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Abstract

A d-dimensional Keller graph has vertices which are num-

bered with each of the 4d possible d-digit numbers (d-tuples)

which have each digit equal to 0, 1, 2, or 3. Two vertices are

adjacent if their labels differ in at least two positions, and in

at least one position the difference in the labels is two modulo

four. Keller graphs are in the benchmark set of clique prob-

lems from the DIMACS clique challenge, and they appear to

be especially difficult for clique algorithms. The dimension

seven case was the last remaining Keller graph for which the

maximum clique order was not known. It has been claimed

in order to resolve this last case it might take a “high speed

computer the size of a major galaxy”. This paper describes

the computation we used to determine that the maximum

clique order for dimension seven is 124.

1 Keller Graphs

A d-dimensional Keller graph, Gd, has 4
d vertices which

are numbered with each of the 4d possible d-digit
numbers which have each digit equal to 0, 1, 2, or
3. Two vertices are adjacent if their labels differ in
at least two positions, and in at least one position the
difference in the labels is two modulo four. The goal
of our research was to find the maximum clique order
in the graph G7, the only case that had not previously
been solved.
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Corrádi and Szabó [7] determined that the Keller
graphs of dimensions 1-5 have maximum cliques of
orders 1, 2, 5, 12, and 28 respectively. For dimension six,
the published results indicate that the maximum clique
order is at least 60 and at most 64. However, David
Applegate working in conjunction with Peter Shor ran
a computation determining that the maximum clique
order is 60. It had previously been determined that the
maximum clique order for G7 is at least 124 but at most
128, but now we know that the answer is 124.

These graphs have an interesting history, arising
from a mathematical conjecture. They have also been
frequently used as benchmarks for testing clique algo-
rithms. The mathematical story is given in Section 2
and the computational background is in Section 3. The
rest of the paper describes our new contributions.

2 Mathematical History

This section provides a historical survey of Minkowski’s
and Keller’s cube-tiling conjectures. One place to find
a more detailed history is the first chapter of this
book[23], which is an expansion of Stein’s survey article
in the American Mathematical Monthly [24]. One can
view it as a case study of one interesting thread of
mathematical research, winding over a hundred years
(through three centuries) and among several diverse
areas of mathematics.

What are these conjectures? Minkowski’s conjec-
ture is

Conjecture 2.1. (Minkowski) Every lattice tiling
of Rn by unit cubes contains two cubes that meet in an
n− 1 dimensional face.

Keller’s conjecture is nearly the same; we merely drop
the word lattice:

Conjecture 2.2. (Keller) Every tiling of R
n by

unit cubes contains two cubes that meet in an n − 1
dimensional face.

A tiling of Rn by unit cubes is a set of unit cubes
such that every point in R

n is covered by one of the



cubes, and such that the interiors of no two cubes
overlap. We can assume that all the cubes are aligned
parallel to the coordinate axis, although the conjectures
are equivalent with or without this assumption. Two
cubes thus meet in an n − 1 dimensional face if their
centers differ by exactly one in one coordinate, and are
equal in the other n− 1 coordinates.

Minkowski’s conjecture arose originally in 1896
while Minkowski was considering a problem in Diophan-
tine approximation. Investigating when an inequality
was tight led Minkowski to formulate his conjecture, a
problem in high-dimensional geometry. He originally
stated it as a theorem, the proof of which he promised
to publish at a later date. Eleven years later, he stated
it as a open problem, leading one to suspect that he
discovered a hole in an earlier proof. In 1938, in his
Ph.D. thesis, Hajós turned Minkowski’s conjecture into
a problem in the theory of abelian groups. Three years
later, he solved it using algebraic methods (the proof
can be found in [23]).

