
respectively. ) _
Since the indicator function is a step function it may causehe Takagi-Sugeno-Kang Fuzzy System Maidted: Takagi-

chattering at the boundafy = M,, and this can be avoided Sugeno-Kang (TSK) fuzzy system was proposed as an
by defining a continuous function alternative to the usual fuzzy systems. The TSK fuzzy

system is made of the following rules:

0 X <a ) .
|- a o IFx,isC, and-- and x is¢; THEN'y= ‘& 'cx-+ |G X
" = M _a as|x <M, (44) (49)
1 x| > M,

where C are fuzzy sets¢! are constants, ard= 1, 2, ... M.

Thus, the antecedent parts of the rules are the same as in the
Fuzzy controller can be used to tune the gains akual fuzzy IF-THEN rules, but the consequent parts are
conventional proportional-integral-derivative (PID)linear combinations of the input variables. Given an input
controllers. The transfer function of a PID controller has thgz(xl___,)%)T eUc R, the output f(x) eV Rof the

following form: TSK fuzzy system is computed as the weighted average of

G(9=K+ K/ s+ Ks (45) the outputs, i.e.,

where K,, K,, and K, are the proportional, integral, and F(x) = >hy'w (50)
derivative gains, respectively. An equivalent form of the TOoTM

1=1
PID controller in time-domain is )
where the weighte/ are computed as

1. .
() = Kele )+ ool o + )] (46) W =TT1g (%) (51)
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The fuzzy system is a mapping frotic R" and V< R, foralll=1,2,..Mandp=1, 2,...N, where
and the output is a piece-wise linear function of the input _, ., 17
variables, where the change from one piece to another is | * bPq &+ PG - i+ BE, A+ By

smooth rather than abrupt. ¢ =0fori =1, 2, ...,n and

¢, equals the centey' of the fuzzy seB' in the usual fuzzy A =
IF-THEN rules, then the TSK fuzzy system is identical to

the fuzzy system with product inference, singleton fuzzifier, . 0 0 1 0
and center average defuzzifier.

57
If the output of a TSK fuzzy system appears as one of its 7)
inputs, adynamicTSK fuzzy system is obtained: Since there is no direct way to find the comnfosatisfying

IFx(K)is A’and-- and & k A1) isA anduik igB ) for all possibld andp, trial and error need to be used.
THENX(k+)= & X B+-+ d kk A+ b Fuzzy Autoregressive Moving Average Modielgeneral, the
output of a system can be described with a function or a
where A”and BP are fuzzy setsa®and b”are constant$  mapping of the plant input-output history. For a single-input
=1, 2, ., N, uk) is the input to the system, andsingle-output (SISO) discrete-time system, the mapping can
x(K) = (X(K), X k=1),..., X k- n+1)) € Ris the state Pe written in the form of a nonlinear auto-regressive moving

vector of the system. The output of the dynamic TSK fuzverage (NARMA) as follows:

system is computed as y(k+1) = F(y(), y(k-1), -, u(k), Ukd) ) (58)
Y xP(k+ D)V where y(K) and u(k) are respectively the output and input
X(k+)=——— (53) ; .
YoV’ variables at thé&-th time step.
The objective of the control problem is to find a control input
where the weights/® are computed as sequence which will drive the system to an arbitrary
) reference set poinyr. Rearranging (58) for control purpose,
vP :HyAp[x( k= i+ D] ol B (55) the value of the inputi at thek-th step that is required to
i=1

yield the reference outpyt.; can be written as follows:
This dynamic TSK fuzzy system is used to model the plant _
under control, and the TSK fuzzy control (50) is used to u(k) = o¥er» XK, Wk1), -+, Wkd), Uk2),-- )(59)

control the plant, Fig. 6. which is viewed as an inverse mapping of (58).

u(k) Plant e The proposed controller doesn't use rules pre-constructed by
Dynamic TSK fuzzy system X(K) experts, but forms rules with input and output history at every
sampling step. The rules generated at every sampling step are
stored in a rule base, and updated as experience is
Contoller accumulated using a self-organizing procedure.
TSK fuzzy controller,
Fig. 6. Fuzzy control with fuzzy system model. The system (58) yields the last output vay(ier1) when the

It remains to determine the stability of the closed-loop fuzz?/mput and input valueg(k), y(k-1), y(k-2), -+, u(k), u(k-1),

control system, in other words, the controller parameterd(k-2), -+, are given. This implies thaik) is the input to be

¢'and ugin (49), need to be designed to guarantee i1Rplied when the desired outputyjg; as indicated explicitly

. ) in (59). Therefore, a FARMA rule with the input and output
stability of the fuzzy controlled system. Assuming that thﬁistory is defined as follows:

parameters of the dynamic TSK fuzzy system model (52) are
known, the following gives the sufficient condition for |py .is A;;, y(K) is Ay, Y(K-1) is Agj, -, Y(k-n+1)is An+1)

stability:
y ANDu(k-1)is By, u(k-2)is By; , =, u(k-m)is By

Theorem 1.5.1[15]: The dynamic TSK fuzzy system THEN u(k)is G, (for the i-th rule) (60)

is globally asymptotically stable if there exists a commonh ) ber of di iabl
positive definite matri such that where, n, m: number of output and input variables

A By : antecedent linguistic values for the i-th rule
A, PA, - P<0 (56) G : consequent linguistic value for the i-th rule.
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The rule (60) is generated at+() time step. Therefore, Although adaptive fuzzy control and conventional adaptive
y(k+1) is given value atk¢l) step. The rule (60) explainscontrol are similar in principles and mathematical tools, they
that “IF desiredy,es is y(k+1) with given input-output history, differ in the sense that: (i) the fuzzy controller has a special
. nonlinear structure that is universal for different plants,
}[/r(llé)’iril[gt}lt)(’) %(g'sé'p"ééj,,(k)’ u(ke1), u(k-2), -+ THEN U(K) s\ pereas the structure of a conventional adaptive controller
' changes from plant to plant, and (ii) human knowledge about

Hée plant dynamics and control strategies can be

linauistic values A. B and Gbv partitioning each uniVerselncorporated into adaptive fuzzy controllers, while such
9 A By, Gby p 9 knowledge is not considered in conventional adaptive

of discourse, and the formulation of fuzzy logic control rulgg)ntrol systems, which is the main advantage of adaptive
is achieved on the basis of the expert's experience gfdy control over conventional adaptive control.

knowledge.  However, these linguistic values can be

determined from the crisp values of the input and outQyfiman knowledge about a control system can be classified
history at every sampling step. Therefore, at the initial stagfo categories: plant knowledge and control knowledge.
the assignedi(k) may not be a good control, but over t'meDepending upon the human knowledge used and the

the rule base is updated using the self-organizing procedyfgcture of the fuzzy controller, adaptive fuzzy controller is
and better controls can be applied [16]. classified into the following three types:

In a conventional FLC, an expert usually determines t

A. 2 Adaptive Fuzzy Controller Design e Indirect adaptive fuzzy control: The fuzzy controller

comprises a number of fuzzy systems constructed from
The motivation behind the fuzzy control is to handle the plant knowledge.
uncertainties or unknown variations in model parameters aad Direct adaptive fuzzy control: The fuzzy controller is a
structures. Similarly, the basic objective of adaptive control single fuzzy system constructed from the control
is to control systems in the presence of these uncertainties. knowledge.
Therefore, it is natural to combine the two and desigh Combined indirect/direct fuzzy control: The fuzzy

adaptive fuzzy contro[18,19] Fig. 7 shows the basic  controller is a weighted average of the indirect and
configuration of an adaptive fuzzy control system. The dijrect adaptive fuzzy controllers.

reference model is used to specify the ideal response that the

controlled system should follow. The plant is assumed to

contain unknown parameters. ~The fuzzy controller igdirect Adaptive Fuzzy Controller:

constructed from fuzzy systems whose paramefeese

adjustable. The adaptation law adjusts the param@ters  ~gnsider the nonlinear system

line such that the plant outpy(t) tracks the reference model

outputy,(t). X = f(x, %..., X" )+ (% %..., X V)u (61)

Reference Model Y
H
Fuzzy Controller
D(0)
0

where xeR is the outputy, ueR is the control,
x=(x%...,X"?) is the state vector, anfland g are
unknown nonlinear functions witlh> 0 assumed. This type

of system can be linearized with nonlinear feedback and a
stable linear controller con be designed [11].

Since the function$(x) and g(x) are unknown, the fuzzy
Fig. 7. Adaptive fuzzy control system. system describes their input-output behavior:

The main advantages of adaptive fuzzy control systems ardF %18 F and--andx isf, THEN() isC (62)
(I) better performance is usually achieved because thdF x,isG] and-- and x is(G THEN(g) isD (63)
adaptive fuzzy controller can adjust itself to the changing

enVironment, and (||) less information about the plant |ﬁ the nonlinear functionﬁx) andg(x) are known’ then the

required because the adaptation law can help to learn ta@dback linearization controller for the system (61) is given
dynamics of the plant during real-time operation. The ma

disadvantages, on the other hand, are: (i) the resulting

control system is more difficult to analyze because it is not + _ i[—f(x) Ly 4 KT (64)
only nonlinear but also time-varying, and (i) a(x) "

implementation is more costly.
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where e=y,- Y, e=(eg...,e"") and 0, =—y,e"Pb(X) (70)
k=(K,....k )" € R'is such that all roots of the polynomial gg =—y,e" Pbn(x)y, (71)

s" + k &' +-+ k are in the left-half complex plane. ] ] ) )
whereb is defined in (39) withy = 1.

The system (61) with control (64) is then rewritten as

e+ ket ke0 (65)

Direct Adaptive Fuzzy Controller:

. , o Consider the nonlinear system
which, because of the choice &f implies e(t) — 0as

t > « , i.e., the plant output y converges to the ideal output XV = (% % X))+ X %, XK ) U (72)
Ym @symptotically. where xeR is the outputy, ueR is the control,
Sincef(x) and g(x) are unknown, the ideal controller (64) X = (X, %...,x"?)" is the state vector, antiand g are
cannot be implemented. However, the fuzzy IF-THEN rulegnknown functions as before. For simplicity, assume ghat
(62)-(63) give estimate‘é(x): f(x|0f) and = b, an unknown positive constant. The gontrol objective
remains the same as in the indirect adaptive fuzzy control,

40 = &xp,), where 6, eR™ and 6,cR™ are e, design a feedback controller= ux|0) based on fuzzy

unknown parameter vectors ifi(x) and §(x), respectively. Systems and adaptation law for adjusting the parameter
Thus, the fuzzy controller becomes vector 6, such that the plant outpuyt follows the ideal
' outputy,, as close as possible. The main difference lies in
_ M LT the assumption about the human knowledge. Instead of
U=t = a(x |9 )[ f(x|0 )+ Yo +ke] (66) knowing the plant knowledge (62) and (63), we are provided
with some control knowledge, i.e., the following IF-THEN
Typically, the unknown parameters are the centers of tieles that represent human control actions:
output fuzzy setC" and D' in the rules (62) and (63), o . .
respectively. Using the product inference, singleton IFxisP and-- andx isP THENuisQ (73)
fuzzifier, and center average defuzzifier, and following the ' ' . _
similar procedure leading to (11)-(14), the estimates are mhere R'and Q are fuzzy sets iR andr = 1,2, ...,

the form: ) ] ) »
Using the product inference, singleton fuzzifier, and center
f(x|9 )= 01&(X) (67) average defuzzifier, and following the similar procedure
leading to (11)-(14), the fuzzy controller is in the form:
6(40,) = 0gn(x) (68) ;
Up (X|0) = 0" &(x) (74)

where £(x) andn(x) are the fuzzy basis function defined in

(12) for fuzzy sets F'andG', respectively, and where £(x) andn(x) are the fuzzy basis function defined in

r T:
6} ando, are vectors of the centers of the output fuzzy sefd?) for fuzzy setsh’, and 0 is the vector of the centers of

C" andD' in the rules (62) and (63), respectively. the output fuzzy set®" in the rule (73).

Next step is to adjust the parameter vect@fsandeg such Next step is to adjust the parameter vea@idrsuch that the
that the tracking errore and the parameter errorstracking errore and the parameter errér— 60" is minimized.
6, —07 andd, — 6, are minimized. The Lyapunov synthesisThe Lyapunov synthesis approach defines the following

approach defines the following Lyapunov function: Lyapunov function:
1 T 1 *\T * _ 1 T
V=€ Per—(0,-67) (0, -67) V= Pe+—(9 0")"(0-07) (75)
2 2y, 2
(69)
+i(gg _QZ)T(QQ -07) where y is a positive constant arfél is a positive matrix
27, satisfying the Lyapunov equation (41).

where y,andy,are constants an® is a positive matrix
satisfying the Lyapunov equation (41).

An adaptation law which minimizes the Lyapunov
function is given by [18]

An adaptation law which minimizes the Lyapunov function
is given by [18]
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(76) 6,-6,andd, -6, are minimized.

synthesis approach defines
function:

The Lyapunov
the following Lyapunov

0=—ye" &Y
wherep, is the last column d?.

v=leTper 2 (0, -0y (0, -00)
2 2y

Combined Direct/Indirect Adaptive Fuzzy Controller N

(85)
1_a * *
This adaptive fuzzy controller incorporate both types of + 2 (65 -05)" (65— 65)
linguistic information, plant knowledge and control 2
knowledge. Consider the system (72) with= 1, for where y,andy,are constants an® is a positive matrix
simplicity.  Assume that the following information issatisfying the Lyapunov equation (41)
available: '

An adaptation law which minimizes the Lyapunov function
. , ) is given by [18]
e Information 1: The planf in (72) is represented

by an approximate modef . = —7,€"Pb5(X)

0, (86)
05 =7 ,€"Pbn(x)

e Information 2: The modeling errof = f — f is (87)

given by the fuzzy IF-THEN rules:

IFx,isS and-- and x is/S THEN fisE
where § and E' are fuzzy setsin R amc= 1, 2, ...L..
e Information 3: Control actions are given by theThe design of an observer and (_)ptimal controller i_s in

fuzzy IF-THEN rules (73). general based on an assumed linear model that is an
approximate representation of an otherwise nonlinear plant.
Moreover, the controller takes precise measurements of
plant variables and generates a precise control variable. An
alternative to this model-based controller design is the fuzzy
) logic control, which neither relies on an accurate description
to guaranteey(t) > y,, (). However, the best estimate ofof the plant, nor on the precise measurements. Fuzzy logic
f(x) based on Informaions 1 and 2 is controllers are generally based on experts’ understanding of
the plant rather than any mathematical model. Another
approach is to design a controller based on the knowledge
obtained of the system from repeated simulation conducted
on a mathematical model. In either case, the rule base of the
(80) fuzzy logic controller has to be fine-tuned or calibrated using
trial and error in order to obtain the desired performance.

The fuzzy controller based upon Information 3 is, from (74)1herefore, an Automatic Tuning Method (ATM) s
developed to tune the fuzzy logic controller's critical

77 g Tuning Controller Performance

From (64), iff(x) is known, then the optimal control is

u =—f(x)+y" +k'e (78)

f(x)+ f(x0,) (79)
Thus, the controller based upon Informations 1 and 2 is

U, =) - F(x(6,)— F(x)+ Y +ke

U = Up (X|6,) (81) parameters to achieve a desirable response of the plant
[3,20].
Therefore, the combined fuzzy controller is
u=oau,+1-a)y, (82)

B.1 Automatic Tuning of Fuzzy Logic Controller
wherea €[0,]] is a weighting factor.
Fuzzy Logic Controller:

The fuzzy systemsf(x|9|)and uD(x|9D)are respectively o o _
designed following the same steps in the indirect and dire;Ef'e fuzzy logic is based on Intuition an_d_experlence,:amd can
- e regarded as a set of heuristic decision rules or “rules of
fuzzy controller design: . - ) L
thumb.” One of the most interesting applications of fuzzy

(83)
(84)

f(x(0,) =67 &(x)
Up (X65) = 05 1(X)

Next step is to adjust the parameter vect®fsandd [ such
that the tracking errore and the parameter

logic is the development of fuzzy logic controller. A fuzzy
logic controller consists of :

1) A rule base which contains a number of control rules.
2) A database which defines the membership functions of

errorsthe linguistic terms used in the rule base.
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3) Aninference mechanism based on the control rules.  Automatic Tuning Method:
4) A fuzzification unit to map real inputs from sensors into

the fuzzy terms. _ Most existing fuzzy logic controllers are designed without
5) A defuzzification unit to map fuzzy outputs of theysing any mathematical model of a plant. The construction
inference mechanism to real numbers. procedures are generally based on the experts’ understanding

A fuzzy logic controller uses a set of control rules and & the process. Therefore, the rule base of a fuzzy logic

inference mechanism to determine the control action forc@ntroller must be adjusted through trial and error to obtain

given process state. The control rules are fuzzy expressiéhg desired performance. In order to tune the controller, the

that relate the fuzzy process variables (controller inputs) 422y logic controller uses parameterized output functions

the fuzzy controller outputs. The inference mechanisk90) as the consequent to rules. These parameters permit the

evaluates the rule base to find the appropriate control actio#se of numerical algorithms to modify the output of the
controller.

A fuzzy control action consists of situation and action pairs.

Conditional rules expressed iR and THEN statements are The consequent of each rule of the controller has the form

generally used. In order to tune the rule base, the fuzzy 0 1 5

controller consists of a number of rules in the form: U (k) =c” + GEK + GDEK, (91)

IFf(x, is A,....% iSA), THENY = g(x,...,% ), (89) wherec’ is known steady-state controller output, a:r:jd

where x andy are respective variables of the premise an@dnd ¢, are the unknown parameters. To find these

the consequent,A are fuzzy sets with membershipunknown% the Kalman filter approach is taken because the
0§glman filter estimates are the optimal mean-squared error
estimates. Also, in this recursive filter there is no need to
store past measurements for the purpose of computing
present estimates. In order to apply the Kalman filtering, the
unknown parameters,'j are viewed as state variables, the

glrgmise variable€(k) and DE(K) as time-varying system
Spefficients, and they, (k) as the system output variables.

functions representing a fuzzy subspace in which the ab
IF-THEN rule can be applied,f is a logical function

connecting propositions in the premise, ani a function
that implies the value ofwhen x,,...,x, satisfy the premise.

