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Abstract

One of the fundamental tenets in deregulation of the power system is to provide fair and open access to transmission facilities. This
requires that market participants, both power brokers and generation companies, have complete and timely information as to the transmission
availability. The present system of posting available transmission capacities (ATC) is useful but limited because there is no information to
predict how these ATCs will change with changing power transfers. It has been proposed that all traders have access to the real-time data of the
full transmission model, i.e., state estimator results from the control centers, but this may be too complex and voluminous to be useful to the
traders. Instead, makingDC power flow data for real-time conditionsmay provide enough transmission data for traders tomake knowledgeable
decisions. In this paper, we show how the results of a DC state estimator can be accurately made available to all concerned.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The constraint that the transmission grid poses on the free
trading of electrical energy is a constant source of frustra-
tion to both power brokers and generation companies. The
present system of posting available transfer capacities (ATC)
on the OASIS system does not provide enough information
for the traders to predict under what levels of transaction the
system will face congestion. For such full transparency, each
participant should be able to determine this availability inde-
pendently. One way to achieve this is to make available to all
participants the state estimator results that are available to the
ISO/RTO. Although, this will certainly allow the traders to
participate or verify all ISO decisions on transmission con-
straints, it will also require the traders to have the same level
of sophisticated software tools as the ISOs to do so. The in-
vestment needed in expertise and software for this level of
information exchange may be unfair to the smaller brokers
or generation owners.
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An alternative suggestion is to provide all participantswith
DCpower flowdata for real-time conditions.Given thatmany
ISOs are adopting methods based on distribution factors to
make transmission decisions, the DC power flow may be ac-
curate enough for the traders to anticipate transmission con-
straints and make informed decisions. On the other hand,
DC power flow data can be handled with readily available
off-the shelf software or easily integrated into existing trad-
ing software. This paper addresses how accurate DC power
flow results of real-time conditions can be made available. A
DC state estimator is proposed and a method is developed to
correct for topology errors. In all state estimation, a topol-
ogy error, unlike an analog measurement error, can make the
state estimator results useless and much research is available
for topology error detection and correction for the AC state
estimator. We present a novel two-stage DC state estimator
that can correct for topology errors.
The traditional full AC state estimator has many techni-

cal advantages in the detection and identification of errors.
Unfortunately, it suffers from several disadvantages from a
trader’s viewpoint. First, it requires a large amount of data,
all of which may introduce new errors or observability prob-
lems and most of which will not be directly relevant to a
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given trade. Second, convergence problems that often arise
in practice are an unnecessary complication for the purposes
of conducting transactions. Third, many of the market rules
that are of concern to a trader are based on a simplified DC
power flow, such as in the flowgate model [1], so that the
resulting state estimate must be modified to be meaningful
for the market.
This paper addresses these problems by beginning with

a DC state estimator and adjusting the topology error pro-
cessing for such a system view. The authors suggest that
traders given access to select real-time data could operate
such an estimator independently. The primary difficulty is in
the inherent errors in the DC model that limit topology error
processing. In the proposed approach, state estimation is per-
formed at the bus/branch level. If any errors are detected, the
suspect area is expanded into a bus-section/switching-device
model. Then, the state estimate is repeated over this expanded
model. A new method is proposed that more effectively dis-
tinguishes between modeling approximation errors and data
errors.
There exists extensive literature that addresses the topol-

ogy error identification problem. Monticelli and co-workers
[2–4] used a physical level model and modeled the zero-
impedance branch by its power flow. By assessing this flow,
one can tell the status of the zero-impedance branch. How-
ever, pinpointing the suspicious area is crucial, otherwise
the method suffers computationally. Liu and Wu [5,6] and
Clements and Davis [7] both modeled the topology error
as a change in the measurement matrix, and subsequently
identify the error analytically. Lugtu et al. [8] used resid-
ual analysis and empirical judgment to determine the topol-
ogy error. Abur et al. [9] has proposed a two-stage method
similar to our approach. All of the above approaches use
full AC state estimation. In the proposed method, the mod-
eling error is estimated in order to compensate for the in-
herent inaccuracy of the DC method, while maintaining
the advantages of robustness and efficiency. Further, these
linear computations are more appropriate from a market
viewpoint.