Meanwhile, in 1930, Keller generalized Minkowski’s
cube-tiling conjecture to what has come to be known as
Keller’s cube-tiling conjecture. In 1940, Oskar Perron
published a paper proving Keller’s conjecture in six and
fewer dimensions [19]. (He simultaneously published a
paper proving Minkowski’s conjecture in eight and fewer
dimensions.) Even though the original motivation for
Keller’s conjecture disappeared with Hajós’ 1941 proof
of Minkowski’s conjecture, it still appealed to some
mathematicians as an intrinsically interesting question.
Corrádi and Szabó [7], in the late 1980’s, turned Keller’s
conjecture into a combinatorial problem, and attempted
to find a counterexample via computer search. They
showed that Keller’s conjecture is true if and only if the
Keller graph Gd has no cliques of order 2d for all d.

Jeff Lagarias heard about the Keller conjecture
early in 1991 from Victor Klee, who gave a lecture on
interesting geometry problems at a meeting in Ober-
wolfach, Germany. Jeff told Peter Shor about it and in
1992, they found a counterexample in 12 dimensions
which they were promptly able to reduce to ten di-
mensions [13]. In 2000, John Mackey [14] found an
eight-dimensional counterexample. leaving the conjec-
ture open only for seven dimensions. The computation
described in this paper proves that the Keller graph G7

has no clique of order 128, which implies that there is
no counterexample to Keller’s conjecture in seven di-
mensions with cubes whose coordinates are integers or
half-integers. This is very strong evidence that Keller’s
conjecture is true in seven dimensions, as all the other
counterexamples that have been found have been tilings
with integer and half-integer coordinates.

3 Computational Experiments with Keller
Graphs

Because the clique problem is NP-complete, it is un-
likely that someone can find a polynomial time algo-
rithm for its solution. This impedes searches for a com-
puter aided resolution of the problem. Corrádi and
Szabó [7] nevertheless did a computer search for coun-
terexamples, and were able to show by computer that
there were no counterexamples in dimensions less than
or equal to five. Note that this is one fewer dimension
than Perron was able to resolve by hand nearly fifty
years earlier.

DIMACS hosted a challenge for Cliques, Colouring
and Satisfiability in 1993 [12]. The repository for the
challenge included a simple clique algorithm written by
David Johnson, and a collection of benchmark clique
problems. To illustrate how hard this clique-finding
problem is, Peter Shor added these Keller graphs to the
challenge repository. While most of the entrants found
the right answer in dimension 5, only two of the entrants
found the right answer in dimension 6, and nobody was
able to get close to the largest clique that had been
determined so far for dimension 7 (124 vertices). Later,
David Applegate wrote a program that used some of the
structure of this graph to perform an exhaustive search
for counterexamples. While the program managed to
show that there was no 64-clique in G6, it spent several
days trying to attack the case of dimension 7 and made
no discernible progress.

Marconi and Foster state that several properties
of the Keller graphs make them especially difficult for
genetic algorithms [16]. It has been conjectured that
it could take a “high speed computer the size of a
galaxy” to resolve the last open case (dimension 7) for
the Keller clique problem [6, p. 24]. However, the
techniques applied here accomplished this task using
computation which only takes about 40 days on one
machine (Section 7). Furthermore, the maximum clique
order was determined to be 124 (Section 9, the Keller
clique problem only asks whether the maximum clique
order is 128 or less than 128).

Because the Keller graphs are vertex transitive,
finding a k-clique in a Keller graph is equivalent to
finding a k − 1-clique in the graph Hd which is the
subgraph of Gd induced by the neighbours of one of
the vertices. Most clique algorithms for Keller graphs
are run with Hd instead of Gd and it was actually
H4, H5, H6, and H7 that were added to the clique
challenge repository (they have 171, 776, 3351, and
14190 vertices). Since then, there has been a large
number of heuristics for the maximum clique problem
that have been tested on these graphs.

In order to unify the results, they are expressed



here in terms of the clique order which is implied in
the original graph Gd. The maximum clique orders for
G4, G5, G6 and G7 are 12, 28, 60 and 124 respectively.

