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Abstract 
 
This paper proposes a fast pattern matching technique using 
Artificial Neural Networks that takes advantage of the off-line 
studies to accurately estimate security limits on-line. The 
precise methodology of operation planners is followed to 
establish the limits used to train the networks. A hierarchical 
design combining margin estimators for different security 
criteria and operating conditions is developed. Here this 
framework is applied to dynamic security. 
 
1. Introduction 
 
In the deregulated environment, determining the system 
operational limits has become increasingly important. In 
current practice, operational planners employ detailed power 
system studies to find the maximum allowable loadings in 
particular areas and the associated transfers across key 
interfaces. Reliability standards require that the system 
withstand any credible contingency and furthermore, must be 
operated with some security margin to allow operators the 
possibility of responding to events. Under this approach, the 
system ratings tend to be conservative, as studies are based on 
highly stressed conditions and incomplete, as the studies 
cannot analyze all combinations of loading and equipment 
out-of-service. This paper proposes a fast pattern matching 
technique using Artificial Neural Networks (ANNs) that takes 
advantage of the off-line studies to accurately estimate 
security limits on-line.   
 
Generally speaking, each operational planning study must 
look at static, dynamic and voltage security concerns. For a 
given loading condition and the status of any significant 
equipment out-of-service, response to all credible and major 
contingencies is investigated. The loading or other key system 
parameter (KSP) is varied to determine the proximity, or 
margin, to a security problem.  For example in voltage 
security assessment, one may employ P-V and/or V-Q curves 
[1] with the distance to the nose representing the margin.  The 
allowable margins and associate reliability criteria are based 
on the regional council guidelines, e.g., [2]. Margins for each 
scenario can be determined and documented in look-up tables 
or nomograms. The operator will then base the real time 
decisions on this information. Look-up tables have the 
obvious drawback of inflexibility and are prone to errors, as 
operators must search for the relevant scenario in the tables. 

Nomograms on the other hand provide slightly greater 
flexibility as they depict trade-offs in operating conditions, for 
example between some loading condition and a transfer 
across a key interface. Still, nomograms fail to fully capture 
all the information contained in the off-line studies and 
moreover lack the ability to manage more varied situations. 
Note this practical approach differs significantly from much 
of the on-line security literature. Those approaches focus on 
contingency screening and fast methods for calculating the 
security. While in practice, the security limits are tabulated 
off-line as described above.  
 
In recent years, there have been several ANNs based methods 
introduced for finding security limits [e.g., 3-4]. The essential 
idea is to select a set of representative features, say line flows, 
loads, generator limits and so on, and train the ANN on 
simulation data so that one can estimate the security margin. 
The ANN is expected to interpolate or generalize to similar 
unstudied cases. The problem with much of this previous 
work is that researchers have focused on generic power 
system models that ignore the practical difficulties in 
determining these limits. Our earlier work has shown that 
accurate estimates can be obtained for voltage security on 
practical systems, specifically, the WSCC system [5], only by 
developing very narrowly focused estimators. For example, 
different ANNs need to be trained based on specific major 
equipment outages and security criteria.  
 
In this paper, this early framework is extended to other 
security considerations. A hierarchical design combining 
margin estimators for different security criteria and operating 
conditions is developed. A voting mechanism is introduced 
that combines individual ANN estimates. Each ANN is 
designed using statistical criteria that ensure optimal 
performance [6]. Numerical examples show the viability of 
the approach.    
 
2. Background 
 
2.1 Operational Planning and Reliability Policies 
 
System security depends on the cooperation of different 
interconnected entities to coordinate operation of the system. 
The primary method to ensure this coordination in practice is 
to establish precise guidelines for the allowable effects 
neighboring systems may have upon each other. These 



guidelines are based on both field experience and extensive 
operational studies. Different performance levels are used 
depending on the type of disturbance. For example under 
WSCC guidelines, allowable post transient voltage deviation 
is 5% for a single generator outage and 10% for the outage of 
two generators. Thus, each reliability criteria depends on the 
type of disturbance. The disturbance should not violate 
constraints on: 
 

• loading within emergency equipment ratings, 
• transient voltage dip both in percentage deviation 

and in time duration, 
• minimum transient frequency, 
• post transient voltage deviation, 
• positive damping, i.e., stability. 

 
Operation planners generally address these criteria through 
detailed time domain simulation studies for different loading 
conditions and all major contingencies. In addition, there may 
be further requirements on running system studies. In the 
WSCC, this includes using both the P-V method (MW 
margin) and V-Q method (MVar margin) to determine an 
adequate voltage security margin. System operators, to greater 
or lesser degree depending on the utility, tend to rely heavily 
on the limits identified by operational planners and make 
relatively limited use of on-line security tools. 
 