2. Background

2.1. DC state estimation

In this section, we first review the classical formulation of
the state estimation and a liberalized version of it. A model is
introduced that includes the topology errors and model (DC)
error. The nonlinear equations relating the measurements z
and the state vector x are:

z = H(xtrue)+ ε (1)

where ε is measurement error vector with zero mean and
covariancematrixR.With a linear model of the power system
(bus angle θi as xtrue, real power injection Pi and line flow Pij

as measurement z), (1) simplifies to:

z = Hxtrue + ε (2)

whereH is the Jacobian matrix.The state estimation problem
usually is formulated as a least square problem (WLS) to
minimize:

J(x) = (z − Hx)TW(z − Hx) (3)

where W is a weighting matrix (inverse of the covariance
matrix) and x is the state vector.

2.2. Error modeling

There are three different types of errors in the DC model:

1. Measurement error
2. Model error
3. Topology error

Measurement error:Measurement error can be modeled as a
zeromeanwith non-zero covariance, assuming no gross error
exists.Model error: Since the linear model is only an approx-
imation to the real system model, another error is added to
the linear model:

z = Hxtrue + γ + ε (4)

where γ is the model error vector, i.e., the difference between
the accurate model and DC model. It is not a random but a
deterministic value that depends on the current state of the
system. Topology error: If topology errors exist, the model
becomes:

z = (H + dH)xtrue + γ + ε (5)

where dH is introduced by the incorrect topology. There
are several kinds of topology errors of interest here. Branch
outage and addition: Incorrect information on the breaker
of the line/branch will cause false line outage condition.
For example, the false line i–j outage will result in errors
on:

- Branch flow measurement error on the row regarding the
line measurement.

- Injection measurement error on the row of i and j.

These can be modeled as additional or reduced line flow
from the corresponding line or node [6,7]. Assume there is a
false status on line i–j, which should be an outage instead of
an operation, as illustrated in Fig. 1.

Fig. 1. Line i–j with impedance x.
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Fig. 2. Modeling bus split as line outage and addition.

For a line flow measurement, the corresponding row of H
matrix related to the flow measurement Pij on line i–j has the
following change:
[ · · · −1/x

i
· · · 1/x

j
· · · ]

For an injectionmeasurement, the corresponding rowof theH
matrix related to the injectionmeasurement on node i changes
by:
[ · · · −1/x

i
· · · 1/x

j
· · · ]

and similarly for the row of the Hmatrix related to the injec-
tion measurement on node j.
Bus split: False breaker status can result in a different

configuration of the substation. Bus split can be modeled as
multiple line outages and additions [5,6]. For example, in
Fig. 2, a bus split can be modeled as outages of line 3 and 4
and additions of line 1 and 2.

3. Proposed approach

The approach to topology error identification is using
two-stage state estimation. The first stage is using state esti-
mation on bus/branch model, if suspect area detected, this
area is converted to detailed bus section/switching device
model, then a second stage generalized state estimation is
used on the mixed model to identify the topology error. DC
state estimation has an advantage over AC here, since the
DC estimator can greatly reduce the calculation burden on
the mixed model and only moderate accuracy is needed at
this stage. The primary concerns are: one, the relative accu-
racy of the DC state estimation, and two, indices that can
pinpoint the error location. In the following section, vari-
ous methods to improve DC state estimation are presented.
Two indices on topology identification are introduced in Sec-
tion 5. Calculations on test cases reveal that this approach is
feasible.

4. DC state estimation solution methods

4.1. Conventional WLS method

The well-known solution to (3) is:

x̂ = G−1HTWz (6)

where G is gain matrix, and

G = HTWH (7)

The residual value for an estimation is defined as:

r = z − Hx̂ (8)

Assuming only measurement errors ε are present, simple al-
gebra shows:

r = Sε (9)

where

S = I − H(HTWH)−1HTW (10)

The expected values for x̂ and r are then unbiased with co-
variance:

cov(x̂) = G (11)

cov(r) = SW−1 (12)

If model errors are present, (9) becomes:

r = S(ε + γ) (13)

The expected values for x̂ and r are no longer unbiased and
become:

E(x̂) = xtrue + G−1HTWγ (14)

E(r) = Sγ (15)

4.2. WLS with linear equality constraints

One way to improve the accuracy of conventional WLS
DC state estimation is to treat virtual measurements (zero
injections) as linear equality constraints. There are several
methods to deal with these constraints. A simple approach
used here is to simplyweight heavily (i.e., assume some small
covariance) any virtual measurement.