The consequence (the outputs, or drive) used here
parameterized functions of the input variables. To app
rules like this to fuzzy algorithms for process control, th&hen the dynamics ofq'j can be modeled simply as a
variables of the premise and the consequent are def'neds?ogchastic system in discrete-time:

the following:

. System Model:
Error (E) = process output - set point Lok "
Error change®E) = current error - last error G (K) _ {1 0} G (k=1 J{l}w w, ~ N(0,0)
Controller output = input applied to process. c(k| 0 1fcik-1| L e T ’
The domain of a variabl& or DE, is partitioned into fuzzy _ (92)
sets,A,i = 1, 2,.... Every fuzzy setA is associated with Measurement Model:

2, ..., 5,A =large negativel(N), A, = small negative§N),
A; = zero ZE), A, = small positive $P, and A; = large
iti (93)
positive (P). An example of a rule, where the consequent
of the rule is a parameterized function of the input variableghere w, and v, are process and measurement noise,
is: respectively, with normal distribution. In this formulation,
the process noise is assumed to be completely unknown and
the measurement model is assumed to have zero
measurement noise. The parameters are unknown constants
and therefore their changes at steady-state are zero. Also,
u, = ¢, + c,E + ¢,DE, (90) the variations of the two parameters are uncorrelated. From
these initial assumptions for the system model, the Kalman
where the subscripts repres@utle,, and the parametexs,, filtering problem can be easily solved to give the steady-

k =0, 1, and 2, need to be determined. In general thtate solution for the parametef,]s.
parameters foRulg , for alli andj, are determined by the

Automatic Tuning Method (ATM) using the input and

output data from the experiment [3].

a name that represents qualitative statements, e.g.=far u —[E( Y DK Ig]{Cﬁ(k ]+V L v~ NO.O), R o0
i = 2 k P I R e
C

i

IF error E) is large negativel € 1) and the change
in error OE) is small negative E 2),
THENthe output is
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B.2 Self-Organizing Fuzzy Controller Design [4]

The FARMA rule defined in Section 1 is generated at evelrs)l
sampling time. Each rule can be represented as a point in[@ITe

(n+m+1)-dimensional rule space, i.e.qi(%j, --- » Xn+m+1))-
To update the rule base, the following performance index is
defined: (7]

J= 1yp(k+1) - y(k+1)], (94)[8]

where y(k+1) is the real plant output, angdkyl) is the

reference output. Therefore, at the (k+1)-th step, tifé
performance index J is calculated with the real plant output
y(k+1) resulting from the k-th step control. 10]

The fuzzy rule space is partitioned into a finite number [010
domains and only one rule, i.e., a point, is stored in each
domain. If there are two rules in a given domain, thesj
selection of a rule is based on J. That is, if there is a new rule
which has the output closer to the reference output in a giyezl
domain, the old rule is replaced by the new one. The self-
organization of the rule base, in other words "learning” of the
object system, is performed at each sampling time, Fig.[
[16,17].

i [14]
Reference | ¥r . u PLANT y
Yret — Defuzzify
del
Model [15]
u nd
1|y [16]
Inference Fuzzify
T
Rule B
pobwg 1)
Fig. 8. The FARMA control system architecture.
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Chapter 5 Expert System Applications

Abstract - Fuzzy logic allows a convenient way toAn expert system has three main componentsaviedge
incorporate the knowledge of human experts into the expérase an inference engineand aman-machine interface
systems using qualitative and natural language-likBhe knowledge base is the set of rules describing the domain
expressions. Recent advances in the field of fuzzy systekmowledge for use in problem solving. The prime element
and a number of successful real-world applications in powef the man-machine interface is a working memory which
systems show that logic can be efficiently applied to deaérves to store information from the user of the system and
with imprecision, ambiguity and probabilistic informationthe intermediate results of knowledge processing. The
in input data. Fuzzy logic based systems with theinference engine uses the domain knowledge together with
capability to deal with incomplete information, imprecisionthe acquired information about the problem to reason and
and incorporation of qualitative knowledge have showprovide expert solution.
great potential for application in electric load forecasting.

A Working Definition

A. Expert Systems An expert system is an artificial intelligence (Al) program
incorporating a knowledge base and an inferencing system.

The major use of artificial intelligence today is in expertt is @ highly specialized piece of software that attempts to
systems, Al programs that act as intelligent advisors @uplicate the function of an expert in some field of expertise.
consultants. Drawing on stored knowledge in a specifithe program acts as an intelligent consultant or advisor in
domain, an inexperienced user applies inferencing capabillfje domain of interest, capturing the knowledge of one or
to tap the knowledge base. As a result, aimost anyone d¢BAre experts. Non-experts can then tap the expert system to
solve problems and make decisions in a subject area ne@f{pwer questions, solve problems, and make decisions in the
as well as an expert. domain.

It is not easy to give a precise definition of an expert systefhe expert system is a fresh new, innovative way to capture
because the concept of expert system itself is changing awl package knowledge. Its strength lies in its ability to be
technological advances in computer systems take place gnd to practical use when an expert is not available. Expert
new tasks are incorporated into the old ones. In simpdystems make knowledge more widely available and help
words, it can be defined as a computer program that modelsercome the age-old problem of translating knowledge into
the reasoning and action processes of a human expert ipractical, useful results. It is one more way that technology
given problem area. Expert systems, like human experis,helping us get a hand on the oversupply of information.
attempt to reason within specific knowledge domains. All Al software is knowledge-based as it contains useful
facts, data, and relationships that are applied to a problem.
An expert system permits the knowledge and experience of
one or more experts to be captured and stored in a computexpert systems, however, are a special type of knowledge-
This knowledge can then be used by anyone requiring litased system, they contain heuristic knowledge. Heuristics
The purpose of an expert system is not to replace the expeat® primarily from real world experience, not from textbooks.
but simply to make their knowledge and experience moteis knowledge that directly from those people -the experts -
widely available. Typically there are more problems tevho have worked for years within the domain. It is
solve than there are experts available to handle them. Threowledge derived from learning by doing. It is perhaps the
expert system permits others to increase their productivitmost useful kind of knowledge, specifically related to
improve the quality of their decisions, or simply to solveeveryday problems. It has been said that knowledge is power.
problems when an expert is not available. Certainly there is truth in that but in a more practical sense,
knowledge becomes power only when it is applied. The
Valuable knowledge is a major resource and it often lidsottom line in any field of endeavor is RESULTS, some
with only a few experts. It is important to capture thapositive benefit or outcome. Expert systems are one more
knowledge so others can use it. Experts retire, get siakay to achieve results faster and easier.
move on to other fields, and otherwise become unavailable.
Thus the knowledge is lost. Books can capture somel Desirable Expert System Features
knowledge, but they leave the problem of application up to

the reader. Expert systems provide a direct means @fpert systems are far more useful if they have some
applying expertise. additional features. These include an explanation facility,



ease of modification, transportability, and adaptive learning reduced. The more different types of computers for which

ability. Let's take a look at each of these key features. the expert system is available, the more widely the expertise
can be used. If possible, when the expert system is to be
Explanation Facility developed, it should be done in such a way that it is readily

Expert systems are very impersonal and get right to the poyﬁnsplortable to dlﬁergnt types of machines. This may mean

Many first time users are surprised at how quickly th€h0SIng a programming language or software development

expert system comes up with a recommendation, conclusié@?! that is available on more than one target machine.

or selection. The result is usually stated concisely, and ] .

sometimes very curtly, using rule clauses. A naturfdaptive Learning Ability

language interface will help improve this situation, but thatBhis is an advanced feature of some expert systems that

not the main problem. A more important issue is that ofteallows them to learn their own use or experience. As the

users have difficulty in "buying" the output decision. Thegxpert system is being operated, the engine will draw

question it or perhaps don't believe it. Users frequently wasbnclusions that can, in fact, produce new knowledge. New

to know how the expert system arrived at that answer. Mdshctions stored temporarily in the data base, but in some

of the better expert systems have a means for explainiggstems they can lead to the development of a new rule

their conclusion. Typically, this takes the form of showingvhich can be stored in the knowledge base and used again in

the rules involved in the decision and the sequence in whitthe problem. The more the system is used, the more it learns

they were fired. All of the information is retained in the databout the domain and more valuable it becomes.

base for that purpose. When users want to know the expert

system's line of reasoning, they can read the rules and folldle term learning as applied to expert systems refers to the

the logic themselves. Some rule formats permit thgrocess of the expert system new things by adding additional

inclusion of an explanation statement that justifies awules or modifying existing rules. On the other hand, if the

elaborates on the need for or importance of the rule. system incorporates the ability to learn it becomes a much
more powerful and effective problem solver. Today few

The explanation facility is important because it helps thexpert systems have this capability, but it is a feature that is

user feel comfortable with the outcome. Sometimes tlsire to be further developed into future systems.

outcome is a surprise or somewhat different than expected.

It is difficult for an individual to follow the advice of the A.2 Suitable Application Areas for Expert Systems

expert in these cases. However, once the expert system

explains itself, the user better understands the decision @gpert systems are best suited for problems with limited
feels more at ease in making a decision based uponit.  gomains” and well-defined expertise. Application areas
o involving common sense and analogical reasoning do not
Ease of Madification lend themselves well to expert system development. The
As indicated earlier, the integrity of the knowledge bassuitability of expert system-based approaches can be
depends upon how accurate and up to date it is. In domadtetermined by taking into consideration some criterion based
where rapid changes take place, it is important that soroa general experience in this field. Expert systems are found
means be provided for quickly and easily incorporating thie be suitable for those problems for which the solution steps
knowledge. When the expert system was developed usiage not clearly defined. The action taken depends not only
one of the newer development tools, it is usually a simpte the present values of data but on the outcome of previous
matter to modify the knowledge base by writing new ruleslecisions, historical data, past experience and trends.
modifying existing rules, or removing rules. The better
systems have special software subsystems which allow thésepower systems, many promising applications have been
changes to be made without difficulty. If the system hagported in the broad fields of system control, alarm
been programmed in LISP or Prolog, changes are muplocessing and fault diagnosis, system monitoring, decision
more difficult to make. In examining or evaluating an expedupport, system analysis and planning. An excellent review
system, this feature should be considered seriously afithe popular application areas can be found in [1].
context of the modification.

A.3 Expert System Applications

Transportability Expert systems are ideal when it is necessary for an
The wider the availability of an expert system the mormdividual to select the best alternative from a long list of
useful the system will be. An expert system is usuallghoices. Based on the criteria supplied to it, the expert
designed to operate on one particular type of computer, asystem can choose the best option. For example, there are
this is usually dictated by the software development tootxpert systems that will help you select one of the many
used to create the expert system. If the expert system wplaces to invest your money based on your own financial
operate on only one type of computer, its potential exposurendition, goals, and personality traits.



Prediction-intelligent guessing of outcome
An expert system can be created to help an individual Repair-automatic diagnosis, debugging, planning
troubleshoot and repair a complex piece of equipment. The and fixing
various troubles and symptoms can be given to an expert
system which then identifies the problem and sugges®s Reasoning with Uncertainty in Rule Based
courses of action fpr repair. Expert systems also can be uﬁpert Systems
to aid in diagnosing medical cases. Symptoms and test

results can be given to the expert system which then

searches its knowledge base in an attempt to match thé¥e€ of the important feature in expert systems is their ability
input conditions with a particular malady or disease. Thi® deal with incorrect or uncertain information. There will
results in a conclusion about the illness and some possiBfe imés when an expert system, in gathering initial inputs,
suggestions on how to treat it. Such an expert system 4 ask you a question for which you do not have the
greatly aid a doctor in diagnosing an illness and prescribi@§SWer- In such a case, you simply say that you do not know.
treatment. It does not replace doctors, but helps therfPert systems are designed to deal with cases such as this.

confirm their own decisions and may provide alternativBecause you may not have a particular fact, the search
conclusions. process willundoubtedly take a different path. It may take

longer to come up with an answer, but the expert system will

Expert systems perform financial analysis. Some expdHV€ you an answer.

systems evaluate stocks and recommend buy, sell, or hold o i )
positions. Other expert systems can be used in tax planniifgditional algorithmic software simply cannot deal with
and budgeting. Expert systems have been used to hg}ﬁomplete information. If you leave out a piece of data, you
locate oil and mineral deposits or to configure complefi@y not receive an answer at all. If the data is incortieet
computer systems and recommend a specific policy in20SWer will be incorrect. This is where art|f|C|a] intelligence
variety of insurance applications. Expert systems also haRE9rams, particularly expert systems, are particularly useful.
been used to locate oil spills and provide speedy criticdfhen the inputs are ambiguous or completely missing, the
advice to commanders in battlefield situations. The varieBfogram may still find a solution to your problem. The
of potential applications is enormous. If one or more experR¥Stém may qualify that solution, but at least it is an answer
exist in the domain of interest, and the knowledge can &t can in many cases be put to practical use. This is

codified and represented in symbolic form, then an expéiensistent with expert level problem solving where one
system can be created. rarely has all the facts before making a decision. Our

common sense or knowledge of the problem tells us what is

In power systems, many promising applications have bedPortant to know and what is less important. ~Experts
reported in the broad field of system control, alarr@/Most always work with incomplete or questionable
processing and fault diagnosis, system monitoring, decisidiformation, but that it doesn’t prevent them from solving

support, system analysis and planning. An excellent revigfe problem.

of the popular application areas can be found in [1]. ) _ _ i
Thus, increasingly in the design of expert systems, there has

Table 1 shows the main categories of applications suitafi§en @ focus on methods of obtaining approximate solutions
for expert systems. If the problem to be solved falls into ori@ & Problem when there is no clear conclusion from the
of these categories, it is a candidate for expert syste@i¥en data. Logically, as expert system problems become
solution. This is not to imply that an expert system is tH@ore complex, the difficulty of reaching a conclusion with
only answer. There may very well be a more conventiongPMPlete certainty increases, so in some cases, there must be
algorithmic program that will do the job. In any case? method of_handlng uncertainty. In [_2,3], researchers report
assuming the problem is one of these types, an expert syst@gf & classical expert system gave incorrect results due to
should most certainly be considered as an alternative. N8 Sharpness of the boundaries created by the if-then rules

let's take a look at each category in more detail. of the system; however, once a method for dealing with
uncertainty (in these two cases fuzzy set theory) was used,
Table 1. Generic Expert System Categories the expert system reached the desired conclusions.

Control - intelligent automation The successful performance of expert systems relies heavily
Debugging- renovation corrections to faults on human expert knowledge derived from domain experts
Design-development products to specification based on their experience. The other forms of knowledge
Diagnosis- estimated defects include causal knowledge and information from case-studies,
Instruction-optimized computer instruction databases, etc. Knowledge is typically expressed in the
Interpretation-clarification of situations form of high level rules. The expert knowledge takes the
Planning-developing goal-oriented scheme form of heuristics, procedural rules and strategies in nature.



It inherently contains vagueness and imprecision becausethat a particular action will occur for a given number of
expert is not able to explicitly express their knowledge. Thattempts. It is really a ratio as shown below:
process of acquiring knowledge is also quite imprecise,
because the expert is usually not aware of all the tools used P(x) =Number of occurrence of an event /Total number
in the reasoning process. The knowledge that one reasons of events that take place
with may itself contain uncertainty. Uncertain data and
incomplete information are other sources of uncertainty ihhe probability of x occurring, stated B¢x), is the ratio of
expert systems. the number of times x occurs to the total number of events
that take place. For example, in rolling a standard die, the
Uncertainty in rule based expert systems occurs in two forrmpsobability is one-sixth that any one of numbers 1 through 6
The first form is linguistic uncertainty which occurs if anwill come up. This may also be expressed as a
antecedent contains vague statements such as the levdtdstion, .16667, or as a percentage, 16.67%. In many
high" or "the value is near 20". The other form oknowledge representation cases, the probability for a certain
uncertainty, called evidential uncertainty, occurs if theondition or action may be known or can be estimated. For
relationship between an observation and a conclusion is ribé probability of a certain event taking place is 7€8én it
entirely certain. This type of uncertainty is most commonlgnay initiate some action if the probability is equal or greater
handled using conditional probability which indicates théhan 70%. If the probability is less than 70%, then perhaps
likelihood that a particular observation leads to a specifin action may not be taken. For example, the production rule
conclusion. The study of making decisions under either bklow uses the probability:
these types of uncertainty will be referred to as plausible or
approximate reasoning in this work. Several methods of IF the stone is clear, without color
dealing with uncertainty in expert systems have been THEN it is diamond (probability 60%)
proposed, including
An example will illustrate this. Suppose we ask ten

e Subjective probability engineers whether they can program in the BASIC language.
e Certainty factors Out of the ten, three say they can. We can use these figures
e Fuzzy measures to compute the probability:

e Fuzzy set theory

P(BASICkF 3 0.3
The first three methods are generally used to handle 10
evidential uncertainty, while the last method, fuzget
theory is used to incorporate linguistic uncertainty. Thed#hat this says is that the probability of an engineer being
methods of reasoning with uncertainty will be discussed Bble to program in BASIC is .3. We can also express this as
the following sections. For a comprehensive list of methods percentage by simply multiplying the probability by 100.
used in reasoning with uncertainty including a discussioWe say that the probability of engineers being able to
about their application. see [4, pp. 1307-1322]. program in BASIC is 30%. Probability figures like this can
be used to determine rule strength if they fit the problem.
As expert assessments of the indicators of the problem may
be imprecise, fuzzy sets may be used for determining tMultiple probability values will occur in many systems. For
degree to which a rule from the expert system applies to tgample, a rule may have three parts to its antecedent, each
data that is analyzed. When applying a method of reasonwgh a probability value. The overall probability of the rule
with uncertainty to a rule based expert system, there mustthen becomes the product of the individual probabilities, if
a method of combining or propagating uncertainty betweehe parts of the antecedent are independent of one another.
rules. A method of propagating uncertainty for the methdd a three part antecedent, the probabilities may be .9, .7
of reasoning with uncertainty will be discussed in the nex@nd .65. The overall probability is:
section.
P =(.9)(.7)(.65) = .4095
B.1 Subjective Probability and Statistics
One method of dealing with uncertainty is to usd he _combineq _probability is about 41%. But this is true
conventional statistics and probability. For example, witAY if the individual parts of the antecedent do not affect or
the use of statistics, sufficient data may be available f$Pend on one another.

compute mean (average), median, and standard deviation. o
These new figures derived from original data providgomeUmes one rule references another. Here the individual

additional knowledge which will help in making a decision'ule probabilities can propagate from one to another. There
Recall that probability is simply a ratio the number of time$ @ need to evaluate the total probability of a sequence of

5-4



rules or a path through the search tree to determine if a 1 if P(h)=0
specmc_ _ruIe fires. _Or you may be able to use the combined MD(h,e)= a{ P(h)-P(hle} .
probability to predict the best path through the search tree. — otherwise
In other words, the probabilities become the "costs" of the 1P(h)
individual arcs in the tree. Note that when evidence e is assigned tbypothesish,
only one of theMD or MB functions will be greater than
There are numerous methods of computing combinero so that a single piece of evidence cannot be used as
probabilities. If the rules are independent, a simple produgoth a measure of the confirmation and negation of a
can be used as described before. However, most events Byjgothesis. As the measures of belief and disbelief were
rules are dependent upon one another. In that case, a spatdafl in the design of expert system, it was found that a
procedure called Bayes' Rule or Theorem can compute tigpresentation of the uncertainty in terms efrale measure
probability of event A occurring given that event B hagvould be more convenient in making comparisons of
already occurred. This is expressed R{#\|B). Bayes' different hypothesis.
Theorem is:
B.3 Certainty Factors
P(Bl A)P(A)
PA B3 : o
(B AP(A)+P(B~ AP(~ A) As you saw earlier, there are several methods of dealing with
uncertain information. In rule based expert systems,

We won't attempt to explain this rule here as it is doubtfiumerical factors indicating the truth @robability of a
that you would ever need to program it. But you shoul@'€mise or conclusion are used as a measure for uncertainty.
know that many expert systems use Bayes' Theorem instd4¥$Se numerical factors are known as certainty factors (CF)
of certainty factors to deal with uncertainty. Several majgind Probability. ~In this section we want to take a look at

expert system development tools use Bayesian probability.the_se measures of uncertainty to be sure that you understand
their use in rule based expert systems.