Some heuristics fail on dimension four with a max-
imum clique found of order 8 [21], 10 [5, 1], or 11 [8]
instead of 12. In [3], the clique orders found with its
four heuristics ranged from 8 to 11 for dimension 4.
Others fail on dimension five. Some of these used sev-
eral trials or more than one heuristic and their results
were (18, 21, 24) [11], (23, 22, 23) [18], and (24, 27, 27)
[4] instead of 28. The ones which fail on dimension 6 fell
short of 60 with 54 [15], 55 [9], and (56,57) [25]. These
two heuristics [22, 20] were able to find cliques of order
60 for dimension 6. Homer and Peinado [10] succeeded
for dimension six but only found 120 instead of 124 for
dimension seven.

4 Colouring Keller Graphs

A legal vertex colouring of a graph assigns a colour
to each vertex so that adjacent vertices are different
colours. A specific colouring of the Keller graph vertices
is exploited by the clique algorithm. Understanding this
colouring is critical for verification of the isomorphism
screening described in Section 6.

Theorem 4.1. The Keller graph Gd can be coloured
using 2d colours.

Proof. The vertices of Gd can be placed into a 2d by
2d array so that each row is an independent set (and
each column is an independent set, but this information
is not used for our solution). The numbering for the
rows and columns is from 0 to 2d − 1. To compute the
binary representation of the row number for a vertex,
replace each 0/1 digit with 0 and each 2/3 digit with
1. To compute the binary representation of the column
number, replace each 0/3 digit with 0 and each 1/2 digit
with 1. For example, the array for dimension 3 is:

000 001 010 011 100 101 110 111
003 002 013 012 103 102 113 112
030 031 020 021 130 131 120 121
033 032 023 022 133 132 123 122
300 301 310 311 200 201 210 211
303 302 313 312 203 202 213 212
330 331 320 321 230 231 220 221
333 332 323 322 233 232 223 222

The tuples in the same row form an independent
set because in each digit, the value is always either 0/1
or it is 2/3. Therefore there is no position where the
difference is two modulo four.

Corollary 4.1. A Keller graph of dimension d has
maximum clique order at most 2d.

Proof. By Theorem 4.1, the Keller graph of dimension
d is 2d-colourable, and any clique contains at most one
entry from each colour class.

The next theorem implies that if there is a coun-
terexample for dimension d which corresponds to a 2d-
clique in Gd, then this can be used to construct a coun-
terexample for all dimensions greater than or equal to d.
Our proof is combinatorial whereas the proof by Corrádi
and Szabó [7] is group theoretic.

Theorem 4.2. If a Keller graph of dimension d has a
clique of order r then the Keller graph of dimension d+1
has a clique of order 2r.

Proof. Make a copy of the tuples in the clique of order r
and then prefix each tuple with the digit 0 and call this
collection of r (d+1)-digit tuples A. Make a second copy
of the tuples in the clique of order r. For each of the
tuples, add 1 to each of the digits where this addition
is done modulo 4. Then prefix each tuple with the digit
2. Call this second collection of r (d+ 1)-tuples B.

We now prove that A∪B is a clique of order 2r in the
(d + 1) dimension graph. Within the tuples in A, each
pair of tuples differs in at least two positions and differs
by two in one position because the tuples used to build
A induce a clique in the dimension d graph. The same
is true for B because adding one to each entry means
that if a pair of tuples differ in at least two positions
and differ by two in one position, they still do.

The tuples in A and the tuples in B differ by two
in the first position since the first digit of those in
A is 0 and the first digit for those in B is 2. So it
remains to prove that each pair of tuples (a, b) with a
selected from A and b selected from B differ in at least
two positions. Suppose that they do not. This means
that there exists one tuple in A which is 0t and one
in B which is 2t for some d-dimensional tuple t. But
then t was in the original clique and so was the tuple u
created by subtracting one from each digit of t where the
subtraction is done modulo four. But then u and t are
tuples in the original clique which differ by one in every
position which means they are not adjacent. This is a
contradiction since the tuples from the original clique
must be pairwise adjacent to each other.