For on-line static security analysis, modern computational 
speeds allow load flow studies of a large number of 
contingencies in near real-time. Such software is a standard 
component of the energy management system (EMS), 
although it should be noted that this software usually does not 
directly compute a security margin. On-line dynamic security 
has focused on using fast methods to quickly determine 
system stability including both time-domain simulation for 
transient stability indices and various energy function based 
methods. This in sharp contrast to the comprehensive, detailed 
and time-consuming studies employed in operational 
planning. Voltage security has been based primarily on static 
or pseudo-dynamic methods.  

 
2.2 Remarks 
 
In order to bridge the gap between the practical procedures 
employed to determine power system interface limits and the 
various proposed methods for on-line security, we note the 
following should be considered: 
 

• Operational planning methods cannot identify all 
possible operating conditions that may arise and are 
generally too slow to repeat on-line when unstudied 
system conditions arise. 

• Operators do not have full access to all the detailed 
assumptions that might have been used in an off-line 
study. Further, they only have access to the 

conclusions of a study, i.e., the actual transfer limit 
and limiting outage, and not all the underlying case 
studies that might have been performed. 

• Many of the proposed on-line security methods are 
fast methods to determine security but are not as 
effective at determining a practical operating limit, 
say, the transfer between systems. 

• The various proposed on-line security methods work 
well under certain conditions but will fail at other 
times that may not be well-understood.  

• Most of the on-line security methods do not base 
assessment on the detailed reliability requirements 
employed by the various regional councils. 

• Practical system security assessment always has a 
certain degree of system specific considerations that 
do not lend themselves to more formal analysis. 

 
In the following, a framework is introduced to address these 
concerns and to take advantage of the benefits of both 
approaches.  
  
3. Real-time Security Framework 
 
3.1 Proposed Security Analysis Approach 
 
The primary method to take better advantage of the off-line 
operational studies is to form a type of associative memory. 
That is, each of the studies cases is recorded in terms of the 
system conditions and the estimated security margin.  
 
Our earlier studies have shown the following [5]: 
 

• Simple linear regression models cannot accurately 
estimate the security margin. 

• Feedforward ANNs have the best understood design 
criteria and for this type of estimation problem 
display the most favorable performance. 

• No single estimator appears to be workable across a 
variety of security indices or widely different 
network topologies regardless of the number of 
study cases. 

• A family of smaller ANNs with different network 
parameters whose estimates are combined through a 
voting mechanism will perform better than a single 
large ANN. 

 
We propose then several layers to the on-line estimation of 
security limits. At the highest level, the current state and 
major equipment outages are used to identify the appropriate 
set of margin estimators. This is depicted in Fig. 1. The set of 
estimators includes different estimators for different 
topologies, this means not necessarily a separate estimator for 
each outage scenario but say an estimator which represents 
the base case, a wide range of operating conditions and 
includes the possibility of one or possibly two major 



equipment outages. This is in addition to the fact that the 
margin itself includes consideration of all contingencies. This 
is emphasized graphically in Fig. 2. At the lowest level, a 
family of ANNs is used to estimate the security margin for a 
specific security criterion and operating condition. The 
structure of an estimator for a given set of operating 
conditions and a specific security criterion is shown in Fig. 3. 
 
3.2 Operating Planning Studies 
 
For each of the system performance criteria identified in 
section 2.1, the limits of the power system operation are 
established. This may be total load in an area, interface 
transfer limit or some other KSP. Starting from a base case, a 
set of relevant system variables is recorded and a full analysis 
of all major contingencies performed. The KSP is 
incremented and the analysis repeated until the limits of the 
system is identified. Thus for each performance criterion, 
there is a large set of studies that establish the operating limit 
and a correspondingly large set of variables describing the 
operating conditions. 
 
3.3 Estimator Design 
 
A feedforward ANN based on the Levenberg-Marquardt 
algorithm is used [6]. There are five primary considerations in 
design of the neural networks. 
 
3.3.1 Feature selection. Selected features should be based on 
engineering knowledge and statistical correlation coefficients 
between the seleted features and the computed security 
margins computed from security studies. These will typically 
be variables such as: real and reactive power flow, reactive 
power reserve, voltage levels, and so on. A large set of 
features can be selected and then reduced based on the 
correlation coefficients.  
 
3.3.2 Principal component analysis. Principal component 
analysis (PCA) assesses the independence of the features in 
the selected feature set. This is in essence finding an 

orthogonal set of features to present to the estimator, 
improving both training time and accuracy. For example the 
P-V margin estimator for the WSCC system [5], the 106 
system variables were reduced to 46 for training. 
 
3.3.3 Hidden layers. Generally, multiple hidden layers will 
improve the approximation process and thus, two hidden 
layers are needed when finding estimates for larger systems 
with more complicated non-linearities. 
 