4.3. Total least squares (TLS) method

Since the DCmodel is not accurate due to model error, an-
other possible improvement is to correct the matrixH instead
of estimating model error. This leads to a class of problems
called TLS problems [10–12]. This is described in the fol-
lowing. The objective is to minimize:

||D[E, ε]T ||F (16)
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subject to:

(H + E)x = z + ε (17)

where H, E∈Rm×n, x∈Rn×1, z, ε ∈Rm×1 and D∈Rm×m,
T∈R(n+1)×(n+1);E and ε are unknown; andD,T areweighting
matrices.
Thus, the model error can be partially eliminated when

estimating x. The literature [12] and our calculations reveals
that in typical applications, gains of 10–15% in accuracy can
be obtained by using TLS instead of standard least squares
methods.
The condition for the TLS problem to have a unique so-

lution is that the least singular value of H is larger than the
least singular value of [H, z]. For typical state estimations,
these conditions are satisfied. The common method to solve
TLS problem is using singular value decomposition (SVD)
(see Appendix A). If D[H, z]T=UΣ VT and U, Σ, V are
partitioned (with dimensions shown) as:

U =
[

U1 U2
]

n 1
, Σ =

[

Σ11 Σ12

Σ21 Σ22

]

n

1
n 1

, V =

[

V11 V12

V21 V22

]

n

1
n 1

then:

D[H, z]T = −U2Σ2[VT12, V
T
22] (18)

and letting T1 = diag(t1, . . ., tn) and T2 = diag(tn+1)

x = −T1V12V
−1
22 T−1

2 (19)

4.4. Multiple scan methods

The above derivation is based on a single measurement
scan. There are several recursive estimation methods based
on a dynamic state estimation model that uses a sequence of
scans.

4.4.1. Averaging
A natural and simple extension to the common DC state

estimation is to average several consecutive results from the
state estimator. Suppose n scans is used, in recursive form:

x̂avg,i = x̂i

i
+
(i − 1)x̂avg,i−1

i
(20)

where x̂i is the estimation from the ith measurement zi. i= 1,
. . ., n and x̂avg = x̂avg,n. Assuming measurement errors are
independent between scans, it can be shown that:

E(x̂avg) = E(x̂i) (21)

and

cov(x̂avg) = 1
n
cov(x̂i) (22)

Thus, the averaging method generally provides a more con-
sistent result, but it does not remove any bias that may arise,
as would occur with a modeling error.

Kalman filter [13]: Assuming that the states of the power
grid do not change quickly in a short period, the following
equations for the power system can be established at snapshot
i:

xi+1 = xi + qi (23)

zi = Hxi + vi (24)

where qi, vi are Gaussian error vectors, with covariance Q
and R, respectively, assuming the covariances are constant
in time. The covariance Q is assumed to be small but could
be approximated by any number of statistical techniques, in-
cluding Monte Carlo simulation. Each step of the Kalman
filter for the above systems is as follows.

• Start from the prior estimation x̂−
i and its error covariance

matrix P−
i . Compute the Kalman gain matrix Ki:

Ki = P−
i HT

i (R + HP−
i HT)−1 (25)

• Update the estimate x̂i with the ith scan measurement zi:

x̂i = x̂i + Ki(zi − Hx̂−
i ) (26)

• Compute the error covariance matrix Pi for the updated
estimate:

Pi = (I − KiH)P−
i (27)

• Project ahead to predict the new error covariance matrix
P−

i+1 and new estimation x̂−
i+1

P−
i+1 = Pi + Q (28)

x̂−
i+1 = x̂i (29)

4.5. Generalized state estimation

Monticelli and co-workers [2–4] introduced the concept
of generalized state estimation. Generalized state estimation
is performed on a model in which parts of the network can
be represented at the physical level, i.e., bus-section/switch-
device level. This allows modeling zero-impedance devices
and switching devices. It expands the state variables in the
conventional state estimation by including load flow through
those zero-impedance branches and switch devices. For the
linear DC model, the expanded state variable includes real
power flows in those zero-impedance devices. Thus, one can
judge the status of, say a breaker, by observing the power
flow.
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5. Topology error detection and identification

Correct detection and identification of the suspect topol-
ogy error is critical for reducing the calculation of the two-
stage estimation. The approach used in this work is using
χ2-test on J(x) and if it fails (i.e., indicates likely errors), to
use the proposed indices to identify the suspect nodes/area.
Since the DC model is used here, coexisting modeling errors
(4) corrupt the result, in both the χ2-test and residual test.
This makes correct error detection and identification more
difficult. The proposed method tries to estimate and hence,
eliminate parts of the modeling error for a more accurate
result.