B.2 Measures of Belief and Disbelief . .
In a high percentage of expert system rules, there will be no

ambiguity or uncertainty. We will know with confidence

r\1/'f’iﬁether or not a particular premise or conclusion is true or

evidence should incrementally increase the belief Ghise |t the information is not known at all, then the rule

disbelief in a hypothesis. The formal definition of th(.arequesting it will not fire. In cases where there is the

measure of beli_ef was based on the id_ea that if a prﬁf)ssibility that the information is not known, special rules
probability, P(h) is defined, then the maximum amount Otan be created to deal with this problem. The rule might

belief that can be added t©(h) from a new piece of tate that if ticular oi finf tion i t ilabl
evidence is 1 P(h). If a piece of evidence confirnia(h\e) tSth?a caer!caig?:rtilt():rl: \?V:”p;;cﬁ“%altre]grma 1on IS not avatiable,
then this would amount to adding(h\e) - P(h) to the '

previous belief, so the belief mhas been increased by Still, there are many cases where the information is known

but we have less than 100% confidence in its truthfulness.
AP(h) = P(he§- RH Just as weather forecasters use a number to predict the
1- P(h likelihood of rain, so can a confidence number be used with
production rules. Weather forecasters may say that there is a
The measure of increased disbelief can be defined similarkQ% probability of rain. They are sayirtgat they don't
Now with this idea, let the measure of increased beli)( know for sure whether or not it is going to rain. On the other
given some evidence about ahypothesish be defined as hand, they have enough information to be able to say that
MB[h,e]—[0,1] with 70% of the time under similar circumstances it does rain.
While a certainty or confidence factor is not really a
1 i P)=1 probability, it is a number that helps you to represent the
uncertainty. A certainty. factor is simply a measure of the
MBh 9= OF’(H@—R’D} othernise confidence you have that a particular fact or rule is true or
1-Rb not true. It is usually a number between 0 and 1 where zero
indicates no confidence and 1 means full or complete
and let the measure of increased disbelief (MD) be definegoadidence. You will also hear certainty factors called
MDI[h, e]— [0, 1] with confidence factors or rule strength.

Certainty factors are used with both the premise (IF) and

conclusion (THEN) portions of a rule. The two examples
given below show how confidence factors are used.
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0 CONFIDENCE 100%

Rule 1:

IF X (.4)
AND Y (.75)
THEN Z
Composite CF = .4

Rule 2:

IF D (.3)
FALSE UNKNOWN TRUE AND E (.8)

THEN F
Composite CF = .8

If each rule in a reasoning chain has a CF, each will, of
5 0 +5 course, affect the other. The outcome has to be decided
based upon some composite evaluation. One thiyis
Figure 1. Confidence and certainty factor scales done is with a special formula.

CF = CF(X) + CF(Y) - CF(X)*CF(Y)
IF the patient has hayfever, CF = .6

THEN prescribe an antihistamine This says that the CF for rule X is added to the CF for rule Y
and from that is subtracted the product of the CFs for rules X
IF the patient is sneezing and Y. Below are two rules to illustrate the point.
AND  has a runny nose
AND  has watery eyes Rule 3:
THEN the patient has a cold, CF=.5 IF P
AND Q
Fig. 1 shows several ways to use certainty factors. As you THEN R (.65)
can see, the scale is up to the programmer. In example A, a
scale of 0 to 1 is used where 1 = absolute certainty; that is, Rule 4:
100% truthfulness or validity of the premise or conclusion of IF R
a rule. The 0, of course, indicates absolute uncertainty or THEN S (.2)

falsity.  Intermediate values have varying degrees of

truthfulness or uncertainty. You could also use a scale offlie composite CF then is:

to 10 or 0 to 100 with the same result. The + and - scale

shown in example B in Fig. 1 is another approach. A +5 .65+ -2 -(.65) (.2)=.85-.13=.72

indicates absolute certainty while a - 5 indicates 100%

contradiction. The 0 in the center of the scale indicat€f course, there will usually be more than two rules in a

unknown. You could also use a -1/ 0/ +1 scale as well. chain. The formula above can be used by taking the
composite CF of two rules and combining it with the CF of a

Determining whether a particular rule is to fire requires thenird rule. That new composite CF is then combined with a

inference engine to look at the confidence factor anfdurth, and so on.

evaluate it. For example, if you are using the 0 to 1 scale,

you might want the rule to fire if the confidence factor i8.4 Fuzzy Logic

above a certain threshold level, say a 0.2. In Fig. 1B, YOthother method of dealing with imprecise or uncertain
may assign a threshold of + 1 or - 1 depending upon thaqledge is to use fuzzlpgic. Fuzzy logic is a system
circumstances as the minimum acceptable level fegnceived by Zadeh for dealing in inexact or unreliable
determining Whethgr something is true or false. Other 1ev&|§ormation. ~ In this method, an attempt is made to assign
may be set depending upon the problem. numerical ranges with a possibility value between zero and
_ _ one to concepts such as height, beauty, age, and other
In rules with compound premise clauses connected by ANQoments with values that are hard to pin down. It allows
or OR, each clause may have its own CF. For SUGh {5 work with ambiguous or fuzzy quantities such as
situations, there must be a way to compute a composite {3Fye or small, or data that is subject to interpretation.
for the rule. This is done by using the minimum CF of all
clauses connected by AND or the maximum CF of ajt,, example, how tall is tall? Are you tall if you are 5 foot 7
clauses connected by OR. Some examples will illustrate thiches? s tall over 6 feet or over 6 feet 3 inches? Is short
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u fuzzy membership grades is that the summation of
Low  Medium High probabilities on a finite universal set must equal to 1.

The main drawback of nonfuzzy methods in dealing with
uncertainty is their handling of linguistic terms. Fuzzy set
theory provides a natural framework for dealing with
Temperature®C) linguistic terms used by experts. Imprecision in numeric
15 25 35 > data can be easily dealt with by expressing it as a fuzzy
Figure 2: Fuzzy sets for representation of uncertainty ~number. Fuzzy sets can be conveniently incorporated in
expert systems to better deal with uncertainty and
imprecision.
less than 5 foot 5 inches or what? Fuzzy logic gives you a
way of expressing this kind of approximate informationC. Example Application - Fault Diagnosis

Tall might be expressed as some value of X where X j§ the past few years, great emphasis has been put in
between 510" and 672" with a possibility of .8. A "0"applying the expert systems for transmission system fault
possibility means that X is not in the range given while "1aiagnosis. However, very few papers deal with the
means that X is between the values given. Values betwq@fhvoidable uncertainties that occur during operation
0 and 1 mean some degree of possibility that X is in thgyolving the fault location and other available information.

given range. Once you are able to express such impreciggs example shows a method using fuzzy sets to cope with
knowledge, you can use it more reliably in the reasoning,ch uncertainties.

process. Fuzzy logic is not as widely used in expert systems

as confidence factors and probability because it is moge1 problem Statement
complex and difficult to implement. And often it does no
offer any advantages over the simpler systems. But, it is
alternative of growing importance as Al expands into ne
areas of application.

ER reduce the outage time and enhance service reliability, it
I essential for dispatchers to locate fault sections in a power
system as soon as possible. Currently, heuristic rules from
dispatchers’ past experiences are extensively used in fault

Fuzzy set-based techniques can provide an excelléjﬁ?gnos's' The important role of such experience has

: . : ._._motivated extensive recent work [5-11] on the application of
framework for systematically representing the |mpreC|S|oH1 L !
inherent in an expert's knowledge. Using the followin expert system in this field. A few papers have described and

. Yealt with uncertainties involving the fault location and other

example to illustrate, ) . : o
P information available [12-15]. These uncertainties occur due
to failures of protective relays and breakers, errors of local

IF the temperature is high (0.8) , acquisition and transmission, and inaccurate occurrence time,
AND system is operating in heavy load period (0.9%tc. An effective approach is thus necessary to deal with
THEN system is highly stressed uncertainties in these expert systems.

) . Fault diagnosis in electric power system is a facet operation.
the parameters in premise and consequent (temperature, Iggdy signal and step contain some uncertainties, which can

period, system stress) can be represented using simple fuggymodeled by membership functions. Fuzzy set theory is
meml?ershilp functions. In _this case, the fuzzy information l_?sed to determine the most likely fault sections in the

contained in the terms high and heavy. ~ An example ig)5r5ach presented here. Membership functions of the
shown in Fig. 2 where temperature is divided into thresssible fault sections are the most important factors in the
linguistic classes eachiolv (L)o medium (M), high (B) It inference procedures and decision making. In this example,
the forecast temperature is°82 it's membership in class e membership function of a hypothesis is used to describe
[high] will be 0.7. the extent to which the available information and the system

knowledge match the hypothesis. They are manipulated

The load period can also be represented using similar fuzgyying inference based on rules concerning fault sections.
variables. If the hour of the day falls during heavy load

period with a membership grade of 0.87, the membership @fz Structure of the Fault Diagnosis System

the consequent can be obtained as the minimum of the tw%, . N
ie. 0.7. The fuzzy expert system structure is shown in Fig. 3. Its

database contains the power system topology, and the status

Although, there are situations where membership grades &l breakers and protective relays after the fault.

probabilities can take on similar values, they are not the
same. One distinguishing factor between probability and



|On-||ine Data from PowerI systetm power system status would be changed by the operation

Dispatche v of relays and circuit breakers.
Interface p{ ~ Database Fault Network e Healthy subnetwork identification: The next step is to
Identification identify the network topology of the healthy part of the
Knowl@dge Hypci’heses and post-fault power system by using the real-time network
SBase Calculations topology determination method [18]. The healthy
2 \% subnetwork is called sef, sy
Inference Engine e Island identification: By comparing the initial network
- topology with the healthy subnetwork topology, the
Faott differences between them are identified as the island.
Determination This subnetwork is called S ¢

This method was proven in a case study that consists of 43
substations, 523 sections, 412 circuit breakers, 107 busbar,
23 three-winding transformers and 77 transmission. The
simulating results are quite satisfact¢ty]. The required

The knowledge base of the fuzzy expert system contains aqpcessing_ time to identil_‘y the islar_1d is less than 2 seconds

the data of the protection system. The information is baséta 486 micro-computer in all the simulated cases.

on known statistics of protection performance used in the

system. If these data are not available when a fault occufs4 Fault Section Identification

the fuzzy expert system asks the dispatcher to provide them

and then saves them in the database for future use. Modglken a fault occurs, the change in breaker status activates

for estimation of possible faults, and heuristic rules about thiee fuzzy expert system. It then classifies the breakers into

relay characteristics for actual fault determination are alswo sets: no-trip status set and tripped status set. According

included here. to the procedures described in section 3, a fault hypothesis F
is formed as follows:

Fig. 3 Fuzzy Expert system Structure

C.3 Island Identification

When a fault occurs in a power system, the relays F =FR(CBVFE(RY @

corresponding to the fault sections should trip the circuit ={(C, pp, (CNGC € Kuana}

breakers to isolate the fault sections from being extended. _ 2
. . Pfault {F}

Thus the power system is separated into several parts named cs 3

subnetworks after the operation of protective relays and F (CB)={G, /“’Pfau.[( %) ©)

circuit breakers. Generally, only a few subsections are F(RD={G, u& (G)} 4)

formed from the faults. Since the fault sections are confined
to these subnetworks, The magnitude of the problem can vl\)/ﬁere C is one of the possible fault sections being

reduced greatly. . . : .
. . . . .considered; B, is the fuzzy set which contain all the
An expert system is developed to identify the island by usin ssible fault sections and their membership functions;

the real-time information of circuit breakers and adoptin (CB) is the fuzzy subset by considering only the tripped
the real-time network topology determination method [17 ‘ircuit breakers; ERL) is the fuzzy subset by considering

The framework of this efficient method is described a B
follows: only the operated relaysp;~ (C) is the membership

e Initializing the network: The expert system identifiesunction that Cbelongs to the fuzzy set,R by considering

the power system pre-fault status as the ”Orm8h|y the tripped circuit breaker‘g;RL (C) is the
operation state by using the real-time network topology Prag \

determination method [17]. When a fault occurs, thBembership function that;®elongs to fuzzy set g by
considering only the operated relays.
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Table 2 Formation of Island for Case Study 1
Fault section Tripped CB12-A, CB12-B, CB12-D, CB2D, CB21-C, CB2B-

subnetwork circuit A, CB32-B, CB42-A, CB54-A, CB54-B
breakers
identification Island F12-A, F12-B, F12-D, F2AB, F2BC, F2CD, F20A,

F23-B, F24-A, F24-B, FAAA, FABB, F45-A, FA45-

W

Table 3Membership Grades of Case Study 1

Possible faulf F1
section F2DA | F12-A | F24- | F4A5-A | F12-D | F23-B 2-B
A
Membership 0 0 0.47
function 950 | 0.489 | 0.489| 0.489 | .489 | 0.489 7
Possible faulf F2
section FA5-B | FAAA | F2CD | F2AB | F2BC | F4BB 4-B
Membership 0 0. 0 0.023
function 476 | 0.348 | 0.285| 0.282 | 0356 | .0356 8
Table 4Diagnosis Results of Case Study 1.1
Estimated Tripped circuit breakers Maloperated breakers
Fault section
Busbar CB12-A, CB12-B, CB12-D, CB2D, CB21t CB2A
F2DA C, CB23-A, CB32-B, CB42-A, CB54-A,
CB54-B

The following rules are used to determine the overall gradecording to the methods described above, two additional

of the results. rules are formed for decision making:
Rule 1: If (first stage protection has operated) Rule 4: (Maximum selection):
then (ignore the signals in second and third stage If (section M has the greatest membership function
protections) compared with all the other possible fault sections)
Rule 2: If (first and second protection have isolated the then (select M as the fault section)
suspected fault section) Rule 5: @-level selection):
then (ignore the signals of third stage protection) If (the membership grade of a fault section is
Rule 3: If (all three stage protections have not isolated the greater than the constamy
suspected fault section) then (add this section to the fault section set)

then (no fault at this section)
During decision making, the most likely fault sections argase Study
detehrmlned_t?ly c]?mlparlng .the abpve mer:'nbershlg grr]ad?s f% 4 shows the test network. Both substations SS1 and SS2
]?OETI(é)WiIPIOSSI ﬂ? dauizsgctmn using either or both o tr}?ave double buses with 4 bus-ties, and 4 transmission lines

g methods [12] : between them. In this example, the primary bus protection
relay (type PR) “PR2DA” has operated, but “CB2A” has
) ) ) failed to trip. Back-up relays (type BR) “BR12-A”, “BR12-
one with the highest membership gradg,  (C,). B", “BR12-D", BR32-B", and “BR42-A" have operated, but
(2) a-level selection The a-level set includes all fault “BR42-B” has failed to detect the fault._Therefore, “BR54-
sections with a membership grage, (C,) greater than A’ and “BR54-B” have operated, making “CB54-A" and

ot CB54-B” to trip accordingly.

(1) Maximum Selection: The most likely fault section is the

the qualifying value o#:.



Based on the tripped circuit breaker status, the island is as
shown in Table 2.
Using Equations 1-4, the membership grade of all possiﬂl@
fault sections are calculated and shown in Table 3.
Finally, the rule of maximum selection described above [g]
used and only the section F2DA is selected as the fault
section because the membership grade of this section[g'
much higher than those of other sections. The diagnosis
results are correct and are shown in Table 4.

(7]
D. Conclusion

Generally, a conventional rule-based expert system for bulk
power system needs several hundreds of rules. It is tinjet
consuming in inference procedures to search for suitable
rules during inferencing. On the other hand, fuzzy set based
expert systems tend to be much faster compared to
traditional rule-based expert systems for most of the rul
are replaced by the calculation of the membership functions
of the applicable rules . Only a few rules or functions aigo)
used in the inference engine.

The fuzzy set approach for uncertainty processing in expert
systems offers many advantages to compared otHéi]
approaches to deal with uncertainty.

Small memory space and computer tim&he
knowledge base is very small because there are ongf%a]
few rules needed during inference. The computati
time is therefore also small.