5 Finding Maximum Cliques in a Keller Graph

The clique algorithm used is a variant of the clique algo-
rithm proposed by Balas and Yu [2]. A simpler variant
is used in [17]. The key idea is that any clique of the
graph contains at most one vertex per colour class. The
algorithm backs up when encountering any subproblems
with the number of colour classes remaining less than
the number of clique vertices required.



Bit twiddling was crucial in order to get the algo-
rithm running fast enough to be practical. The graph
and the sets of vertices which are candidates for a max-
imum clique are stored in a compressed format in 32-
bit integers. When adding a new clique vertex, the al-
gorithm always selects a colour class with a minimum
number of options. Vertices in a colour class are stored
in contiguous positions which facilitates quick count-
ing of the number of choices remaining for each colour
class. The graphs searched are selected as described
in Sections 7, 8, and 9 so that in the clique problems
solved, exactly one vertex must be chosen from each
colour class. That is, if the algorithm reaches a state
where a colour class includes no options for addition to
the current clique, the algorithm can back up.

6 Automorphisms of the Keller Graphs

This section explains some symmetries of the graph that
can be taken into account to shorten the search. Some
operations that provide an automorphism of the Keller
graph are:

1. Choose a tuple t and add t to each vertex label
(modulo 4).

2. Choose a permutation and apply it to the d columns
of every d-tuple.

3. Choose one position and interchange 0’s and 2’s in
this position in all the tuples.

4. Choose one position and interchange 1’s and 3’s in
this position in all the tuples.

5. Choose one position, and in this position the sym-
bols 0, 1, 2, 3 are renumbered as 1, 0, 3, 2.

These operations are automorphisms because they
preserve the number of positions that each pair of tuples
agrees in and they also preserve the number of positions
in which a pair of tuples has a difference of two. Thus
it is obvious that they preserve adjacency. A colouring
preserving automorphism is one such that if you consider
each subset of vertices in a colour class corresponding
to one row as defined by Theorem 4.1, these all end
up the same colour after the automorphism is applied
(that is, they all map to the vertices in the same row).
Operations 2, 3, 4, and 5 above are colouring preserving.
Operation 1 is colouring preserving if all the digits of t
are equal when considered modulo two.

Theorem 6.1. Consider the ordering of the vertices of
the Keller graph as indicated in Theorem 4.1 and the
colour classes which are provided by the rows for this
labelling. Then given any two colour classes r and c,

there is a colouring preserving automorphism that maps
r to c.

Proof. Consider the ith digit, for i= 0, 1, 2, ... , (d− 1)
of the tuples in a colour class. Because of the way the
colour classes are constructed, within one colour class,
each digit position contains digits which are always
either 0/1 or they are always 2/3. Create a vector v
as follows: for each i, if colour class r and c both have
0/1 or both have 2/3 as the values in position i then v
has 0 in position i. If one has 0/1 and the other has 2/3
then v has 2 in position i.

Note that colour class r has two choices for the digit
in each position and since it has size 2d, this means
that colour class r actually has all such possible tuples.
Therefore, adding the constructed vector v to each tuple
from the graph is a colouring preserving mapping which
maps the vertices of colour r to those of colour c.

Theorem 6.2. If the Keller graph Gd of dimension d
has a clique of order 2d -1 than there is a clique of
order 2d - 1 in the graph H obtained by removing all
the vertices in the last colour class.

Proof. Consider a clique of the original graph Gd of
order 2d -1 that contains a vertex u from the last colour
class. There is exactly one row and exactly one column
of the original Keller graph which does not contain a
vertex from this clique. Take the tuple t which is the
entry in this missing row and missing column. Choose
a colour preserving automorphism as per the proof of
Theorem 6.1 which maps t to a vertex in the last colour
class. This maps the clique to one which has the last
colour class missing.

7 Case 127 or less than 127

In order to solve the last remaining case (dimension
seven) for the Keller clique problem, it is only necessary
to determine if the maximum clique order is 128 or less
than 128. Thus, a conclusion that the maximum clique
order is less than 127 suffices. The computation used
for this took 15 hours running on 64 CPU’s (about 40
days if run on only one machine). This is far less than
the estimated time predicted for such a search. This
section describes the theory for this case in detail.