5.1. Error detection

Hypothesis testing and Residual test: Hypothesis testing
performs a χ2-test on J(x). Since the state estimation is based
on the hypothesis that there is no gross error in the measure-
ment, gross errors should result in J(x) and some normal-
ized residuals rn to be above some threshold. When using
the linearized DC state estimation, the inaccuracies in the
model itself may cause such a test to fail. Typically, for a
large high voltage network, there may be as much as 5%
model error. This error corrupts the residual test in several
ways:

• One cannot detect topology errors in lightly loaded areas,
since the errors may be less than the model error.

• Numerous “false alarms” may occur because the model
error is larger than the residual threshold.

When model error is present, J(x) is:

Jwithmodel error(x)

=
m

∑

i=1
(zi − ẑi)2/cov(zi)

=
m

∑

i=1
wii((Siε)2 + 2(Siε)(Siγ)+ (Siγ)2)

= Jnomodel error(x)+
m

∑

i=1
wii((Siγ)2 + 2(Siε)(Siγ)) (30)

wherem is the number of measurements, Si the ith row of the
projection matrix S, wii the ith diagonal element of matrix
W; ẑ = Hx̂; γ i, zi and ẑiare the ith component of the γ , z and
ẑ vector, respectively.
From Eq. (30), one finds that J(x) changes with W, ε and

γ . With the existence of the model error γ , the variance of
J(x) will increase. Still for a particular case, the model error
γ and measurement error ε may cancel each other, leaving
less residue. From another point of view, the introduction
of model error γ changes the distribution of the J(x). So the
threshold of theχ2-testmust increase significantly, especially

when the covariance of the measurements is small (wii is
large and |ε|< |γ|). This increases the difficulty of detecting
topology errors with a DC model.

5.2. Estimation of the model error

In Eq. (13), ε is a Gaussian random vector while S and γ

are deterministic. One can conceivably estimate γ through r.
Unfortunately, S is not of full rank but of rank m–n (where
m is the number of measurements and n is the number of
states). Thus, γ cannot be estimated completely. This prob-
lem belongs to a category called rank-deficient least square
problems (see Appendix A).

5.2.1. Method using singular value decomposition
(SVD)
One common approach to solving a rank deficiency prob-

lem is using SVD. For the model error estimation, rewrite
(13) as:

r = Sγ + Sε (31)

The minimal norm solution is:

γ = V1Σ
−1
1 UT

1 r (32)

where

S = [U1, U2]

[

Σ1 0
0 0

]

[V1, V2]T = U1Σ1V
T
1 (33)

with U1, U2, V1, V2 and Σ1 as given in Appendix A.
Though SVDgives an analytically sound result, it requires

more computation than the normal equation. Typically, when
m ≫ n, SVD is about twice the cost of the normal equations
and when m is small, SVD is about four times the cost of the
normal equations. Since, our goal is to build a simple sound
method suitable for traders, by introducing some reasonable
simplifications, a faster method is proposed.

5.2.2. A simplified method
Based on some assumptions, portions of the error γ (m–n

out of n elements) can be estimated. There are multiple ways
to choose the m–n dimension subvector of γ . As [8] illus-
trates, if sufficient redundancy exists, topology errors tend
to affect injection measurements much more than line flow
measurements. Selecting those elements of γ corresponding
to injections should lead to a better overall result. Assuming,
for simplicity, injection measurements are available at every
node as well as line flow measurements on every line, the
elements in γ corresponding to the injection at each node can
be selected as the modeling errors to be estimated.
Doing so is equivalent to assuming that model errors only

exist on the node injection measurements with all the mod-
eling errors set to zero. Based on this assumption, (13) be-
comes:

r = Snodeγnode + Sε (34)
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where Snode is an m× n submatrix of S obtained by deleting
all columns that correspond to flowmeasurements, and γnode
is the model error that arises on the node injection measure-
ments. Using similar WLS methods, one obtains:

γnode = (STnodeSnode)
−1

STnoder (35)

Thus, the modeling error γ is:

γ =
[

γnode

γbranch

]

=

⎡

⎢

⎢

⎢

⎢

⎣

γnode

0
...
0

⎤

⎥

⎥

⎥

⎥

⎦

(36)

5.3. Error identification

If errors are detected, the next step is identification of the
specific errors. Correctly locating the suspicious area is the
key to reducing the computational effort in the generalized
state estimation. If the model error does not change greatly
between measurements, one can use the estimated model er-
ror for each subsequent scan. In this way, J(x) and rn indices
are representative of measurement errors. To identify topol-
ogy errors, two indices are proposed in the following.

5.3.1. Node Index
Usually, topology error causes larger errors in the vicinity

of those related buses. Thus, simply grouping and averaging
the normalized residual rn by nodeswill lead to a better index.
The proposed index is built as follows:

Step 1. Initialize arrays Node Index and Node Count to 0.

Step 2. For all rn

Case 1. rn(i) is flowmeasurement on line i–j, then add |rn(i)|
to 1(i) and Node Index(j), increase both Node Count(i) and
Node Count(j) by 1.

Case 2. rn(i) is an injection measurement node i, then add
|rn(i)| to Node Index(i), increase Node Count(i) by 1.

Step 3. For all nodes

Node Index(i) = Node Index(i)
NodeCount(i)

5.3.2. Topology index
When topology errors are present, the system equation is

(5). Using a similar method in estimating modeling error, the
residual vector can be written as:

r = S(dHxtrue + γ + ε) (37)

This formulates another estimation problem, if γ has been
approximated. Lugtu et al. [8] pointed out that if sufficient

redundancy exists, the topology error would cause the largest
residual on the node injection measurement. By using sim-
ilar method to estimating model error, we can estimate the
mismatch γnode error on each node injection.

r = Snodeγnode error + Sε (38)

The estimated γnode error is used as a topology error index.
One expects that large values will appear on the nodes that
have topology errors nearby.

6. Test results

The proposed method is evaluated here on the IEEE 30,
39, 57, 118 bus test systems [15].

6.1. Case 1: Comparison of DC and AC state estimation

First, a comparison of DC and AC state estimation is pre-
sented. Tables 1–3 show the estimation errors and J(x) for
each of the systems. Table 1 shows the result of the WLS
method with and without using linear equality constraints.
One finds that using linear equality constraints, improves es-

Table 1
WLS method with/without linear equality constriants

System With Without Degrees of
freedom

State error J(x) State error J(x)

30 0.0801 38.64 0.1467 33.30 41
39 0.1312 50.46 0.1206 45.57 46
57 0.0988 270.0 0.1278 78.81 80
118 0.1238 284.5 0.1346 200.0 186
Note: All measurements have 5% Gaussian noise with the error measured
as state error =

√

∑

i (xi − x̂i)2.

Table 2
DC state estimation using TLS

System DC

State error J(x) Degree of freedom

30 0.0938 34.41 41
39 0.1103 46.28 46
57 0.1349 98.17 80
118 0.1183 346.9 186
Note: All measurements have 5% Gaussian noise with the error measured
as state error =

√

∑

i (xi − x̂i)2.

Table 3
AC state estimation

System AC

State error J(x) Degree of freedom

30 0.0113 8.538 164
39 0.0217 118.1 184
57 0.0236 23.46 320
118 0.0312 113.5 744
Note: All measurements have 5% Gaussian noise with the error measured
as state error =

√

∑

i (xi − x̂i)2.
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Table 4
Estimation with no model error correction

System IEEE 30 BUS

State error J(x) Degree of freedom χ2 > 0.99

Kalman 0.021 56.82 41 64.95
Average 0.021 80.12 41 64.95
DC 0.0238 47.12 41 64.95
AC 3.62E-05 10.75 164 209.0
Note: All measurements have 5% Gaussian noise with the error measured
as state error =

√

∑

i (xi − x̂i)2.

timation accuracy. This is important, as a typical large system
has many buses with zero injection. Table 2 shows the esti-
mation results using TLS. As expected, the results improve
slightly in terms of the state error. Next, Table 3 shows the
estimation result obtained by using AC state estimation. It
is listed here for comparison only. Obviously, it is more ac-
curate than the DC methods. Still, the improvement is not
tremendous and the DC method appears sufficiently accu-
rate. These results show that model correction reduces J(x)
when no large error is present, thus decreasing the chance of
a “false alarm.”