Small number of rules With properly designed [13]
linguistic variables and level of granularity, only a few
fuzzy rules are needed for each situation.

Flexibility of the system Membership functions
representing the parameters can be changed dynamicz!ﬂ14
according to the situation. It is also possible to develop
a self-learning module that modifies the grades cﬁs]
membership automatically according to changing
situations.
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Chapter 6 Optimization Techniques |

This section gives an overview of some fundamental concept
A. Session Overview of multi-objective optimization decision making and some
technical background of Yager's fuzzy multi-objective

Power system planning and operating often face the mutfl_emsmn making technique and fuzzy linear programming

objective optimization situations, which is a challengingeChmque'
problem. Conventionally, solutions of a multi-objective , . S -
optimization problem are given as Pareto solutions, of Whicl@;k. Yagefr]s Fuzzy Logic Mult-Objective Decision
consist of many solution points. The decision maker needs Ing Scheme

decide or select one specific solution out of the many ) o
solutions by considering various factors relating to thé order to use Yager's Fuzzy Logic Multi-Objective

problem at hand. In general, the decision will be made basegcision Making Scheme to solve some power engineering
on his/her preference, experience, or Subjective judgment_ prObIemS, there are several issues needed to be addressed.
To name a few:

Three kinds of information are involved in the decision

process :Goals Constraints and Alternatives Goals are 1. How to implement linguistic descriptions of the
what we want to achieve out of the decision process. Problem athand?

Constraints/criteria are limiting factors that are needed #® How to aggregate the available information for decision
consider before deciding how to achieve the goals. Mmaking?

Alternatives are the available decision outcome of thé. How to infer the final decision based on the aggregated
problem under consideration. The typical multi-objective information?

decision problem, which basically a decision process,

involves the selection of one alternatives . from a Three popular fuzz_y logic concept and _techniq_ues can be
! used to answer the issues posMdmbership functionswill

universe ofn alternativesA = {31,321"'-%} given asetof pe used to convert the input values to the linguistic
r objectives O= {Oy 02’,_'(%} with  corresponding Sescriptions and _membership values_to fu_zzy descr_iptive
o i ] orms. The fuzzy inference such as using min operation to
weighting factors/constraints constraing= {p,b,,---,b,}  aggregate input information based on the fuzzy rules.
that are important to the decision making. Each alternative
will be evaluated on how well it satisfies each objective.  Centroid rule which is the popular method to perform
defuzzification in fuzzy logic [11], can be used to evaluate
Generally, heuristic intuition, expert knowledge andhe fuzzy outputs into an preference value for each
experience, and linguistic descriptions are very important aiternatives for later decision making approaches used to
the decision making process. Since some information orilyfer the final decision making based on the preference value
can be described imprecisely and some others only as quatitstained from the Centroid rules and the weightings of
the decision making environment is fuzzy. The conventionabjectives. The overall decision process is shown in Fig. 1.
multi-objective decision making scheme does not capture

imprecise information and quality data in an effective [fuzzificatio }
manner. process o Fuzzy muiti- .
(membersh{ || fuzzy jp{defuzzificati objective | decision
. . . . . o fUﬂCtiOﬂS) rule process decision
Fuzzy logic technology is a rich field with a large amount of making schemg

theory and operations developed. Chapter 2 has briefly

described the techniques in fuzzy logic, including Fig. 1. Fuzzy multi-objective decision making process
membership  functions, fuzzy rules, fuzzification,
defuzzification. This chapter will focus on how to use fuzzyn 1981, Yager proposed an approach for decision making
logic to optimize multi-objective decision making for powethat required onlyordinal information on the ranking of
system problems. preferences and importance weights. This process naturally
requires subjective information from the decision maker
B. Brief Overivew of Yeger's Multi-Objective concerning the importance of each objective. Based on the
Decision Making and Linear Fuzzy Linear multi-objective decision making formulation described
Pro : previously, the decision measure for a particular alternative,
gramming . . . L
a, can be replaced with a classical implication of the form,




M(O: (a),h)=b >0 (@) =0Q vO (a). 1 In real world decision problems, objectives and constraints
©i(2)8) =4 A@=8vq@ ) are seldom rigid or crisp but rather vague in the degree of

whereb = 1-b and V is themaxoperator, i.e., attainment. Fuzzy mathematical programming has been
_ _ developed significantly in recent years to solve a class of
b v G (a) = max{q O (a)}. (2)  multi-objective optimization problems with ambiguous or

fuzzy constraints as well as objectives. Fuzzy linear
The implication preserves the linear ordering required of tHogramming is an effective method of making coordination
preference set, and at the same time relates the ta@ong many conflicting or trade-off objectives. The
quantities in a logical way where negation is alsgoordination will be done through the shape of membership
accommodated. Justification of the implication as afunctions assigned to objectives and also to constraints. If
appropriate measure can be developed using an intuitifk® goal of a certain objective is not thought of much, this
argument [10]. A reasonable decision model will be the joifust be adjusted by redefining the associated membership

intersection of decision measures, function. Furthermore, it is advantageous to treat future
r demand prediction as fuzzy number. The conventional
J=1N (ﬁ U q) (3) multi-objective linear programming problem withk
i=1 objectives may be formulated as follows:
*
and the optimum solutiona , is the alternative that minimize z(x):CTX]
maximizes]. If we define subject to Ax <b {
G=huvQ, (4) x>0 @
hence where z' (¥) = [z(x), (X, z2()]
T
He (8 =m Hg @), g, (a)] C=[e. ;v ] A =[a, 8, a,] and
®)  x c,aer".

then the optimum solution, expressed in membership form,

e In real world problems, the constraints are mostly
is given by :

given as fuzzy quantities, in other words, by ambiguous or
* max | . soft constraints. The objectives are rarely need to be
Hp(a) =gcp E‘"'n{"cl (a),uC2 @) He (a)}] ) minimized or maximized absolutely. However, the
objectives should attain values less than some target ranges
Yager’s decision making requires users to rank the group ifthe minimization process. The linear programming with
goals and the group of constraints along a comparative scBl@zy objectives and constraints may be formulated as:

of importance from 0 to 1 (create fuzzy membership minimize z(x) =C"x< z°

functions for each input and output. Then measure each of -

the user's alternatives against each of the goals and subject to Ax<b

constraints and rank them from 0 to 1 (another membership x>0

function concept). B (8)

where, symbol< denotes fuzzy inequality and is used to

The preference weighting factor8,= {by, by, b } will be express both fuzzy objectives and constraints. For

assigned to each of the objectives to quantify the decisiorstanceAx <b means the left-hand term is roughly less
maker's feelings about the influence that each objectiyf, the right-hand term.
would have on the chosen alternative. They are used to

convgrt the multiple Obj.eCt'VeS into_an overa]l deC|S|or|1n fuzzy linear programming, the vagueness of the decision
function in so_me_ p|E.USIb|e way. The_ negation of thg ayerin selecting an adequate plan is reflected as the degree
preference weightingo, acts as a barrier such that allof satisfaction through the shapes of membership functions.

distinctions less than that barrier is disregarded while thod&erefore, how to set up a membership function may
distinctions above the barrier is kept. The more important @aracterizes constraints as well as objectives. Depending on
the objective, the lower is the barrier, and thus the motae strictness of objective attainment, we shall assume the
level of distinction there are. Later sections will applyhree kinds of membership functions as shown in Fig. 2.
Yager's multi-objective on a Power Distribution SpatiaHere, type S is for the case of low priority, type H is for

Load Forecasting problem. more stringent case, and type N is linear membership
function. In this Figure, relationship between the value of an
B.2 Fuzzy Linear Programming objective functiona and the degree of satisfactian is

shown for the linear membership function.
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Type H (Hard) : High priority in an objective

Type S (Sof " Low priory I o °:je?‘i"et_ There are a lot of unforeseen situations may occur and land
ype N (Normal) : Linear membership function usage may change through time. For example, the new
H@) w3 construction of a highway, the move in of a large industry
! ! plant. These external factors can substantially affect the land
N S S usage, thus the load growth. The distribution system
a o N planners need to aggregate different types of information to
H predict what might happen in their service areas in the future
H and plan accordingly. Load studies shows that the land usage
0 En L 0 L _ dominate the load growth pattern and load shapes because
%z & G they employ similar type of appliances and have similar
(@) Minimization (b) Maximization needs and schedule [1].

Fig. 2. Membership function.

) ) o The land usage based spatial load forecasting computer
Later sections will demonstrate the application of Yagersmulation has been proposed and used to aggregate
mult|_-object|ve decision t_echnlque for Power D'St“bu_t'orhppropriate geographic information to simulate future load
Spatial Load Forecasting, demonstrate fuzzy linegjrowth based on different anticipated scenarios [2]. The
programming techniques for Generation Expansion Planningereasingly popular, affordable, and accurate Geographic
modified fuzzy linear programming approach to solv@yformation Systems (GIS) technology provide an excellent
Optimal Power Flow problem, and the use Lagranggata base platform for spatial load forecasting techniques.
relaxation techniques on fuzzy linear programming Ofhe yse of GIS can save thousands of man hours for utilities
Scheduling problems. to collect relevant geographic data [3]. Thus spatial load
forecasting technology become even more attractive than
C. Application of Fuzzy Optimization Methods tobefore both from economical point of view and superior load

Power System Applications forecasting accuracy.

There are a few stages for spatial load forecasting, shown in
Optimization Method for Power Distribution System Fig. 3. 'IE'hehslpat(ljal |nforn_1at|on 'S (ijsed t? p(;ed|ct tue land
Spatial Load Forecasting usage. Each land usage is mapped to a load growth pattern.
P o ] The land usage and load growth are then calibrated based on
(by Mo-yuen Chow and JinXiang Zhu, North Carolina Statgjfferent constraints, such as system load growth, budget

C.1 Application of Yager's Fuzzy Multi-objective

University) available, future economy growth of the area, etc.
Introduction i |
geographic constraings land usage | load growth

—

information decision estimation

D|str|but|on_ systems aim 1o provide reliable power t i%. 3. diagram of land-use based spatial load forecasting.
customers in a large geographic areas. In the planning stages,

utilities need to plan ahead for qntmpated future load growgbatial Load Forecasting Problem
under different possible scenarios. Based on load forecasts,

they will decide whether to built new facilities or upgrade . . . . . .
the existing facilities. Their decision can affect the earnin@S discussed in [10], three kinds of information are involved

or losing millions of dollars for their companies as well adl the decision procesgGoals Constraints andAlternatives
customers’ satisfaction and operational reliability. Therefor&0" the spatial load forecasting problems, we have to
decision making tools are very important to make a rigl‘fge”t'fy them before formulation.

decision based on given information. But the correct plan ) o
must rely on the accurate load forecasting. Goals are what we want to achieve out of the decision

process. In the land usage spatial load forecasting program,
For distribution plan, not only the load magnitude but alsgistribution engin(_eers want to predict the _IikeIihoo_d of Iar!d
its location are to be predicted. The load in distribution levé{Sa9€ changes in the future due to different influential
is highly stochastic (‘needle peaks’) and greatly affected H§ctors, then estimate the spatial load growth patterns
land usage, weather, and living habits. Apparently, ﬂ%_ccqrdmgly under dlfferent_ scenarios in order to plan the
distribution load forecasting is a high dimensionaldistribution system ahead oime The land usage goals can
stochastic, nonlinear, and time varying problem. It ibe further categorized as:
difficult to identify mathematical models or statistical )
regression models that have been used successfully lin Determine whether the land needs re-development,
generation and transmission load forecasting.




2. Determine what land class the site will become if reMulti-Objective Decision Problem Set-Up
development is required, and

3. Determine the corresponding load growth for the lands mentioned in previous sections, the illustration problem
usage. is formulated as following :

Constraints/criteria are limiting factors that are needed 1 10x 10 land grid sites assuming all environmental
consider before deciding how to achieve the goals. The lapgnditions are the same except the distandbedighway,
usage constraints/criteria can Heand-use Preferences, which is under construction, and distance to the urban pole
Budget LimitationsGeographic Constrainttc. center. There are three alternatives for land usage, such as,

- o ~ residential, commercial, industrial.
Alternativesin the land usage decision are the available

choices for land usage under consideration. For example, the

alternatives are different land class usage: Vacant land, Light Urban Pole . _~ Highway
Residential, ..., Heavy Industry. .' <159

| | o | o i
Spatial Load Forecasting Description st Commercial

s5 B Residential

One of the major process in the land-use based spatial load s3 B |ndustrial
forecasting process relies on the prediction of future land
usage. The choice of land usage belongs to the multi- S1

objective decision evaluation problem based on different
factors. The typical multi-objective decision problem, which i i i
basically a decision process, involves the selection of one Fig. 4. The illustrative example

alternative, a;, from a universe ofn alternatives .
I The goals of the land usage selection are :

A= {ai,az,w,q]} given a set ofr objectives/criteria

. .. 1. To maximize the land value by satisfy the preference of
a i that are important to the decision decision makers
making. Each alternative will be evaluated on how well 2, To minimize the redevelopment costs.
satisfies each objective. The inputs for the decision making process is :

1. The distance of the site to the highway.
Distance to highway concept is straight forward [1]. Urbap. The distance of the site to the urban pole.
pole concept has been used in city planning and modeligg The original land-use information.
[14]. Among a city or town, site preference may attracted #,  The cost of redevelopment from one land-use to another.
or repulse from some salient point of geographic interests
such as center of district, shopping centers, ball parks. TRRmbership Function Set-up
influence of the center of interest is often presented by the
Urban Pole concept [1].

The preferences of the land usage depends on the two

For example, there are three alternatives - residentifiiernal factors: distance to highwal, , and distance to

commercial, and industrial - are considered for land-usegban pole,D,. The distance to highway and distance to
selection in the spatial load forecasting problems [9], that i§shan pole are described by linguistic variablesry close
n=3 and A:{al,az,ag}. Suppose two objectives are(V), moderately closgC), and far (F). The membership

considered -O, distance from highway an®, distance functions representing these variables are shown in Fig. 5.

from urban pole - then=2 andO={0;, 0,}. v c F

Implementation of | and-use Selection

V.

This section presents a land usage based spatial load _
forecasting prototype demonstration of using fuzzy logic 1 2 3 _4 > 6 7 8 _9 10 .d'SIance
decision making scheme of the land usage determination, Fig.5. Distance membership functions.

from which predicts the future spatial load growth.
Since the grid size under consideratiori@sx 10, therefore,

the universe of discourse of the input variable is [0, 10]. The
preference values are normalized between [0, 1], in which 1
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indicates completelyprefer and 0 indicates completely example, highway:b, =0.7, urban pole:b, =0.6, cost:
against b; = 0.5, that means highway criterion is more important

htgan the urban pole criterion while urban pole objective is

Fig. 6 shows five membership functions to describe t : oo
more important than the cost criterion.

different site preferencestrongly against (SA)moderately

against (MA) neutral (NT) moderately prefer (MR) _ . . .
strongly prefer (SP) Again, the preference membershipThe centroid rule is applied to defuzzify the preferences to

functions are normalized between [0,1] highway and urban pole. These preferences and the
" preference of redevelopment on cost issue are aggregated by
U, SA MA NT MP SP

their important weighting factors based on the Yager's
approach.

For example, site (S6, 5) is a residential site which is 1.5
miles away from highway and 2.55 miles from urban pole.

fuzzification to getD(dy ) = {V /0.25 C/ 075 F/ {

apply all applicable rule®; = { MA/0.25, SP/ 0.7
defuzzification to get a crisp preferenpg =0.8125

The rules for selecting land usage with respect to distance%_@me procedure will evaluate other two alternatives and get:
highway and urban pole can be described by the linguistie: = {SP/ 0.25, NT/ 0.73 pc =0.625
variables in the Table 1,2. It mearnfd site is very closeto =5 B

highway, then residential will moderately against’ P = {SP/ 0.25 SA 0'75} P =0.25

1 1 1 1 oy
-

0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1.0
Fig. 6. Preference membership functions.

Fuzzy Rules

Table 1: Fuzzy rules for the distance to highway Similarly to the urban pole and cost, the results are listed in

Highway | Residential Commercial 1 Industrial | Table 4. Each alternative is evaluated based on Equ. (1-6)
Very MA Sp Sp and the highest rank win. Conclusion: this site is best served
Close by residential.

SP NT SA .
C,lgfe MA MA SA Table 4. Results for Land-use selection
Table 2: Fuzzy rules for the distance to urban pole T Wg'g7ht OR86152'5 Cgrgéné Igdés

Urban Residential Commercial Industrial Ighway : - : :

Pole Urban Pole 0.6 0.75 0.75 0.25
Very SA Sp SA Cost 0.5 1.0 0.8 0.7

Close Rank 0.75 0.625 0.3

Close MP MP MA
Far MA MA SP Spatial Load Forecasting

Different loads have their own characteristics and land-use

Not only the distance to highway and urban pole, but alsead curves. Reasonable approximations and simplifications

redevelopment cost is considered in land-use selection. Thgve been studied on load growth patterns [1, 15]. These

redevelopment cost is listed in Table 3. Since cost is to kschniques have been used in several power areas such as

minimized, the preference of redevelopment is defined &sad modeling, load forecasting, and demand side

1-T; , whereT; is the cost of redevelopment frath land- management.

use tojth land-use. In th|§ paper,.each land use has its own I_oa}d gr_ovvth
pattern and is described by state-space description in the

Table 3: The redevelopment costs form of :
Resid. Comm. Industrial S=ast b 9)
Residential 0.0 0.2 0.3 with appropriate units. The parameters for different land
Commercial 0.3 0.0 0.4 usage used in this paper are listed in Table 5.
Industrial 0.3 0.2 0.0

The importance weighting factor of each objectivés set

differently based on the decision maker's preference. For!aPle 5. Load growth parameters used in the illustration.
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The load growth pattern described in Eqn. (9) has been
shown to _be a good approximation for many Ic_>ad growths Fig. 8. The electricity consumption.
observed in the past. The parametgts, ¢ can be fine tuned
to suit the specific problems at hand [1]. The advantages of the proposed approach

Results and Discussion

The fuzzy logic formulation provides a intuitive and easy

) approach to implement heuristic rules into the spatial load

Land-use selection forecasting land-use selection criteria. The fuzzy algorithm
is robust even uncertainties employed. In this paper, the

The result of land-use redevelopment is shown in the Fig. ®ecision is made based on the compromise of preference to

highway, urban pole, and redevelopment cost. Yager's

car=1 Year=10 approach is used to evaluate multi-objective by the
s | EH R . importance weighting factors. Another advantage is to easily

— S ny=id weomea | MAtch the decision maker’s expectation, that is, the fuzzy
s 2 S8 o i rules and membership functions can be modified to fine tune

s CICgeE the results. The fuzzy multi-objective decision making
1ss T s 7 o process is robust, easy to fine tune, and easy to maintenance.