As observed in the previous section, a colour class
represented by a row has all of the tuples which have
each position of the tuple taking on either 0/1 or 2/3.
A colour class is represented by the lexicographically
smallest tuple of a vertex in its class.

Using this notation, Theorem 6.2 of the previous
section says that if the dimension seven Keller graph
has a clique of order 127, then the graph H created by
removing the vertices in the colour class 2222222 has



a clique of order 127. A search on this graph can be
expedited by taking further graph automorphisms into
consideration as indicated in the next theorem.

Theorem 7.1. Let H be the graph obtained from a
dimension seven Keller graph by removing the colour
class 2222222. Then there is an automorphism mapping
any clique of order 127 in H to one which contains
one of 95 3-cliques from the first three colour classes:
0000000, 0000002, and 0000020.

Proof. Applicable automorphisms from the original
Keller graph are colour preserving automorphisms that
map the first three colour classes to each other, and
the last colour class (the one removed) to itself. One
applicable operation is to choose any one column and
interchange 0/1 and also interchange 2/3 (Operation 5
of Section 6). Because this is permitted, the tuple cho-
sen from the first row can be manipulated so that it is
all 0’s.

The first five columns of the first three tu-
ples (selected respectively from the colour classes
0000000, 0000002, and 0000020) must then contain
(0, 0, 0)T , (0, 0, 1)T , (0, 1, 0)T or (0, 1, 1)T . Because we
can permute these first 5 columns, we can assume that
the seven columns in the first three tuples are in sorted
order like this:

0 0 0 0 0 0
0 0 1 1 w x
0 1 0 1 y z
- - - - - -
a b c d 1 1

where a, b, c, and d are the number of occurrences of
each of the first four types of columns, a+ b+ c+d= 5.

Because the three vertices are in a clique, it is
necessary that x = 2 and y = 2.

The analysis is broken into four cases depending on
the values of w and z. Enumerating the potential values
for a, b, c, and d in these four subcases and eliminating
isomorphic situations results in 95 possibilities.

The search for determining if the answer is 127 or
less than 127 used the graph H from Theorem 7.1.
The clique algorithm considered each of the 95 ways
to choose the clique vertices from the first three colour
classes. The conclusion was that the Keller graph of
dimension seven has no clique of order 127.

8 Case 126 or less than 126

For the case 126 or less than 126 a similar approach
is applied. But there are now seven ways up to
isomorphism to remove two colour classes.

Theorem 8.1. There are seven ways up to isomor-
phism to choose two colour classes to delete from the

graph. These cases are equivalent to the ones you get
from deleting the colour class 0000000 and one of these:

Case 1 : 0 0 0 0 0 0 2
Case 2 : 0 0 0 0 0 2 2
Case 3 : 0 0 0 0 2 2 2
Case 4 : 0 0 0 2 2 2 2
Case 5 : 0 0 2 2 2 2 2
Case 6 : 0 2 2 2 2 2 2
Case 7 : 2 2 2 2 2 2 2

Proof. A combination of operations 3, 4, and 5 from
Section 6 can be used to renumber so that 0000000 is
one of the colour classes deleted. Permuting columns
is an operation which is a colour-class preserving auto-
morphism. So the second class can be normalized to be
s 0’s followed by (7− s) 2’s.

These classes were replaced with equivalent ones
which avoid the first three colour classes. The numbers
of ways to select the 3-cliques up to isomorphism from
the first three colour classes are: 145, 95, 251, 251, 95,
251, and 95 respectively. These numbers were checked
by hand and using a computer program. It took about
one week on 64 machines to run all 1183 cases. We
discovered that the Keller graph of dimension seven has
no cliques of order 126.