6.2. Case 2: Benefit of model error correction

The result of three different estimation methods, conven-
tional WLS method, averaging and Kalman filter are pre-
sented on the system with no measurement and topology
errors. Tables 4 and 5 show the estimation errors with and
without model error correction, respectively, under typical
loading conditions.

6.3. Case 3: Error detection and identification

6.3.1. Single topology error
A test is carried out on the IEEE 57 bus system [15]. In

this case, we simulate a false breaker status on line 15–14
(i.e., false branch outage on branch 15–14).

6.3.1.1. No gross measurement error. Here, there are 5%
Gaussian errors on each measurement but not gross mea-
surement error. With the degrees of freedom (m–n) = 81, a
confidence level of 0.95, the threshold for the residual test
is 103.01. We find J(x) = 4032, which clearly indicates that
errors exist. For identification, the node and topology indices

Table 5
Estimation with model error correction

System IEEE 30 BUS

State error J(x) Degree of freedom χ2 > 0.99

Kalman 0.0169 37.08 41 64.95
Average 0.0238 55.09 41 64.95
DC 0.0167 33.95 41 64.95
Note: All measurements have 5% Gaussian noise with the error measured
as state error =

√

∑

i (xi − x̂i)2.

Table 6
Three indices: Case 3a

rn Test Node Index Topology Index

Meas. |rn| Node Value Node Value

Inj. 14 58.67 14 42.15 15 0.718
Ln. 14–13 55.47 46 23.89 14 0.624
Inj. 46 48.78 13 13.31 1 0.271
Inj. 47 21.84 47 11.22 8 0.258
Inj. 15 17.22 49 7.948 13 0.153
Inj. 13 14.54 15 7.363 9 0.127
Ln. 14–46 12.30 51 6.073 3 0.0542
Ln. 47–46 10.58 50 6.030 12 0.0518
Note: Prefixes Inj., Ln. in the Meas. column represent power injection and
line flow measurement, respectively. Power values are in p.u.

are used. The errors at the largest eight nodes, ranked in as-
cending order, are shown in Table 6. For comparison, the rn
index is also listed. From these three indices, one can imme-
diately find that all indices are able to identify the topology
error.Among them, the topology indexmost clearly pinpoints
nodes 15 and 14 as the largest. A second step using general-
ized state estimation shows that the line flow on line 15–14 is
0.65, large enough to indicate that the breaker is closed. The
true value of line flow 15–14 is 0.70.

6.3.1.2. With gross measurement error. Besides the 5%
Gaussian error, a 70% gross error is included for the mea-
surement on line 13–12. J(x) is 4653, which clearly indicates
error. Table 7 shows the three indices in this case. One finds
that topology error has more impact on the indices than gross
measurement error. And once again, these indices can iden-
tify the topology error.Applying generalized state estimation,
the estimated value on line 15–14 is 0.634, indicating the in-
correct breaker status.

6.3.2. Multiple topology errors
This test is using the IEEE 30 system [15]. Topology er-

rors are introduced for the breaker status on lines 27–30 and
10–20, i.e., false branch outages on branch 27–30 and 10–20.
The three indices are shown in Table 8. In this case, the pro-
posed indices especially, the topology index, are better than