3.3.4 ANN nodes and voting scheme. The number of nodes in 
the hidden layers significantly impact the performance. In the 
Bayesian framework of MacKay [7], the parameters are then 
estimated using statistical techniques. Here, several ANNs 
with parameters near the determined optima are trained. The 
estimates from these networks can be combined using a 
voting scheme. For example, one effective method is to 
disregard the lowest and largest margin estimates from such a 
set of networks and then average the remaining estimates.  
 
3.3.5 Splitting training data for estimation and validation. A 
statistical theory of the overfitting phenomenon that may 
occur with ANNs is presented in [8]. If N is the size of the 
training set and W is the number of free parameters in the 
network with N<W, the optimum split of the training data 
between estimation and validation subsets is given by  
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where is ropt is the fraction to be used for training. 
 
4. Numerical Examples 
 
The proposed methodology has also been successfully applied 
to estimate the transfer limits on the WSCC system using a 
static method, P-V curves, to determine voltage security limits 
[5]. Here the examples are presented for dynamic events that 
satisfy the WSCC disturbance criteria for performance level A 
[2]. The performance of is demonstrated here using the New 
England 39-bus system. The system has been modified to 
represent a system with different zones and critical interfaces.
Figure 4 shows a load center of buses 17,18 and 27 with three 
tie lines 3-18, 16-17 and 26-27. The total system loading for 
the base case is 6150.5 MW and 1658.90 Mvar . The flow 
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across the interface of this load center is the parameter of 
interest here. Since this is a rather small system, satisfactory 
performance is obtained here using a simplified estimator of 
only one ANN.  
 
To determine the security limits, detailed time domain studies 
are for each contingency under increasingly heavily loaded 
conditions. The transfer is incremented in 400 MW blocks 
and the point at which a performance criterion fails for a 
given contingency determines the transfer limit. This rather 
rough estimate of the transfer limit serves for demonstration 
purposes here but obviously would requirement more 
refinement for a practical system. Real and reactive power 
flows in the network are used to form the initial feature set. A 
line outage is represented by an arbitrarily large line flow in 
that line. 
 
4.1 Voltage Instability 
 
The first performance criteria considered is voltage stability 
as seen by the post-disturbance voltage response. The 

maximum voltage dip at any bus following a contingency 
cannot exceed 25% and a more than 20% dip cannot last for 
more than 20 cycles. The post-transient voltage dip should not 
exceed 5%. Finally, there must be positive damping. Note this 
obviously may overlap with the angle instability criteria. 
 
The designed ANN has a single hidden layer with 10 hidden 
nodes. There are 131 test cases of which 20% are used for 
testing. The overall performance is shown in Table 1 and 
indicates very low percentage errors. Notice also that the 
combination of PCA and correlation greatly reduces the 
number of needed features. Figure 5 plots these estimates for 
the test data. 
 
4.2 Angle Instability 
 
The second performance criteria considered is angular 
stability. The minimum transient frequency dip at any bus 
following a contingency cannot exceed 59.6Hz for more than 
6 cycles. Again, the system must have positive damping.  
 
The ANN has a single hidden layer with 15 hidden nodes. 
Again there are 131 test cases of which 20% are used for 
testing. The overall performance is shown in Table 2 and 
again there very low percentage errors are seen. Figure 6 plots 
these estimates for the test data. 
 
5. Discussion 
 
This paper proposes an involved framework employing ANNs 
to estimate on-line security estimates. The primary advantage 
of the approach is in taking advantage of the numerous 
detailed off-line studies performed during operations 
planning. At the same time, it does create an added burden on 
planners to perform more extensive studies. In previous work, 
it was established that this methodology will work for 
practical systems for static security. This work demonstrates 
the initial stages on estimates for dynamic security. While the 
results appear promising, the difficulty in implementing these 
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approaches lies in applications for large systems. Larger 
systems not only contain more complicated non-linearities but 
also numerous system specific constraints that make 
application more difficult. Application to the WSCC system is 
on-going.  
  
Future efforts will also investigate the use of energy function 
methods and transient stability indices. While these methods 
have limitations that prevent establishing security limits 
definitively, by virtue of computational speed they would 
allow a more extensive set of studies to be carried out for 
training the ANNs.  
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Table 1 Errors in estimate of voltage security limits 
Max error 
(MW / %) 

Min error 
(MW / %) 

Mean error 
(MW / %) 

Standard 
Deviation 

(MW) 

Features after 
PCA 

Features after 
correlation 

1.0012 / 
0.093% 

0.0062 / 
0.0015% 

0.3549 / 
0.031% 

0.186 30 4 

 
Table 2 Errors in estimate of angular security limits 

Max error 
(MW / %) 

Min error 
(MW / %) 

Mean error 
(MW / %) 

Standard 
Deviation 

(MW) 

Features after 
PCA 

Features after 
correlation 

1.9799 / 
0.25% 

0.0650 / 
0.0041% 

0.4096 / 
0.060% 

0.602 32 6 
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Fig. 5 Margin estimate for voltage stability 

 
Fig. 6 Margin estimate for angle stability 