9 Case 125 or less than 125

This section describes the computation for the last
and hardest case (determining that the Keller graph
of dimension seven has no clique of order 125). The
number of ways to remove three colours classes in all
ways up to isomorphism is 23. The representatives
for these cases were chosen so that the colour classes
0000000, 0000002, and 0000020 are not deleted so that
in the next step, the first three clique vertices can be
selected from these in all ways up to isomorphism.

The number of ways to select three clique vertices
from the first three colour classes is different for each
of these 23 cases. The symmetries applied must map
the deleted classes to deleted classes and the first three
classes to each other. The number of ways to select the
first three clique vertices are: 95 (1 case), 145 (4 cases),
251 (5 cases), 365 (3 cases), 381 (2 cases), 553 (6 cases),
and 747 (2 cases). These 8599 subproblems were solved
with the conclusion that the Keller graph of dimension
seven has no clique of order 125.

It is critical to double check proofs that are done
on the computer. The algorithm was programmed
independently by two different programmers. Both
versions were run on smaller Keller graphs and it was
confirmed that the number of recursive calls at each
level matched.

The search for a 125-clique was done twice. One



program was run on a distributed system with 64
CPU’s. The distribution was accomplished by having
all jobs do a complete computation down to level 12
(the level corresponds to the number of clique vertices
placed). Each machine was assigned an integer slice
number ranging between 0 and 63. The computation
was continued at level 12 whenever the number of visits
to level 12 was congruent to the slice number modulo
64. The computation took 109 days in this environment.
This means of dividing the work resulted in a very even
split. All machines finished on the same day (after 109
days of computation!) with the longest job (measured
by the last update times for the output files) taking just
17 hours longer than the shortest one.

Code was added to the other program so it could
be run on the Kraken computer, a system which allows
parallel computation and has 8192 CPU’s. The compu-
tation was much faster with the additional CPU’s and
it took only a few weeks to finish.

When it had been confirmed that no 125-clique
exists, a search was made to ensure that the program
could find 124-cliques. The program found some but we
did not do a complete search (this would require further
isomorphism screening and would take longer than the
search for 125).

10 Conclusions and Future Research

The maximum clique order for dimension seven is 124.
One open question is determining all solutions of order
124 up to isomorphism. It is easy to see that there is
more than one solution up to isomorphism by examining
the number of times each symbol appeared in two of
the solutions that we discovered. One of the maximum
cliques came from doubling a solution of dimension six
as per Theorem 4.2 then adding four more vertices (each
of 0 and 2 appears 60 times in one position). In the other
one, the maximum number of times a symbol appears
in one position is 40.

Our result proves that there is no counterexample
to Keller’s conjecture in seven dimensions with cubes
whose coordinates are integers or half-integers. The
dimension seven case is still open however if arbitrary
coordinates are used.

Because the Keller graphs have been used so often
as benchmarks, we know that these are especially
difficult graphs for heuristics that have been proposed.
Can heuristics be found with better performance on
Keller graphs? Which other classes of graphs are
especially difficult for clique algorithms?

The structure exploited in solving this clique prob-
lem arises often in design theory problems. Which open
questions in design theory can be resolved with a similar
approach?

References

[1] P. L. De Angelis, I. M. Bomze, and G. Toraldo. El-
lipsoidal approach to box-constrained quadratic prob-
lems. Journal of Global Optimization, 28:1–15, 2004.

[2] E. Balas and C. S. Yu. Finding a maximum clique
in an arbitrary graph. SIAM Journal on Computing,
15(4):1054–1068, 1986.

[3] I. M. Bomze, M. Budinich, M. Pelillo, and C. Rossi.
Annealed replication: A new heuristic for the maxi-
mum clique problem. Discrete Applied Mathematics,
121:27–49, 2002.

[4] S. Busygin. A new trust region technique for the
maximum weight clique problem. Discrete Applied
Mathematics, 154:2080–2096, 2006.

[5] Bob Carter. How good are genetic algorithms at
finding large cliques: An experimental study. Technical
report, Computer Science Dept., Boston Univ., 1993.

[6] Barry Cipra. What’s Happening in the Mathematical
Sciences, volume 1. AMS, 1993.
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