Tackling Difficult Problems: A Practical Example
Due 22 October 2003

Dominating Set
Input: A graph $G = < V, E >$ and an integer k.
Question: Does V contain a subset S of size at most k that dominates all of V, where $v \in V$ is said to be dominated by S if either v is in S or v is adjacent to at least one element of S.

Sample Applications
Analysis of Gene Regulatory Networks
Analysis of Metabolic Pathways
Analysis of Protein Spectral Data

On Finding Exact Solutions
Propose: An algorithm for dominating set that is guaranteed to return optimal (minimal) solutions.
Determine: A worst-case bound on your algorithm’s run time.
Code: Your algorithm.
Experiment and Test: Using data sets to be provided. (Assume DIMACS input format.)
Based on Testing Estimate: Your algorithm’s average run time.

On Finding Approximate Solutions
Propose: An algorithm for dominating set that returns approximate solutions in polynomial time.
Determine: A worst-case bound on your algorithm’s run time and a worst-case bound on the quality of your algorithm’s solutions relative to optimal solutions.
Code: Your algorithm.
Experiment and Test: Using data sets to be provided. (Assume DIMACS input format.)
Based on Testing Estimate: Your algorithm’s average run time and solution quality.