Fig. 7. The final land-use map C.2 References
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transaction problem mathematically, the following notation
is introduced:

D. Application of Fuzzy Linear Programming o _

with Lagrangian Relaxation Technique to Power Ci(Pi(®):  Cost of thermal uniti at hour t, in dollars;

Scheduling and Transactions I: Total number of thermal units;

(Sen Lin and Peter Luh, University of Connecticut) Pq(): System demand at hour t, in MW

Pr(t): System reserve requirement at hour t, in MW;
D.1 Scheduling and Transactions in an Uncertain pj(t): Power generated by thermal unit i at hour t, in
Environment MW:

ri(pj(1)): Reserve contribution of thermal unit i at
Since electric utilities generally have different sets of generation level;gt), in MW;
generators and have to meet their time-varying demand a,g?lt) Start up cost of thermal unit i in $, a linear
reserve requirements, they usually have different marginal*” i ) _ '
generation costs. It is often mutually beneficial to buy or function of time since last shut down;
sell power if their marginal costs are sufficiently different[ Scheduling horizon, in hours.

The transaction problem, however, is difficult because _ . .

transactions are coupled with scheduling through demafPiect Function. The objective is to minimize the total
and reserve requirements, and the scheduling problem it<gst - the fuel and start-up costs plus the expected purchase
is “NP hard.” In addition, significant uncertainties aref0Sts and minus the expected sale revenues:

involved, including demand, reserve, and future transaction ' M

1- X ’ . ! ’ ! A J = Q t .
opportunities. These uncertainties have major impact on the i§1[ (RO)+ % )]+nél 60 RO
economics of system operation. In view of the increasing _ gE[C ®p (t)]_ (10)
competitiveness of the power market, prudent transaction nep LT

decisions are required to be made in almost real time. A

good problem formulation and an effective methodology ai®ystemwide Constraints. In view of the inaccurate

needed to manage uncertainties. forecasted demand and uncertain transaction opportunities,
the system demand and reserve are required to be satisfied

In this subsection, the integrated scheduling and transacti@s much as possible” for the planning purpose (as opposed

problem is formulated as a mixed fuzzy-stochastito the exact satisfaction during on-line operations). These

optimization problem in subsection b. To solve the problegonstraints are thus modeled as fuzzy relations following [5]

with manageable complexity, a method based on and [6].

synergistic combination of fuzzy optimization, Lagrangian

relaxation, and stochastic dynamic programming iSystem Demand Constraints. Total generation plus

developed in subsection c. Testing results based on dekpected future purchases minus sales should be

from Northeast Utilittes presented in subsection ¢essentially” greater than or equal to the demand at each

demonstrate that the algorithm is robust, significant savingsur:

are obtained, and a good balance is achieved between _ N M N ~

minimizing costs and hedging against uncertainties. p() = ; P “HEE[ I%(t)]—n; HrnO)]= RO

,t=1,2,.,T. (11)
The membership of the above fuzzy relation is assumed for
simplicity to be piecewise linear as described by:

D.2 Problem Formulation

To simplify the presentation, a power system withermal
units, M future purchase transactions, and N future sale
transactions is considered. Hydro and pumped-storage units



1 p(t) = Ry(t), 1, J< 3,

Py(t) - p(t J- 16
pp(t) = 1*%1 Ra(t) > p®)= R (1) 0p(t), Hy = l—TJOv Jp <J< gy +6;, (16)
0, P otherwise 0, otherwise
t=12 T The aspiration levelglrepresents the desired total cost. A

In the above, K(t) is the “nominal” system demand, andschedule becomes less acceptable as the cost increases above
. L . Jg as indicated by the reduced membership, and the highest
6p(t) the maximum range of demand variations. Equatlorp

(2.5) states that the demand becomes less satisfied as %?{:)eptable cost i 8 One candidate fogls the cost of

decreases below ¢R) as indicated by the reducedthe crisp scheduling problem with lowest acceptable demand
membership and reserve, and expected parameters for future transactions.

In the symmetric approach, the fuzzy demand, reserve,
and objective constraints are desired to be satisfied
e§imultaneously. The problem is thus to maximize the
minimum degree of satisfaction z among all fuzzy
constraints by properly scheduling thermal units and making

System Reserve Constraints. The total reserve
contribution of all the units should be “essentially” great
than or equal to the reserve required at each hour:

((t) = lefi © P @), good transactiqn decis?ons:
i max z, with z= min {u, pp(t) » b}
t=1,2,.,T. (13) t=1,2,.,T, 17
The membership of the fuzzy relation is assumed to be:  subject to individual unit and transaction constraints. To
1, rt) =P (), make the problem approximately equivalent to the crisp case
B(t)-rt) when all fuzzy constraints can be satisfied with membership
={1-—2=2 p > P (1), (1), ; " .
w0 (1) ® >_r 0= R G20 1, the problem is modified following [6] to:
otherwise
t=1,2,.,T. (14) min b(z-2f +J,  with b >> J,
In the above, Rt) is the “nominal” reserve requirement, and
Pr(t) - 8¢(t) the minimum acceptable reserve. Equation (14§ubject to (18)

states that the reserve becomes less satisfied as r(t) decreases

<
below R(t) as indicated by the reduced membership. Z=Hy (19)
z< up(t), t=1,2,...,T (20)
Bey(_)nd_ §ystemvv_ide demand ar_wd reserve requirement_s, th_ere z<p(t), t=1,2,...,T, 1)
are individual unit and transaction constraints as detailed in
[7], [1], and [2]. 0<z<1, (22)
D.3 Solution Methodology and all individual unit/transaction constraints. Since (17) -

(20) are additive in terms of individual unit and transaction

To solve the above problem with manageable complexi vgriables, the prok_JIem Is “s_eparable.” Lagrangian relaxation
n thus be effectively applied.

the problem is first transformed into a crisp one by using t

symmetric approach for fuzzy optimization ([8]). The

transformed problem is decomposed into individual unit arldf9rangian Relaxation Lagrangian relaxation is applied to

transaction subproblems by using Lagrangian Relaxatioff/@x ‘Systemwide constraints” (18) - (20) with the

Individual subproblems are then solved by using dynamf@drangian obtained as:

programming. L= b(z-2)2 +J+AjJ-p-(1-2zp]
T
Converting Fuzzy Optimization to a Crisp One Based +§/1(t)[Pd(t)— p() - (1- Z)5p(°]
on the symmetric approach for fuzzy optimization, the B ;
objective J in (11) should be “essentially smaller than or D[R M) -r®) - 1-2 (9] (23)
equal” to some "aspiration levely:J =1
R (15) For a given set of multipliers, the following subproblems are

. L . Qbtained after re-grouping relevant terms:
The membership of the above “fuzzy objective constraints” grotiping

is assumed to be: Thermal subproblem for unit i:

min Lj, with
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: 24 The multipliers are updated at the high level by using
H ;E{(“%)[C(H(OH S0 PO s D} (24) the “reduced complexity bundle method” [9].
subject to individual thermal unit constraints.  This
subproblem is very similar to its counterpart when n@.4 Numerical Testing Results
uncertainty is involved ([7]), with fuzziness modifying the

cost coefficien_ts. The subproblem can thus_be solveq B¥e algorithm was implemented in FORTRAN and C++ on

using dynamic programming presented in [7] with, syN Ultra Sparc 170 workstation. Testing is based on two

straightforward modifications. data sets from Northeast Utilities Service Company (NU):
February week 2, 1996 and February week 3, 1996. Each

Future purchase transaction m: data set has a time horizon of one week (168 hours), and
min Ly, , with includes about 70 thermal units, 7 hydro units, and 1 large
. pumped-storage unit. Hourly demand is assumed to subject
L= E| 2 (1+ 23)C() P 9 = 2(D P D | (25)  to 4% variations, and hourly reserve 7% variations. The
t=1

solutions satisfy all the rules of New England Power Pool.
subject t0 () < Pn(t) and individual purchase

transaction constraints. Paramefey(t) is the maximum For comparison purpose, a deterministic version of the

purchase level offered at time t, and is a random variable. alg_orithm is_ ".’IIS.O test_ed using the same simulation shell.
' This deterministic version requires demand and reserve to be

satisfied crisply, and ignores future transaction opportunities.
Simulations were then performed for both the new and the
i deterministic algorithms, 200 Monte Carlo runs each. In the
simulation, the algorithm is run on a daily basis in a movin
h=E ;(HAJ)C"(O PO+ R (20) window fashion, gach time simulating a)(aeriod of one Weegll(
subject to B(t) < P,(t) and individual sale transaction to ten days. Uncertainties are realized on a daily basis, and
realized demand and reserves are required to be satisfied
i ) . crisply. Decisions regarding realized transaction
time t, and is a random variable. opportunities are incorporated into the system load. Testing
results are summarized in Tables 1 and 2, with optimal
The treatment of a future purchase or sale transactigfompership 0.786 for Data Set 1 and 0.805 for Data Set 2.
subproblem for the deterministic case can be found in [1]
and [2]. The resolution of the fuzzy-stochastic case followgye following can be observed from Tables 1 and 2:
a similar procedure. By discretizing the probability] The new algorithm results in significant savings for both
distributions of transaction price and maximum level for a  gcpedule costs (2.3) and simulation costs as compared to
load period, a set of price-MW combinations can be ihe deterministic one, indicating that a good balance is

obtained, each associated with a probability. Backward gchieved between minimizing costs and hedging against
dynamic programming is performed for each possible price- | ncertainties.

MW combination within a load period. The cost for the I0ag  The difference between a schedule cost and the
period is then obtained as the expected value of the costs at gggociated simulation cost for the new algorithm is
the first hour of the load period, considering all possible  consistently lower than that of the deterministic version,
price-MW combinations of that period. These periods are jpgicating that the new method is less susceptible to
then linked together by using stochastic dynamic disruptions and it thus more robust.

programming to satisfy allowable transaction patterns. The The computation time of the new algorithm is only

two steps are performed iteratively backwards in time, gjightly higher (about 20-30%) than that of the

starting with the last load period. Since the effects of geterministic version. Uncertainties are thus handled in
uncertainties are summarized in the expected “optimal-costs- 5 computationally manageable manner.

to-go” at the first hour of each load period, the
computational requirements increase only linearly as the ACKNOWLEDGMENT
number of possible price-MW combination increases.
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This work was supported in part by the National Science

Fuzzy Membership subproblem: Foundation under Grant ECS-9420972, Northeast Utilities
min Lz , with Service Company, and UConn's School of Engineering. The

) T (13)  authors would like to thank Mr. M. B. Gabris, Mr. G.

L=b(z-2) ”J‘*“E[“D‘SM*“(”“]'Z Merchel, Mr. J. A. Palmberg, and Mr. C. Larson of

This subproblem can be solved analytically by minimizing Blortheast Utilites and Mr. D. Zhang and Mr. K.
guadratic function. Kasiviswanathan of UConn for their valuable suggestions

and support.

6-9



Table 1. Simulation Results of February Week 2, 1996

* Negative number indicates savings.

Table 2. Simulation Results of February Week 3, 1996

Fuzz-Stoch  Crisp pifference
Future purchase trans. 10 0 10
Future sale trans. 7 0 7
High level iterations 59 48 11
Schedule cost ($) 8,412,206 8,451,957 -39,752*
CPU time (sec) 29 24 5
Ave. simu. cost ($)| 8,422,835 8,487,1Z%,289*
Difference ($) (sche} -10,630 | -35,169 --
simu)

D.5 References

(1]

(2]

(3]

(4]

Fuzz-Stoch Crisp Differenc| [5]
e
Future purchase 9 0 9
trans.

Future sale trans. 6 0 6 (6l
High level 65 51 14
iterations 7]

Schedule cost ($) 8,352,180 8,422,360 -70,171*

CPU time (sec) 35 28 7
Ave. Simu. cost ($) 8,335,353 8,381,127 -45,774*
Difference (3) 16,836 41,233 = (8]
schedule -
simulation (9]

* Negative number indicates savings.

L. Zhang, P. B. Luh, X. Guan and G. Merchel, "Optimization-
Based Inter-Utility Power PurchasdEEE Trans. on Power
Systemsyol. 9, No. 2, May 1994, pp. 891-897.

B. Prasannan, P. B. Luh, H. Yan, J. A. Palmberg, and L.
Zhang, "Optimization-Based Sale Transactions and
Hydrothermal Scheduling,lEEE Trans. on Power Systems,
Vol. 11, No. 2, May 1996, pp. 654-660.

H. Yan, P. B. Luh, X. Guan and P. M. Rogan, "Scheduling of
Hydrothermal Power systems,|JEEE Trans. on Power
Systemsyol. 8, No. 3, Aug. 1993, pp. 1358-1365.

X. Guan, P. B. Luh, H. Yan, and P. M. Rogan, "Optimization-
based Scheduling of Hydrothermal Power Systems with
Pumped-Storage UnitslEEE Trans. on Power Systenvgl.

9, No. 2, May 1994, pp. 1023-1031.

H. Yan and P. B. Luh, “A Fuzzy Optimization-Based Method
for Integrated Power System Scheduling and Inter-Utility
Power Transaction with Uncertaintiestd appear in IEEE
Trans. on Power Systems

X. Guan, P. B. Luh and B. Prasannan, “Power System
Scheduling with Fuzzy Reserve RequirementSEE Trans.

on Power System¥pl. 11, No. 2, May 1996, pp. 864-869.

X. Guan, P. B. Luh, H. Yan and J. A. Amalfi, "An
Optimization-Based Method for Unit Commitment,"
International Journal of Electrical Power & Energy Systems
Vol. 14, No. 1, pp. 9-17.

R. Bellman and L. A. Zadeh, “Decision-Making in A Fuzzy
Environment,”"Management Scienc¥ol. 17, 1970, pp. 141-
164.

R. N. Tomastik, P. B. Luh, "A Reduced-Complexity Bundle
Method for Maximizing Concave Nonsmooth Functions,"
Proceedings of the 35th IEEE Conference on Decision and
Control, Kobe, Japan, Dec. 1996, pp. 2114-2119.

6-10



Chapter 7 Optimization Techniques Il

assumptions which will be changing drastically or possess

A. Generation Expansion Problem by Means ofnuch uncertainties during the planning period. In reality,

Multi-Objective Fuzzy Optimization planning engineers must make up many alternative plans to
allow for these uncertainties and future fluctuations of basic

(by Hiroshi Sasaki, Junji Kubokawa at Hiroshimayarameters such fuel cost, demand forecast. The decision
University) maker must select one particular plan out of the thus
_ provided alternatives based on his/her subjective judgment
A.1 Introduction on many ambiguous factors. Thus, the incorporation of
uncertainties has been again the recent trend in GEP [7] and
Electricity is the indispensable form of energy in moderan approach that can effectively handle such uncertainty is
societies; its demand has been increasing year by yedefinitely necessary for solving GEP.
Furthermore, a widespread use of various advanced
electronic apparatus intensifies the sheer need of supplying this section, we shall take into consideration three
high quality electric energy. Generation facilities of a powesbjectives in GEP, that is, economy, supply reliability, and
system must be expanded adequately so that it will be ablestovironmental impact by assuming all the variables can take
meet future demand increase. Hence, generation expansiontinuous values. Conventionally, as to supply reliability,
problem has occupied an important position in power systethe reserve rate of about 6 - 10 [%] of its peak demand is
engineering field. assumed so as to accommodate inherently unforeseen faults
or sudden loss of generation. However, in GEP that handles
The generation expansion planning (GEP) has been so &long range planning, fluctuations on load demand forecast
defined as a problem to determine the amount of newust be securely integrated. Therefore, two different
generation facility to be constructed so that the sum of fixembncepts on supply reliability are needed: one is a
and variable costs of generation facilities is minimized ovaonventional reserve rate as mentioned above and the other
a certain period of time. Conventionally, GEP has beds supply reserve margin which stems from fluctuations in
formulated as a non-integer programming problem in whiatlemand forecast to higher side at the target year. The latter
a continuous variable is allocated to each type of generatiisgaken as an index to express supply reliability.
units [1-3]. One possible approach is to apply linear
programming after linearizing the original problem [4]In order to minimize environmental impact from thermal
Although the linearization might seem inaccurate, it is stitjeneration units, it is natural to restrain the amount of gas
valid as a first approximation to the problem covering a vesmission which has been treated as constraints in
long time range in which many uncertain factors should bmnventional GEP. However, this critical factor must be
taken into account. More authentic, there is an approatieated equally with economy as well as supply reliability. In
based on nonlinear programming [5]. this sense, we shall introduce an environmental index to
make compromise with the other objectives.
However, as is already mentioned, the requirement for more
reliable electric energy supply is becoming more and mohulti-objective optimization problems generally cause much
strong as the society has become more information orientddficulty in the sense that which objective is more important
As much as the same as high system security, it tisan others and, if so, to what extent. In conventional
indispensable to take into consideration environmentadathematical methods for this class of problems, solutions
impact caused by power generation. Therefore, GEP may dfe a multi-objective optimization problem are given as
formulated more appropriately as a multi-objectivé’arete solutions which consist of uncountable solution points.
optimization problem in which economy, system securityThe decision maker must anyhow decide or select one
and environmental stress should simultaneously be takspecific solution out of the countless solutions by
into account. This is especially the case in the recent trendooinsidering various factors relating to the planning. In
system planning methodologies, typically known as IRBeneral, the decision will be made based on his/her
(Integrated Resource Planning). In addition, power exchangeeference, experience, or linguistic judgment. Therefore, it
may be considered one of very effective means to futuneay be said that the decision process is done on the basis of
supply of electric energy. rather vague judgment.