Table 7
Three indices: Case 3B

rn Test Node Index Topology Index

Meas. |rn| Node Value Node Value

Inj.14 61.96 14 43.83 15 0.696
Ln.14–13 57.32 46 24.93 14 0.680
Inj. 46 50.99 13 14.49 1 0.175
Inj. 47 19.78 47 11.76 13 0.0691
Inj. 15 18.67 49 8.210 8 0.0656
Inj. 49 17.18 15 8.137 12 0.0427
Ln. 49–48 12.66 51 6.605 26 0.0420
Inj.14–46 12.22 50 5.792 44 0.0280
Note: Prefixes Inj., Ln. in the Meas. column represent power injection and
line flow measurement, respectively. Power values are in p.u.
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Table 8
Three indices: Case 3c

rn Test Node Index Topology Index

Meas. |rn| Node Value Node Value
Inj. 20 16.00 20 12.84 10 0.0983
Ln. 19–20 9.687 30 9.026 20 0.0917
Inj. 30 9.275 19 7.456 27 0.0802
Ln. 29–30 8.776 27 4.927 30 0.0683
Inj. 10 8.390 29 4.850 4 0.0560
Inj. 19 7.258 10 3.979 1 0.0480
Inj. 12 6.861 16 3.455 2 0.0472
Note: Prefixes Inj., Ln. in the Meas. column represent power injection and
line flow measurement, respectively. Power values are in p.u.

Fig. 3. Performance comparison between SVD and proposed method.

the rn index, since they provide a clearer view of the errors
in the system. This shows that the proposed methods are also
valid for identifying multiple topology errors.

6.4. Case 4: Comparison of SVD and the proposed
method

A comparison is made based on the difference between
the estimated error ê and the actual model error e, i.e.,
√

∑

i (ei − êi)2, over successive scans. As one might expect
the SVD achieves more consistence results, but the perfor-
mance is quite similar. Since the proposed method requires
far less computation, it is suggested here as the preferred
method as shown in Fig. 3.

7. Discussion and conclusions

A two-stage DC estimation is proposed to detect and iden-
tify topology errors. In the first stage, state estimation is per-
formed on the bus/branch level.When errors are detected, the
suspicious area is converted to bus-section/switching-device
level and the second stage state estimation is performed.Mul-

tiple scan DC state estimation methods are introduced. The
DCmodel modeling error is also partly estimated. Results on
several IEEE test systems show the validity of the method.
TheDC estimator is not proposed here to be a replacement

for a full AC estimator, which might be needed by the system
operator, but rather as a simplified view of the power system
appropriate for certain market participants. An open elec-
tricity market has many players with different viewpoints of
the system and needs for accuracy. DC state estimation has
many advantages and could easily be implemented outside
the control center given availability to select measured data
and system parameters. Further, the results can be more eas-
ily related to typical market rules. The authors suggest that
where the proposed estimator begins to break down under the
burden of modeling errors, it is also likely that the limits of
the trading rules will begin to be reached.

Appendix A

Singular value decomposition and rank-deficient least
square problems [10,11,14]
Singular value decomposition (SVD): Any m× n matrix

A with m≥ n can be written as:

A = UΣVT (39)

where U is m-by-n and satisfies UTU= 1 and Σ = diag(σ1,
. . ., σn) with σ1≥ · · · ≥ σn ≥ 0. The columns, u1, . . ., un, of
U are called left singular vectors. The columns v1, . . ., vn, of
V are called right singular vectors. The σ1, . . ., σn are called
singular values.
Rank-deficient least square problems (RDLSP): When

matrix A is rank deficient or “close” to rank deficient, the
least square problems to minimize ||Ax − b||2 become the
so called RDLSP SVD is one of the most commonly used
methods to solve this kind of problems. For the rank defi-
ciency least square problem, let A be an m-by-n with m≥ n
and rank(A) = r < n. There is an n–r dimensional set of vectors
x that minimize ||Ax − b||2. When A is singular, the SVD of
A is:

A = [U1, U2]

[

Σ1 0
0 0

]

[V1, V2]T = U1Σ1V
T
1 (40)

where Σ1 is r× r and nonsingular, and U1 and V1 have r
columns. Let σ = σmin(Σ1), the smallest nonzero singular
value ofA. Then the solution x that minimizes ||Ax − b||2can
be characterized by:

(1) All solutions x can be written as:

x = V1Σ
−1
1 UT

1 b + V2z (41)

where z is an arbitrary vector.
(2) The solution x has a unique minimum norm

||x||2precisely when z= 0, in which case:
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x = V1Σ
−1
1 UT

1 b (42)

and
||x||2 ≤ ||b||2

σ
(43)

Thus, among the n-r dimensional set of solutions, themin-
imal norm solution (42) for RDSLP exists and is unique.
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