As another specific feature of GEP lies in the fact that it iskuzzy mathematical programming has been developed
problem covering a long time span, well exceeding a decasignificantly in recent years so that it can solve a class of
or two. This means that GEP must postulate mamulti-objective optimization problems with ambiguous or



fuzzy constraints as well as objectives. Above all, fuzzBellman and L.A. Zadeh. According to the principle, the
linear programming is a very effective method of makinfuzzy decision is defined as the intersection of fuzzy
coordination among many conflicting or trade-off objectivesbjectives (goals) and fuzzy constraints. Let us define the
The coordination will be done through the shape dbllowing notations for the membership functions of the
membership functions assigned to objectives and also kbobjectives and constrinats as:
constraints. If the goal of a certain objective is not thought of Objectives g, (X), g, (X),, g, (X)
much, this must be adjusted by redefining the associated Constraints : ’ ' }
membership function. Furthermore, it is advantageous to onstraints e, (x), e, (), ke, (X) ©)
treat future demand prediction as fuzzy number. As alreadyien, the membership function of the fuzzy decision can be
mentioned, the role of GEP under much uncertainty is #efined as
provide the decision maker with a set of
o (X) = Min(g, (%), ptg, (X),+++, 15, (X),

A.2 Fuzzy Linear Programming fe, (X), -, ke (X)) @)

_ i L For convenience of further discussions, we shall introduce
In real world planning problems, their objectives ang}, following notations

constraints are seldom rigid or crisp but rather vague in the
degree of attainment. Fuzzy linear programming is a suitable
mathematical tool to deal with such optimization problems H1g(X) = g, (X), g, (X, g, (X) ®)
with ambiguous objectives and constraints. The conventional te(X) = pe, (X), He, (), e, (X) 6)
multi-objective linear programming problem withk

objectives may be formulated as follows: By using these notations, the fuzzy decision can be defined

as

minimize  z(x) = C'x| 4o (X) = Min(uty (3), e () @)

subjectto Ax<b ¢ The proposal of R.E. Bellman and L.A. Zadeh as a
x>0 J 1) decision making in the fuzzy decision is to selegctthat

T _ maximizes membership functioptD(X). This is expressed
where z'(x) _T[Zi(x)' Z,(X), Q(X)]’ mathematically as
C=[c. ¢, c] AT=[a, @, a,] and 1p(X) = max i (x) = maxfmin(u, (%), 1(x)) } ®)
X, G, & eR". where X denotes the set of alternatives which consist of

In general, the above problem has an infiniteneans or actions that can be taken in fuzzy decision.
number of optimal solution points known as Parate optimal According to fuzzy mathematical programming, (8) can
solutions. That is, if it is desired to improve a certaibe transformed to the following maximization problem:
objective, this makes some other objectives deteriorate. sup Up(X) = S}é%mi”[a' Slépug(x)] )

In real world problems, the constraints are mostly given aghere Ca means theq -level set of the fuzzy constraints
fuzzy quantities, in other words, by ambiguous or soffnq expressed as

constraints. It is also true that the objectives are rarely need

to be minimized or maximized in the strict sense, but they C. = {quc(x)Za} (10)

should attain values less than some taget ranges if to Ipr(X) = sup,(x) is continuous with respect ta , the
minimized. Thus, linear programming with fuzzy objectives xeC,  °

and constraints may be formulated as: following holds:
minimize z(x) =C'x< z° Sup up(X) = SUp #g (X)=a 1)
subject to Ax<b Therefore, the fuzzy mathematical programming problem
x>0 has reduced to tan ordinary methematical programming

(2) problem. That is, oncex is obtained, the remaining is to
Here, symbol< denotes fuzzy inequality and is used tamaximize fi;(X) under a crisp constraint s@a.

express both fuzzy objectives and constraints. For

instanceAX <b means the left-hand term is roughly less he algorithm shown in Fig. 1 is to obtain the maximum
value ofac for which the degree of satisfaction of each

E ! 5 h biecti d . objective is greater than or equal to. Note that a suitable
quation (2) means that objectives and constraints mbership function is postulated for each objective

enforced by fuzzy inequality in fuzzy linear prOgramminghepending on its relative importance. Since the minimum

and hence can be treated equally. Fuzzy linear programmifig,ree of satisfaction amona the obiectives is maximized b
is based on the fuzzy decision principle proposed by Rggg I I g Jectives t ximiz y

than the right-hand term.
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this algorithm, it is one of algorithms of realizing usual maxvalue of each membership function is respectively compared
min operation of fuzzy objectives. In Fig. 1, first anwith,. If the discrepancy exceeds o, and therefore the

opUr_mzann problem with single objective upper or lower Ilmlta is updated; the process continues
zZ (i=1, 2;--, K) is solved separately to evaluate the

. : until the error becomes negligible. The obtaioedis the
ideal fluctuation range,; < z < @&;. Based on this result,

. . . optimal. If the decision maker desires to further improve the
we define a membership function to express the degree

. . S ; gree of satisfaction, he must check and alter the
satisfaction for each objective. After postulating memberSh@pemﬁcanons of some membership functions.
functions, set the initial value of-level. Then, select an

arbitr_ar_y obje_ctiv_e functio.n, say, as the objective and th? In fuzzy linear programming, the vagueness of the decision
remaining objective functions are transformed to constraintsaker in selecting an adequate plan is reflected as the degree

as in the following: of satisfaction through the shapes of membership functions.
Therefore, how to set up a membership function may

Determine the best and worst values of ¢ach characterizes constraints as well as objectives. Depending on
objective function:a,;, a; (i=12,-,k) the strictness of objective attainment, we shall assume the

| three kinds of membership functions as shown in Fig. 2.

Here, type S is for the case of low priority, type H is for
more stringent case, and type N is linear membership
| function. In this Figure, relationship between the value of an
objective functiona and the degree of satisfactian is
shown for the linear membership function.

Set initial value foo: - Ievezi>ct =a,

Seleciz as the objctive function

Transform the objective functions

Type H (Hard) : High priority in an objective
Type S (Soft) : Low priority in an objective

to constraints as boundeddqy . Type N (Normal) : Linear membership function
| " ua,
Solve LP problem (12) parameterize(lal S
bya, ;x : solution point N Y N
a o
R | R . * H H
Obtain the degree of satisfaction= 1;(x )
0 0
Computey, = a, — L, 3 a &z a a a 2z
(a) Minimization (b) Maximization

m no Fig. 2 Membership function

A.3 Formulation of Generation Expansion Planning

yes
Updatex, GEP can be defined as a problem of determining the kind
o —n-y — o and capacity of generation technologies to be installed and
transmission networks to support power exchange between
End:3 = a areas. We have postulated the following assumptions in our
— study:

Fig. 1 Algorithm to solve fuzzy LP problems (1) Fuel cost is the same among areas under consideration,

that is, the cost is the same for the same kind of
generation technology.

Each unit has no time delay in its start-up and shutdown
(complete follow-up capability for demand fluctuations)

minimize z =c'x ]|
subjectto Ax<b ; x>0 | @)
z <a; :minimization f

f (3) Each unit can be operated without any fault

J (4) Merit order (priority order in start-up) is predetermined
(12) (5) The load duration curve, maximum demand and

spinning reserve are given.

That is, if a certain objective is to be minimized, it id6) The load duration curve which is the sum of those of all

areas is assumed to consist of five levels as shown in

Fig. 3.

determined by the degree of satisfactian, and vice versa. Here, the last assumption is necessary to make the problem

Then, linear programming problem (2) is solved and tHee solved by linear programming.

z >a, :maximizatio

g =ua) j#

constrained from downward bya, :,ujfl(at) that is



(3) Constraints on the output of each generation technology

The constraints and objective functions are explained in tie¢ each load level, the output of each generation cannot
below. Subscriptsm, i, k attached to symbols denote theexceed its installation capacity.

load level, area, and the kind of generation technology, Zyming()gkjLMk)
respectively. The period of the planning is 10 years and four i i (15)
kinds of generations are assumed.

(4) constraints on power exchange

The amount of power exchange between two areas must not

g d exceed the transmission capacity of the transmission line.
= gz T ||-mij|S L |ALmij| < ALy (16)
% dj ' R where
z Lij : Transmission capacity of the existing line between
—l I I I AU - .
d areas$ and|
ALij : Transmission capacity of the new line between
4 1 L 4t o areas andj
Time [h
Fig. 3 Approximated load during curve (5) Constraints on the capacity of new installation

There are certain constraints on the capacity of newly
installed generation technology and transmission lines. This

. . ) is especially the case for nuclear plants. Since any nuclear
1) Constraints on generation capacity unit is operated at a constant output at present and hence it

This is concerned with the maximum generation capacity @hnnot follow up load variations. In other words, the
the total system relative to the maximum load demand apg,\imum total capacity of nuclear units should be
may be expressed as prescribed so that they could be used as base loading.
22 (X +A%,) =1+ (D, + AD) AX, < AXy <AX, ; AL <AL
ik i

[Constraints]

(13) — (17)
where
X,  :Capacity of the existing technolodsyin ared where
AX, : Capacity of newly installed technolody in ared AXy, AXy  :Lower and upper limit of new installation
Di : Minimum forecasted load demand in area ofjchnologyk in ared
ADi : Change in Forecasted load demand inijarea AL“ : Upper limit of the capacity of new transmission
r : Reserve rate line between areais and |

(2) Constraints on the output share of each generatigs) The lower and upper limits of fluctuations in forecasted
technology load
The sum of the output of each generation technology must

be equal to the sum of power exchange and load demandtat convenient and natural to anticipate that fluctuations

each load level. between the actual load demand and the forecasted one at
> Yo = Z(Lrnij +AL ) +d +Ad s L =L the planning period may lie in a range.

X ¥ (14) AD, < AD, < AD,
where - ' S (.18) .
Y., :Generation share of technololfyat load leveim ~ whereAD,, AD, : Lower and upper limit of fluctuations in
in areal demand forecast

L.;  :Power exchange between areasdj through the o _
existing transmission line at load levu&l [Objective Functions]

ALmij : P(?wetr ex.change between areand] through the (1) Economy index
new transmission line at load levél As an economy index, we shall consider the sum of the
Oy - Forecasted load demand at areat load levelm  annual investment costs of generation plants and
Ad,; : Change in forecasted load demand at load levBRNSmission lines, fuel cost and purchase cost through
m in area interchange. It is assumed that investment costs are in

proportion to its capacity and fuel cost to the amount electric



energy produced; the cost of power purchase is assumed to

be proportional to the capacity of inter-tie transmission lind.his index may be explained by utilizing Fig. 4, in which

Note that the investment cost is converted to the presehtee lines are depicted. The line at the bottom means the

value. Then, the economy index is expressed as: best (and possibly minimum) demand forecast at the
E - f Ax R+ vY. TR planning year; the line at the middle shows fluctuations
' Z‘; W %:sz: e against the best demand forecast that actually occur in reality.

+ZZC|1ALH R+222b”(A|_m”+|_m”)TmR The fluctuation denoted byAD in the Figure can be
[ moij

(19) regarded as supply reserve margin from the standpoint of
where supply reliability. However, it is assumed that possible
f, : Per unit annual investment cost of generatiofiuctuations are bounded by the line at the top, that is, by
technologyk in ared AD, . Here, we shall designatp + AD, as the equivalent
R : Conversion coefficient to the present worth demand.

Vy : Fuel cost of generation technolofgy
T, : Duration of load at levein A.4 Discussions on Numerical Simulations
c Per unit annual unit investment cost of(1) Test Systems

o - . Fig. 5 shows a test system which is used in numerical
transmission lines between areasd| simulations to evaluate the validity of the proposed fuzzy
b : Per unit annual cost of power exchange betweeipproach. Generating plants and transmission lines depicted
areas andj in doted lines signify future possible installations and those
in solid lines existing plants and lines. Four kinds of
generation sources are considered, that is, nuclear (H), coal
(C), ail (O) and LNG (L). Load demands at the reference
year and demand forecasts at the target year in each area are
givenin Table 1.

Table 1 Load demand in each area

(2) Environment index

Although thermal plants are emitting N@nd SQ as well
as CQ, we shall take into consideration only &£@r
simplicity of treatment. The amount of G@mission is

assumed to be in proportional to generated energy (MWt ')Area Load demand in the | Forecasted load in the
and expressed by reference year [MW] target year [MW]

F= 22 28 m TR 1 1300 1800

e (20) 2 2500 3800
where €, denotes emission coefficient of ¢af technology 3 3600 5200
k 4 2500 3100
Area 1 Area 2

(3) Supply reserve margin index (to be maximized) AR et G oo

This index is reflecting fluctuations in load forecast and to

be maximized to keep a high supply reliability. As this !
certainly brings about much higher cost, there is a certain 1 | | | —————— | >
limit which will be determined by fuzzy coordination. We  180om | 310000
shall adopt the sum of fluctuations in load demand in all I
areas as the index: oo : 0o
R =2 AD, !
i (21) 3800MW :
Demand 5200MW
A Maximum 4_l |
flucutuations I I [T J\ oo !
7~ N B
el VL ©) @é)@@@ OOO0T
quivalent 1 ™ © OO M E© O ™M OVE O E
demand yd L 04 0506 07016017018 08 09010019020
- LVAB AD; Area 2 Area 3
/// ' i Fig. 5 Test System

Best demand

estimate

Year

Fig. 4 Fluctuations in load forecast

(2) Coordination Between Economy and Environment
Indices

In this subsection, we shall discuss the effect of introducing
the environmental index in GEP with interconnections. In
the proposed method, to what extent the environmental



impact is taken into account in GEP depends on how to sstme in Fig. 7 irrespective of difference in membership
up the associated membership function. function settings as a result of constraint 5. This is because
[ Nuclear B Coal LNG [ il nuclear plants cannot change their outputs. In general, coal-
fired units are not friendly to the environment and hence as
the requirement for reducing environmental impact is
strengthened, the rate of coal plants reduces (every three
cases from the left). Of course, the degree of reduction in
coal units is largely affected by the membership function
corresponding to the economy index. Fig. 8 fortify these
observations. In fact, for the case where both economy and
environment have H-type membership functions, the cost
increases by 6.5 [%], but the emission decreases by 35.2 [%)]

Eco]:‘]omyl ; ﬁ g @ Economy compared with the case with only economy index taken into
Environments H s W H)  Environmen account.

Fig. 6 Best mix for the case of the fuzzy coordination
between the economy and environment index (3) Coordination between Economy and Supply Reserve
cost  B1CO, Margin Index
- In this subsection, we shall discuss results of the
5.2% coordination between economy and supply reserve margin.
Fig. 8 shows how the cost and the supply research margin
gl 1 10 N\ N\ index change, in which the both indices are expressed as the
ég \ % E "§ %% Euf »iig . . .
1 o §m‘ § § ratio to that of the case with only the economy index

SN

SRR

&

il § : \"g ] § considered. In Fig. 9, the capacity of newly constructed

] 722 V]
\Zh Z1\

N N generating plants and the amount of power interchange are
S S S N N N H H H) Economy . . . . .
Environmen shown for different combination of membership functions. It
Fig. 7 The cost and CGGemmison for the case of fuzzy is obvious th"?‘t When the economy 1S weighed more (type H),
the cost and inevitably the equivalent demand reduces. Also,

coordination between the economy and environment mdez;ve can observe that as the capacity of new generating plants

i . o decreases, power interchange increases significantly (see
!n the first place, the generation mix with only the e.Conomé(very 3 columns in Fig. 9). These Figures demonstrate that
index considered is shown at the left column in Fig. 6. |

. ) . conomy and supply reserve margin are in a trade-off
this case, nuclear and coal-fired thermal units are mos y i 9

. : é(lationship. Therefore, it may be concluded that by flexibly
constructed because of their economical adva}ntage O\é‘ﬂanging the shapes of the membership functions, the

. . . ; S BFoposed system can provide a set of alternatives that
via the exiting lines is not incorporated so much in this Casiflects the intention of the decision maker

In the next, we shall consider another extreme case where

only environmental index is taken into consideration, though

this is quite impractical and just for the purpose of %]
comparison. It is clear from the second to the left column in 120 Cost  EQ Equivalent demand
Fig. 6 that coal units which emit a large amount of, @&

not constructed at all. This is replaced by increases in oil and
LNG units, while the share of nuclear units is practically 110
unchanged due to the constraint. Although a large amount of
power exchange through the exiting lines is incorporated in 105
the planning, it generally depends on the initial allocation of
generation technologies to each area. The cost and the
amount of CQ emission in this case are respectively 120 2 B 4

n

95 2 1 VB
[%] and 46.4 [%] of those in the case of economy index only. E°°“°my
SRM. (s N H S N H S N H

Simulation results for the case of coordination between theFig. 8 The cost and equivalent demand for the case of
economy and environmental indices are summarized in Figezzy coordination between the economy and supply reserve
6 and 7; the former depicts the generation mix (share of each margin index (S.R.M)

generation technology) at the target year and the latter shows

the variations of the cost and g@mission taking the case

with only the economy index considered as the reference. It

should be noted that the share of nuclear plants remains the

E
%
7
%3
7
%3
7
%
%3

100(p

=
.
88N

A

7-6



Generation capacity Area 1 Area 4

B Power interchange G1 G2 G7 G8
18,000] 7180 ®
16,000(] ' 0 7 . T 160 CP iﬁr_»
14,000 140
12,000]] 120 180 380
10,000f 100
8,000 80 L1 L4 L3
6,000[1/]__ 60
4, ooo‘ & o 40
2,000( /II; LU ;ZIT ;ZII‘ g':“ 20 520 310
O R B 1 ‘ WNMZ N7 0 —~.— L2 ———
Econom S N H H | |
S.RM. ) é é @®
Fig. 9 The generanon capacny and power mterchange for G3 G4 G5 G6
Area 2 Area 3

the case of fuzzy coordination between the economy and

supply reserve margin index (S.R.M.) Fig. 12 Possible generation plants to be constructed for

demand increase

(4) Effect of Fluctuations of Demand Forecast 19500 |
As is mentioned in the introduction, there is not a small — 12000 L /,’
probability that the predicted demand fluctuates significantly. § Crisp PR
If it fluctuates downward during the planning period, no 2 14500 | ,,/’
reliability problem does occur though the expansion 2 ,/’
planning is quite uneconomical. A serious problem does £ 11000 | ~ .
occur if the estimate deviates upward. Since it is very likely Fuzzification
to occur, GEP must be able to handle fluctuations in demandS 10500 |
forecast. As an effective means of handling this situation, the
predicted load demand is fuzzified, that is, it is regarded as a 10000
fuzzy number.
9500
() 0 3 5 7 10
S PR tob——— Rate of fluctuatons of demand forecast [%)]
: D“ ______ ’ | Fig. 13 Relationship between the cost and the rate of
% | fluctuations in demand forecast
g |
A | I By making use of the above data, simulations have been
| ! carried out for cases with and without treating load forecast
! yZar 10 Drin  Dras - as fuzzy numbers. Fig. 13 shows the total cost versus the
Demand forecast rate of fluctuations in the load forecast. In this Figure, costs
Fig. 10 Increase in load demand Fig. 11 Membership function corresponding to the crisp case are computed as the sum of
aferthe fifth year the cost for the expected minimurB,,,. and additional cost

We assume that the load demand increases unexpectdffyred by the unexpected load growth. On the other hand,
after the fifth year as shown in Fig. 10. Hem®,,, is the [N case of the fuzzification, the planning is completed at the

same as given in Table 1 ang,,, is the actual demand in OhUtsjt by t:l;mg |nt(?[ coniljderz;\tfllontbofmmr;hand Dtma" thlf
the target year. The rate of the fluctuations, defined l:i:ye emand forecast would not fluctuate, the cost in the crisp

/ lated to be 3 410 ase is clearly the optimum. However, with an increase in
(Dmax Diin) / Dy + @re postulated to be 3, 5, 7, and 10 [% luctuations, the cost increases significantly compared with

Fig. 11 shows the membership function corresponding tRe fuzzification case. In general, since a rigorous forecast of
load increases against the original forecast. For unexpecigéd demand for a long time range which is one of the most
load growth after the fifth year, it is assumed that coal anghportant basic data for GEP, these results shown in Fig. 13
gas turbine units could be constructed due to their relativedve verified a clear advantage of treating load forecast as
short lead times. fuzzy numbers.

7-7



A.5 Concluding Remarks system,typified by an electric power system, multiple
objectives with different natures must be taken into

In this section, the generation expansion planning (GEP) Hensideration. For a power system, economic operations,
been formulated as a multi-objective optimization problen$UPply reliability, security and minimal impact on
in which economy, supply reliability and environmentaP”V!ronmentS are typical objectives tp b_e sapsﬂed. It. is
impact are taken as objectives. Also, power interchangeQ8vious that trade-off among these objectives is impossible
included in the formulation in order to allow for a multi-areg€cause of their differences in nature. For instance, to
system. GEP thus formulated has been successfully solfgprove the security certainly deteriorates system economy
by the fuzzy linear programming method. In the proposéﬂle toa I:_;lrge amount of investments. This fact is stated that
method based on fuzzy coordination, it is possible to make objectives are non-commensurable.

up a set of alternative plans that take into consideration

trade-off among the three objectives. Therefore, this can b@fortunately, conventional optimization techniques are not
a truly useful tool for the decision maker. suitable to obtain the optimal solution which simultaneously

optimize a variety of objectives. One conceivable approach
using conventional methods is to convert a multi-objective
problem into a single objective problem by assigning distinct

[1] F. Beglari and M.A. Laughton, "The combined costs method fo"?/(alghts to each objectives, thereby allowing for relative

optimal economic planning of an electrical power system,'mportalnce among goals [3]. However, this artifice is not

IEEE Trans. on Power Apparatus and Systems, vol. pas-owtally satisfactory since different objectives cannot be
No. 6, pp.1935-1942, Nov./Dec. 1975 evaluated under a common measure and there are no rational

[2] W. Rutz, et al, "Sequential objective linear programming fobasis of determining adequate weights. The main purpose of
generation planning,ibid, vol. PAS-98, no. 6, pp.2015-2021, the optimal power dispatch problems have so far been

A.6 References

Nov./Dec. 1979 confined to minimize the total generation cost of a power
[3] N. Levin and J. Zahavi, "Optimal mix algorithms with existingsystem_ However, in order to meet environmental
units,"ibid, vol. PAS-103, No. 5, pp.954-962, May 1984 yaqylations enforced in recent years, emission control has

[4] J.K. Delson, et al, "Linear programming applications to IOOWe|1:5ecome one of important operational objectives. In this
system economics planning and operations, IEE

Transactions on Power Systems, vol. 7, pp. 1155-1163, No. ,Ob'e”_" the amoun_t of NOx emission, which is |n_
August 1992 proportion to the active power output of a generator, is

[5] Andres Ramos, et al, "A nonlinear programming to optima$€lected as an evaluation criterion, and the minimum
static generation expansion planning,” IEEE Transactions @mission is sought within a small region around an
Power Systems, vol. 4, pp. 1140-1146, No. 3, August 1989 economically feasible operating point [4,5].

[6] H. Sasaki, J. Kubokawa, M. Watanabe, R. Yokoyama and R.

Tanabe, "A solution of generation expansion problem bgystem security is another essential factor in power system
neural networks,” The First International Forum orgperation and also in system planning. To be specific, it is

Applications of Neural Networks to Power Systems, pp.219- : op : .
224, July 23-26, 1991, Seattle, USA Ei/ery important to maintain good voltage profiles and to limit

[7] B.G. Gorenstin, et al, "Power system expansion planning unu]érPe flows within prescribed upper bounds. In  security

uncertainty,” IEEE Transactions on Power Systems, vol. 8, pﬁ_naly5|s, a series of anticipated contingencies are assumed to

129-136, No. 1, February 1993. predict possible overloading or excessive voltage deviations.
Then, a security index as a function of overloads and/or

B. A Solution Method of Multi-objective Optimal voltage excursions will be minimized by some preventive
Power Flow by Means of Fuzzy Coordination 0"l actions.
(Junji Kubokawa, Hiroshi Sasaki, Hiroshima Universitywhen permissible limits of emission and overloads are

Ryuichi Yokoyama, Tokyo Metropolitan University) clearly specified in a power system under study, these
quantities could be incorporated into the OPF as operational
B.1 Introduction constraints. However, in system planning studies, these

limits posed on emission or overloads would be very

In recent years, more stringent requirements have be@fbiguous, thus making such treatment difficult. Also, in

imposed on electric utilities. Personnel in charge of syste@§tual system operations, it is necessary to maintain the
operations is requested to determine optimal system staf¥stem at a proper security and emission level even when
that satisfy versatile operational constraints. As a powerf@ienerator or transmission line tripping do occur. To attain
means of solving this class of problems, extensive studies ¥ goal, system operating points should not be at constraint
the "Optimal Power Flow (OPF)" have been undertakefinits but needs some operational margin. Furthermore,
[1,2]. It should be noted here that OPF is to optimize judiPeration indices mentioned herein are in conflicting trade-
one Speciﬁc objective, or Sing|e performance index. |ﬁff relations, successful optimization cannot be attained

general, to attain an optimal operation of a large scal@rough any of conventional optimization approaches.



set of non-inferiority solutions (or, Pareto-optimal solutions).
In power flow optimization problems, there exist a humbedtere, the concept of the non-inferiority implies that when an
of objectives to be achieved which inherently have differemtrbitrarily chosen index is to be improved, some other
characteristics, and hence conflicting relations hold amomgdices deteriorate more than the improvement gained in the
these objectives. To be specific, indices associated wiklected index. Thus, the originally selected performance
economy, reliability and environment protection are norindex gives no clue to choose the optimal solution.
commensurable in their nature. Moreover, there is no
invariant priority order among these indices consideringn the goal programming, DM must set up goals or
drastic changes in circumstances surrounding electaspiration levels for the objective functions and minimizes
utilities. In these cases, some personnel (referred to @deviations from the goals. This is to pursue a satisfaction of
"decision maker: DM") must decide which is optimal basedbjectives rather than optimization, and in a sense very
on his/her subjective judgments. Therefore, it isimilar to the fuzzy coordination approach.
indispensable to grasp quantitatively these trade-off relations
in order to obtain the optimal solution in an objective way. The fuzzy coordination approach is to maximize the degree

of satisfaction of DM on each objective. Since a multi-
Here, a brief review will be given on the following threeobjective optimization problem has uncountable solutions,
alternative approaches to deal with optimization probleni3M must decide one specific solution point by his own
having multiple objectives that are in trade-off relations andecision. This is accomplished by postulating properly a

non-commensurable: membership function to each objective according to its

importance to DM. In this approach, the degree of

(1) Scalarization method approach. satisfaction will be improved step by step by updating or
(2) Goal programming method [6]. changing the membership functions.

(3) Fuzzy coordination approach.
B.2 Multi-objective Optimal Power Flow
The first approach may be classified to the following three

different methods: Multi-objective Optimization Problem

(a) An approach in which only a specific objective to b . . o . L
regarded as the most essential is taken as t multi- objective optimization problem is to minimize

performance index, while the others are treated Simultaneously objective functions orX, a set of feasible

constraints. solutions, and may be formulated as follows:

(b) An approach in which a scalar composite performance minimize f(x)
ind_ex _ is made up by properly weighting each subjectto x e X={x | g(x)< 0 1
objectives. @)

(c) An approach in which the most essential objective 1¥here X - decision variable vector
taken as the primal performance index and the X  a feasible set ok i
remaining objectives are processed in each sub- f(x) ={f1(x), f2(x),---, fp(x)}" : vector

problems as respective performance indices [7]. objective functions

Approach (a) works well only when the goal to be attained is 9(x)  :inequality constraints

well defined and priority order among objectives is given a i ) )
priori. This treatment, however, encounters a sevelB general, a complete optimal solution that simultaneously

difficulty in case trade-off relations among contradictonyninimizes all of the multiple objective function does not

objectives, such as between reliability and economy, afdways exist when the objective functions conflict with each

vaguely given. As to approach (b), it is quite easy tgther._ Th_us, the concept of. "Pareto opti.mal sqlution" or
optimize a scalar performance index composed of as a ling@Pn-inferior  solution” is introduced, in which the
combination of involved objectives. However, it is of seriounProvement of a particular objective function must cause
doubt to assign weights in homogeneous manner ggterioration of other objective functions. From the
objectives being not commensurable. Furthermore, tigefinition, the r_10n-|nfer|or_solut|on set consists of an |nf_|n|_te
meaning of weighting factors is difficult to justify. On thenumber of points. In optimal power flow problems, it is
other hand, the main advantage of approach (c) is in thaiPortant to get a unique solution which reflects the
can clearly handle trade-off relations among conflictingreéférence of Decision Maker (DM).

objectives. Nevertheless, there is no definite guide to select ) )

which one should be selected as the most desirable fronfF¥@luation Indices

group of optimal solution candidates. This method, referrdeiconomy, environmental and security index, which can be
to as the -constrained method, is very effective to obtain aegarded the most important subject in power system




operations, are chosen as the evaluation indices.

(a) Economy index

constraints.

B.3 Interactive Fuzzy Multi-objective Optimal Power
Flow

The fuel cost of a thermal unit is an essential criterion for

economic feasibility and can be impressed by:
n
R() =2 @ +b i+ G P&)
E )

where R Generator output of generator i
g, b, G : cost coefficients
(b) Environmental impact index

Interactive Fuzzy Multi-objective Programming

Considering the vagueness of evaluation criteria of the
multi-objective optimization problem, the decision maker
(DM) seems to have fuzzy goals as "each objective function
will be substantially less than some value". These fuzzy
goals for DM can be quantified by specifying membership
functions to the corresponding objective functions. Once

Nitrogen-Oxide (NOx) emission is taken as the index frol®M having specified the membership functions, a fuzzy
the viewpoint of environment conservation. The amount afptimal solution can be obtained by solving maximization

NOx emission is given as a function of generator output:

R(Y)= X (i + i - Rsi+7i - i + 3 exili - Poi))
=1 ©)

problem of the sum of the membership functions. If DM

cannot satisfy the obtained solution, the DM is required to
change the shapes of membership functions interactively.
The linear membership function and add-operator for the

where o, Bi, ¥i: Oj &j : NOx emission fuzzy decision set were adopted in this study.

coefficients.

(c) Line overload index

maximize DMX) = i e (X)
k=1

Overloading in a transmission line can lead to system Subjectto XeX= {X | g(X) < 0} @

collapse in an extreme case. Hence, we adopt, as the secur'ﬁy DM(X) - decisi
index, a weighted sum of line flow deviations of all’V'®'® - luzzy decision S(_et o
transmission lines. Thus, the security index is expressed as uk(X) : the degree of satisfaction for objective

Ry) = Zn:VWj 'i(PLij (v)- PLij*)

i=1,j=1 . (4)
X X >
where &(x) = {0 <0

Wij : Weighting factor
PLij (y) : Line flow from node i to j

PLij (y)* : Nominal transmission capacity

Equality Constraints

Since an OPF solution must satisfy power flow equations ‘&

each node, they are treated as equality constraints.

P(y)_ Ps =0 (5)
S
Q(y) _Q =0 (6)

Inequality Constraints

functionk

Although several methods have been proposed for fuzzy
OPF[8,9], they assumed that some already tuned
membership functions would be supplied by DM. It must be
quite rare that such tuned membership functions are given a-
priori in real applications. In order for DM to set up tuned
membership functions more conveniently, we propose an
interactive fuzzy OPF method, in which the membership
function will be updated interactively by DM.

In the conventional interactive multi-objective optimization
programming, the membership parameters have been
dated by DM in accordance with the values of the
objective functions and trade-off information (Figure 1(a)).
However, because of complicated interactions between
objective functions, it is impossible to predict how the
solution will behave depending on changes in the
membership functions. In the proposed method, only thing
that DM has to do is to change the target values and
preference information of the objective functions based on
his experience; resulting membership updates will be carried
out by the computer (Figure 1 (b)).

Inequality constraints must be introduced to take into
consideration various kinds of operational limits. In this

study, voltage magnitude at each node, active and reactive
generator output and line flows are used as inequality



objective function valus oo fi1 : satisfactory value of the objective function
DM < Multiobjective
trade-off information [Fuzzy OPF . .
subjectivity (2) Update of the membership functions
experience,
In case of postulating linear membership functions, the
aramete| H 1 1 H 1
{Juning Tembership trade-off rates among objective functions are in proportion
update to the trade-off rates of associated membership functions.
(a) Conventional Method This fact is thg ba3|c_ principle in the update calculation of
the membership functions.
Computer
objective function Now, let denote by aj a contribution of
_value Multiobjective . . . L. . :
DM 1= Fuzzy OPF increasing/decreasing priority in accordance with DM's
trade-off | #membership request:
information! | update
__|target value and 1 ﬁfi (X)
subjectivitypreference information [ paramete aij :ﬁ-—
experiencp ¥~ | tuning éf] (X) 8)
where > 0 :request for increasing priorit
(b) Proposed Method ﬁ a ) 9p ] _y d‘
Fig. 1 The concept of the proposed interactive algorithm B < 0 :request for decreasing priority df

The total membership update for objecti\fje(x) is given
Algorithm for Membership Function Update

by the sum of each contributio; as

(1) Change in the priority of objectives p
In the proposed algorithm, the degree of satisfaction of DM aj = Zaij
i=1

is expressed as the distance from the target value (fuzzy

goal) to the current Par_eto optimal solution and _thsnd the new membership parameter becomes
preference information on increase/decrease of the priority

of each objective function. ij = fj 0T aj (10)
Fig.2 (a) shows the linear membership function of this '
problem and Fig. 2 (b) explains how the priority f?f can

be changed bﬁo. If DM desires to improve the degree of

satisfaction of objectivefi, the priority of f; should be The followings are the solution algorithms for the fuzzy

©)

B.4 Solution Algorithms

increased by either of the following two strategies. interactive multi-objective OPF.
Step 1:  Calculatef; MmN and fi MaX ot objective function
(|) Qecrease parameteffo S fi (X) =1 p..
(ii) increase parametefjo (=i, 1=1..p) Step2: Ask the DM to select the initial value of
membership parametef, g, fi. and target value
In this study, we have adopted strategy (ii) for updating target
membership functions. This is because the rate of trade-off Hi '
among the objectives will be used to calculate th&tep3: Solve the maximization problem.(7) to obtain one
membership updates. specific Pareto optimal solution. Solve (7) again
for each small displacement dfzi; to get trade-
@) (b) off rates among the memberships.

Step 4 : Stop if DM is satisfied with the obtained result.
Otherwise, go to Step 5.

Step 5: Update automatically the target value and
membership function parameters by using (8)-(10).
Go to Step 3.

RN

0 f1 fp O

Some comments are in order here for the above algorithm. In
Fig. 2 (a) Linear membership function, (b) Tuning of me  step 4, DM is supplied with the Pareto optimal solution and

fio : lowest acceptable value of the objective function ~ the trade-off rates between the membership function. Also,

in step 5, if the obtained objective value is far from the target
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value, it should be updated. With the new target value, DB.6 Discussions and Concluding Remarks

specifies preference information (increase/decrease priority)

for each objective function by considering current objectivg,merical simulations have been carried out on the IEEE
function value. Then, the new membership functioig node test system to demonstrate the capability of the

parameter would be calculated by the computer. proposed algorithm with focusing on the execution time and
o iteration counts. Results are listed in Table 2, where the
B.5 Application to the Test System execution time of thes -constrained method is also shown

for the purpose of comparison. As the objective function of
The proposed algorithm has been applied to the IEEE 1t8& proposed method with linear membership functions is
test system, the results of which are shown in Table 1. Firthte sum of the constituent objective functions, the sparsity
DM must solve three single-objective OPF problems tstructure of the system matrix becomes the same as that of
obtain maximum and minimum values of the objectivéhe single objective OPF, thus giving rise to similar results
functions, denoted respectively bE{max fimm and as those of th(_a conventional OPF. On the_oth_er hand,_smce

the & -constrained method deals with objective functions

then decide the initial membership function paramefpos that has not been selected as the main objective as
fil and the initial target value corresponding to 80% of theonstraints, the sparsity of the Hessian matrix is disrupted,

membership function. In this studyf3 is selected as 1/10 of increasing the time per iteration. This property together with
an increase in the iteration counts has doubled its total

fio- . ] o execution time as compared with the single objective OPF.
Since the obtained solution in STAGE 1 was far from the

target value, DM has decided to change it to (25.0, 0.58, Table 2 Execution results for each OPF method

and

140.0). Even with the new target values, objective functiops Single Fuzzy multi- z
f1 andfy are still unsatisfactory and need to be improved. To objective | objective -constrained
. . _ . OPF OPF multi-objective
achieve this, the priority df andf, were increased and that OPF
of f3 was decreased by (8) - (10). In STAGE 2, althofjgh | Compose W matrix | 0.20721 0.36087 0.37012
andfy, were still unsatisfactory, DM assumed that it is stift [LSS‘;Lctorization fsec] 1.07315 107738 142480
possible to improve results with the same target valugsEnforce Inequality 0.00684 0.00613 0.00684
Therefore, DM supplied the same target values at the npdgecl
. N . Execution time / 1.28721 1.44438 1.80176
stage to further improve objective functiofisand f2. The | jeration [sec]
membership function parameters were updated in the sgnmtal Time [sec.] 5.24699 5.87073 10.89917
manner as in STAGE 1. After the optimization in STAGE 3, Iteration 4 4 5
all the objective functions have satisfied the target values
and thus a satisfactory solution has been derived. It is possible for the fuzzy coordination method to reflect the
intention or preference of DM on the objectives, and
Table 1 Interactive processes to the DM moreover its convergence characteristics are roughly the
STAGE 1 5 3 | same as that of the single-objective OPF. An optimal
— solution obtained in the additive fuzzy decision set has a
Objective| f1 | fo | f3 | f1 | fo | f3 | f1 | fo | f3 . .
Function guarantee to be a Pareto optimal unless membership
Target | 23.6| 0.56| 1388 250 058 1490 230 058 140.0 function;j (X) takes on either 1 or 0, and therefore it is not
Value necessary to make the validation test for optimality. In this

22.0| 0.48| 136.0 22.0 0.48 138.0 2.0 0l48 136.0 section, we have shown the effectiveness of the interactive
algorithm for determining a unique solution by means of

fuzzy coordination. Of course, there is much room for

30.0| 0.80| 150.0 31.0 0.81 159.0 38.1 0J80 180.0 . X
further refinement such as a research for cases with other

types of membership functions.
F(X) |26.0] 0.64] 138.0 252 0.6 139.0 23.0 0[59 140.0

m(x) 0.49]| 050] 0.859 0.64 05p 0.6 0.81 0h7 0[92 B.7 References
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Chapter 8 Hybrid Techniques in Fuzzy Logic

Abstract- This paper presents hybrid applications of fuzzgut that MLP uses the black-box like description of the

logic in power systems. In particular, this paper focuses amference process so that the relationship between input and

neuro fuzzy models as a hybrid model. The typical neuautput variables is not clear. As a result, it is hard to capture

fuzzy models are reviewed to understand the trend in ttiee tendency of the predicted value as well as cause and

modeling. Next, the applications of the neuro fuzzy modekffect.

are described in load forecasting, fault detection/diagnosis,

system control, and modeling/analysis. Furthermore, tl@n the other hand, fuzzy inference is also one of promising

future direction of fuzzy logic is mentioned. intelligent system approaches. Kosko made a proof that
fuzzy inference allows us to approximate any nonlinear

Keywords: fuzzy logic, hybrid applications, neuro fuzzy  functions with finite fuzzy rules[6]. Fuzzy inference has the
same ability as MLP in approximating any functions. The

. advantage of the fuzzy inference over ANN is to capture
A. Introduction cause and effect in the inference process. Due to the clear

It is expected that intelligent systems allows to smootf¢lationship between input and output variables, the results
easy to understand and control power systems appropriatt wever, the conventional fuzzy inference does not have

Power systems have the following complicated factors: e learning function like MLP. It means that it is
questionable whether the model reflects the obtained

« nonlinear dynamics data.Table 1 shows a comparison between MLP and fuzzy
« periodicity and/or randomness inference. Therefore, models are required to possess the
« large-scale advantages of both MLP and fuzzy inference.

discrete event systems, etc.
They make power systems more complex so that powleszr' Soft Computing
system operators have difficulty in carrying out on-lin€lhis section briefly describes soft computing (SC) to
computation. Aside from the analytical methods, thenderstand the concept of the hybrid methods with fuzzy[3].
intelligent systems aims at solving the following: Zadeh proposed SC in which the human-like approximate
ability without high precision is simulated to solve the
1) Problems without any analytical algorithms complex problems. It consists of the following:
2) Problems that may be expressed by knowledge

and experiences e Fuzzy logic (FL)
3) Pattern recognition problems in which the « Atrtificial neural network (ANN)
nonlinear relationship between input and output « Probabilistic reasoning(PR)

variables are identified

Fig. 1 shows the concept of SC. The objective is to achieve

Among the intelligent systems, artificial neuraltracterability, robustness, and low solution cost of the

networks(ANNSs) inspired by the biological nerve systemsystems to be studied for solving complicated problems. It
have been developed to carry out the distributed different from the conventional(hard) computing in a
information processing. They consist of a group of units

called "neurons” that are analogous to nerve neurons. The
multi-perceptron(MLP) is the mainstream of ANNs due to
the universal nonlinear approximator. According to the

supervised learning, the weights between neurons are
optimized to obtain a good model. However, it is pointed

Table1 Comparison between MLP and Fuzzy

Inference
Features MLP Fuzzy
Capability of Approximating
. X X
Any Functions
Model Determinati th Note) FL: Fuzzy Logic
o erermination Trotgn— x ANN: Artificial Neural Network

Learning PR: Probabilistic Reasoning

Easiness of Inference Process X Fig. 1 Concept of Soft Computing




sense that it is tolerant of imprecision, uncertainty, and Input outpu
artial truth. It should be noted that SC implies a discipline > >
Itohat allows three methods to work out tr?e problem F;n a Fuzzy Rules
complementary way. Fuzzy inference with fuzzy rules is
suitable for identifying the nonlinear relationship between
input and output variables with high accuracy. ANN works
as a mathematical model that simulated the right-side of
human brain or nerve systems It should be noted that PR — ANN —»
corresponds to the following:

Belief Networks[4] Fig. 2 Neuro Fuzzy Type A
Genetic Algorithms (GA)[5] g y P

Chaos Systems][6]
Learning Theory, etc.

Belief networks are a means of representing uncertain Fuzzy Rules

knowledge from experts. They show the probabilistic input outpu
dependency among a set of variables. They are called

Baysian networks, knowledge maps, or qualitative

probabilistic networks. GA is a heuristic probabilistic

optimization technique that has been inspired by the natural ANN

selection. The algorithm includes genetic operators such as
crossover, mutation, reproduction, etc. so that better
solutions are evaluated. Unlike the conventional methods, it
is expected that GA gives solutions near a global optimum.
Chaos systems are used in temporal pattern search in
nonlinear optical resonator, deterministic nonlinear
prediction of economics, etc.

(a) Unified Model
Fig. 3 Neuro FuzazType B

FL, ANN, and PR cooperate with each other to handle input output

uncertain information that is not expressed b Fuzzy Rules {
y crisp numbers. In other words, SC allows a computer to
behave like a human and solve complex problems.
Specifically, FL, ANN, and PR are related to imprecision,
learning, and uncertainty, respectively. The three approaches Compensati

overlap with each other as shown in Fig. 1. Areas A, B, and ANN
C in the figure are cooperative rather than competitive.
Suppose that SC is applied to a problem. The role of FL,
ANN, and PR depends on the problem. The combination

results in an advantageous method. Focusing on the role of (b) Conmensation Model

FL, most of the approaches correspond to Areas A and B in )

power systems. In particular, Area A is called neuro fuzzy. input outpu
In the next section, typical neuro fuzzy models are outlined - | | L
from a standpoint of the role of fuzzy. ANN Fuzzy Rules

C. Typical Neuro-Fuzzy Models

This section briefly introduces typical neuro fuzzy models[7]

as one of promising intelligent systems although the

integration of fuzzy with other technologies is found[8]. The input outpu
degree of the integration of FL with ANN becomes higher as
the model proceeds to Type K from Type A in neuro fuzzy —® Fuzzy Rules™  ANN [—™
models. Namely, Type A implies the most primitive neuro
fuzzy model.

Fig. 4 Neuro Fuzz Type C

Fig. 5 Neuro Fuzzy Type D
C.1Type A

Suppose that a system has two functions of fuzzy rules and
ANN independently. The fuzzy rules handle some input arfd.2 Type B
output variables while ANN does the others (see Fig. 2).

can be seen that the fuzzy rules deal with the different in 5. 3. The model is called Type B. Depending on the role of

variables from those of ANN. The model is referred to . o ; ; )
Type A. Fuzzy rules are used for the problem in which tHe- @"d ANN, it may be divided into the following model:

knowledge and experience of experts are described. On the
other hand, ANN is used for the problem that fuzzy rules can

not handle. Thus, there is no relationship between fuzzy

rules and ANN.

zzy rules and ANN may be placed in parallel as shown in

1) Unified model(see Fig. 3(a))
2) Compensation model(see Fig. 3(b))
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In the unified model, information processing is equally done ~ INPUt outpu
for FL and ANN. Also, FL compensates the results obtained Fuzzy Rules +—p
by ANN in the compensation model, and vice verse.

C3TypesC&D

FL and ANN may be placed in series so that two-phase
inference is possible if ANN may be regarded as a kind of
inference. Regarding the two-phase inference, two schemes .
are allowed to evaluate output variables as follows: Fig. 6 Neuro Fuzzy Type E

ANN Parameter tunm

a) ANN plus Fuzzy rules(see Fig. 4)
b) Fuzzy rules plus ANN(see Fig. 5)

input outpu

The former is called Type C while the latter is Type D. The ANN

choice of the types depends on the problems .

C.4 Type E Parameten
tunin

Fig. 6 shows Type E of the neuro fuzzy model. A fuzzy ’
model is used to handle fuzzy rules in which the goal and
parameters of the fuzzy control are evaluated. It should be input outpu
noted that ANN contributes to determination of constructing
the fuzzy rules. In other words, ANN plays an assistant role —™ ANN —®| Fuzzy Ruleg—®

in the fuzzy model.

Fuzzy Ruleg

Fig. 7 Neuro Fuzzy Type F

C5TypeF
The model called Type F is based on the ANN model that
makes use of fuzzy rules in determining the weights between input Fuzzy Rules outp

neurons (see Fig. 7). The parameters of ANN such as the g »
weights between neurons and the threshold value of neurons @ > '@L

is evaluated by the fuzzy rules. That allows to speed up the

ANN learning and reduce the model errors. The role of ANN

and fuzzy rules in this model corresponds to that of fuzzy “éﬁ?cﬁ?gﬁ';'p “éﬁ’r‘,‘cbt?gﬁg'p
and ANN of Type E , respectively.

C.6 Type G [

ANN Learnim

Type G makes use of the integration of fuzzy rules and ANN
so that the supervised learning of ANN is used to evaluate
the membership function shape and the weight of true value Fig. 8 Neuro Fuzzy Type G
of fuzzy rules (see Fig. 8). As a learning scheme, the steepest
decent method is used the error backpropagation algorithm
of the multilayer perceptron. The difference between Types
E and G is that only the function of the ANN learning is
used in Type G to tune up fuzzy rules to improve the
solution accuracy.

outout
-

inout

C.7 Type H

The model of Type H has function that fuzzy rules of if-then
are expressed with the ANN construction. The model is
useful in a sense that the computation process of fuzzy Fig. 9 Neuro Fuzzy Type H
inference or fuzzy control may be represented by a learning
model. This concept is shown in Fig. 9. Since the ANN
represents the fuzzy rules, the output variable after the
ANN learning corresponds to the inference value of
fuzzy model.
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if Athen B

C.8 Typell

A fuzzy inference model is identified with ANN to clarify
the relationship between the premise and consequence of
fuzzy rules as shown in Fig. 10. The ANN model is
constructed after fuzzy sets of the premise and consequence
. are assigned to input and output of the learning data of ANN,

Input output respectively. As a result, the input and output variables of
L—1 ANN the model correspond to the value of the fuzzy membership
functions. Specifically, studies on ANNs representing fuzzy
rules and fuzzy operators have been done.

Fig. 10 Neuro Fuzzy Type |
C.9 TypeJ

input 7 output . .
4 A part of fuzzy rules in the fuzzy model is expressed by
—>/l Fuzzy Rulep +—» ANNs in Type J ( see Fig. 11). The ANN model is used to
//l l// substitute for some fuzzy rules so that the errors of the fuzzy
H T membership functions or the consequence are reduced. The

! \ ; difference between Types G and J is that ANNs becomes a
P ; " subsystem of fuzzy rules in Type J .

|72}

ANN ANN

C.10 Type K

. The model corresponds to a generalized neuro fuzzy model.
Fig. 11 Neuro Fuzzy Type J It is a kind of an extension of ANN in a sense that the
weights between neurons are fuzzified. That implies that it
can handle input data as a fuzzy number. It is necessary to
develop more sophisticated learning algorithms in
consideration of fuzzy logic.

input output D. Typical Applications of Neuro-Fuzzy Models

to Power Systems

This section reviews typical applications of neuro fuzzy
models to power systems. Fig. 13 gives an overview of main
specific problems with neuro fuzzy models. The areas may
be listed as follows:

-Load forecasting (50.0%)

-Fault Detection and Diagnosis(13.64%)
-System Control(31.82%)

-Analysis and Modeling(4.55%)

Fig. 12 Neuro Fuzzy Type K

4.55% i i
In load forecasting, a neuro fuzzy model is used as one of

tools to deals with time series analysis of a load. Among the
load forecasting problems, short-term load forecasting is of
main concern. High accuracy of the load forecasting

Load Forecasting improves security and generation cost. However, the
forecasting problem is not so easy due to the complicated

50.0% factors such as nonlinearity, weather conditions, etc. The
neuro fuzzy models allow us to carry out adaptive
forecasting efficiently.

System Control

31.82%

13.64%
Fault Detection and Diagnosis

Fig. 13 Main Specific Problems

8-3



Table 2 Typical Applications of Neuro Fuzzy Models to Power Systems

Areas References Neuro Fuzzy Type ANN Model Problems to be studied

[LF1] A MLP One-day ahead prediction
[LF2] C MLP 1-48hours ahead prediction
[LF3] C MLP same as [LF2]
[LF4] G MLP One-hour ahead prediction
[LF5] G MLP One-day ahead prediction

Load Forecasting [LF6] D MLP One-day ahead prediction
[LF7] G MLP One-day ahead prediction
[LF8] D MLP One-day ahead prediction
[LF9] C MLP One-day ahead prediction
[LF10] D MLP One-day ahead prediction
[LF11] G MLP Optimal structure of MFs
[FD1] D MLP Animal fault detection

Fault Detection

/Diagnosis [FD2] D MLP Shorted turns in widingings
[FD3] D MLP Equipment conditions
[CN1] C MLP Hybrid PSS
[CN2] C MLP Hybrid PSS
[CN3] C MLP Hybrid PSS

System Control [CN4] C MLP Hybrid controller
[CN5] D MLP Extinction angle control
[CN6] G MLP Excitation controller
[CNT] C MLP PWM controller for induction machine

Anahscic/Mndalinn
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No. of Papers

Neuro Fuzzy Type

Fig. 14 Classification of Papers on Neuro Fuzzy Types

¢ Neuro fuzzy models C and D are widely used for
simplicity although they are less sophisticated than other
models E-K(see Fig. 14). It can be seen that the model with
the high degree of the integration of fuzzy logic and ANN
have not been sufficiently studied in power systems.

e The used ANN model is MLP in all the cases. MLP is
easier to incorporate fuzzy logic into the model structure.

This paragraph describes future work that enhances the
performance of fuzzy logic. It is a natural research direction
to make use of other emerging technologies to overcome
drawbacks of fuzzy logic. Table 3 gives the expected
functions of emerging technologies for fuzzy logic. In

Fuzzy-ANN, the membership function is learned through the
BP algorithm. Also, metaheuristics is used to find out a

Table 3 Expected Functions of Emerging Technologiesolution near a global minimum in determining optimal

Technologies

Expected Functions

ANN
Metaheuristics
Expert Systems

Multi-Agent Syst.

Neuro Fuzzy
Optimal Fuzzy Structure
Fuzzy expert systems

Fuzzy Modules

structure of the fuzzy membership functions. Ref. [LF11]
handles SA based learning for constructing the optimal
fuzzy membership functions .

E. Conclusions

This paper has provided an overview on hybrid models of
fuzzy logic in power systems. In particular, this paper has
described neuro fuzzy models that is the integration of fuzzy
logic with artificial neural networks. As the application areas,
load forecasting, fault detection/diagnosis, system control ,
and analysis/modeling were of main concern although there
exist a variety of application areas. In addition, the

A-life Evolution of Structure

Chaos Chaos model with Fuzzy

Logic

(1]

(2
Fault detection/diagnosis is one of challenging problems in
power systems. The neuro fuzzy models -identifies the type
and location of faults with a given set of power systerg]
conditions, measurements, alarms, etc. Through a given set
of input variables, the neuro fuzzy model handles selectirfj
solution candidates. However, the complexity increases
significantly as the system size increases. As a result, it[%
still questionable whether the simple neuro fuzzy model
gives the "true" solution in large scale systems.

(6]

System control tries to construct a control method in power
systems that is based on a kind of pattern recognition rathgr
than optimal control theory. The method allows to carry out
on-line control although strictly speaking, it does not give
the optimal solution in terms of control theory. [8]

Going into some detail, Table 2 shows an detailed overview
of papers in terms of the neuro fuzzy type, the used ANN
model, and the problems to be studied. The following can
observed:

[LF1]

* Load forecasting is the most popular area in neuro fuzzy
models. That is because load forecasting does not need a lot
of the input variables while it gives a single output variable

such one-step ahead prediction. In other words, the probl&i2]

is less difficult than other problems.

integration of fuzzy logic with other emerging technologies
was described as future work.
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